Properties

Label 130.6.a.d.1.2
Level $130$
Weight $6$
Character 130.1
Self dual yes
Analytic conductor $20.850$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [130,6,Mod(1,130)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("130.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(130, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 130 = 2 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 130.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,8,-26,32,-50,-104,160] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.8498965757\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{235}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 235 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(15.3297\) of defining polynomial
Character \(\chi\) \(=\) 130.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} +2.32971 q^{3} +16.0000 q^{4} -25.0000 q^{5} +9.31884 q^{6} -11.9783 q^{7} +64.0000 q^{8} -237.572 q^{9} -100.000 q^{10} -592.946 q^{11} +37.2754 q^{12} +169.000 q^{13} -47.9130 q^{14} -58.2427 q^{15} +256.000 q^{16} -1152.07 q^{17} -950.290 q^{18} +1968.42 q^{19} -400.000 q^{20} -27.9059 q^{21} -2371.78 q^{22} -4924.36 q^{23} +149.101 q^{24} +625.000 q^{25} +676.000 q^{26} -1119.59 q^{27} -191.652 q^{28} -3173.80 q^{29} -232.971 q^{30} +811.533 q^{31} +1024.00 q^{32} -1381.39 q^{33} -4608.26 q^{34} +299.456 q^{35} -3801.16 q^{36} +3670.00 q^{37} +7873.70 q^{38} +393.721 q^{39} -1600.00 q^{40} -4409.33 q^{41} -111.623 q^{42} +358.098 q^{43} -9487.13 q^{44} +5939.31 q^{45} -19697.4 q^{46} -12522.3 q^{47} +596.406 q^{48} -16663.5 q^{49} +2500.00 q^{50} -2683.98 q^{51} +2704.00 q^{52} +6679.07 q^{53} -4478.38 q^{54} +14823.6 q^{55} -766.609 q^{56} +4585.86 q^{57} -12695.2 q^{58} +19291.8 q^{59} -931.884 q^{60} +37674.6 q^{61} +3246.13 q^{62} +2845.70 q^{63} +4096.00 q^{64} -4225.00 q^{65} -5525.56 q^{66} -32133.1 q^{67} -18433.0 q^{68} -11472.3 q^{69} +1197.83 q^{70} -8921.14 q^{71} -15204.6 q^{72} +30600.6 q^{73} +14680.0 q^{74} +1456.07 q^{75} +31494.8 q^{76} +7102.46 q^{77} +1574.88 q^{78} -11135.1 q^{79} -6400.00 q^{80} +55121.8 q^{81} -17637.3 q^{82} +24534.4 q^{83} -446.494 q^{84} +28801.6 q^{85} +1432.39 q^{86} -7394.04 q^{87} -37948.5 q^{88} -31623.3 q^{89} +23757.2 q^{90} -2024.33 q^{91} -78789.7 q^{92} +1890.64 q^{93} -50089.1 q^{94} -49210.6 q^{95} +2385.62 q^{96} +138544. q^{97} -66654.1 q^{98} +140868. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{2} - 26 q^{3} + 32 q^{4} - 50 q^{5} - 104 q^{6} + 160 q^{7} + 128 q^{8} + 322 q^{9} - 200 q^{10} - 726 q^{11} - 416 q^{12} + 338 q^{13} + 640 q^{14} + 650 q^{15} + 512 q^{16} - 2856 q^{17} + 1288 q^{18}+ \cdots + 66414 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) 2.32971 0.149451 0.0747255 0.997204i \(-0.476192\pi\)
0.0747255 + 0.997204i \(0.476192\pi\)
\(4\) 16.0000 0.500000
\(5\) −25.0000 −0.447214
\(6\) 9.31884 0.105678
\(7\) −11.9783 −0.0923950 −0.0461975 0.998932i \(-0.514710\pi\)
−0.0461975 + 0.998932i \(0.514710\pi\)
\(8\) 64.0000 0.353553
\(9\) −237.572 −0.977664
\(10\) −100.000 −0.316228
\(11\) −592.946 −1.47752 −0.738760 0.673969i \(-0.764588\pi\)
−0.738760 + 0.673969i \(0.764588\pi\)
\(12\) 37.2754 0.0747255
\(13\) 169.000 0.277350
\(14\) −47.9130 −0.0653331
\(15\) −58.2427 −0.0668365
\(16\) 256.000 0.250000
\(17\) −1152.07 −0.966840 −0.483420 0.875388i \(-0.660606\pi\)
−0.483420 + 0.875388i \(0.660606\pi\)
\(18\) −950.290 −0.691313
\(19\) 1968.42 1.25093 0.625467 0.780250i \(-0.284908\pi\)
0.625467 + 0.780250i \(0.284908\pi\)
\(20\) −400.000 −0.223607
\(21\) −27.9059 −0.0138085
\(22\) −2371.78 −1.04476
\(23\) −4924.36 −1.94102 −0.970510 0.241060i \(-0.922505\pi\)
−0.970510 + 0.241060i \(0.922505\pi\)
\(24\) 149.101 0.0528389
\(25\) 625.000 0.200000
\(26\) 676.000 0.196116
\(27\) −1119.59 −0.295564
\(28\) −191.652 −0.0461975
\(29\) −3173.80 −0.700786 −0.350393 0.936603i \(-0.613952\pi\)
−0.350393 + 0.936603i \(0.613952\pi\)
\(30\) −232.971 −0.0472605
\(31\) 811.533 0.151671 0.0758354 0.997120i \(-0.475838\pi\)
0.0758354 + 0.997120i \(0.475838\pi\)
\(32\) 1024.00 0.176777
\(33\) −1381.39 −0.220817
\(34\) −4608.26 −0.683659
\(35\) 299.456 0.0413203
\(36\) −3801.16 −0.488832
\(37\) 3670.00 0.440719 0.220359 0.975419i \(-0.429277\pi\)
0.220359 + 0.975419i \(0.429277\pi\)
\(38\) 7873.70 0.884544
\(39\) 393.721 0.0414502
\(40\) −1600.00 −0.158114
\(41\) −4409.33 −0.409650 −0.204825 0.978799i \(-0.565662\pi\)
−0.204825 + 0.978799i \(0.565662\pi\)
\(42\) −111.623 −0.00976410
\(43\) 358.098 0.0295346 0.0147673 0.999891i \(-0.495299\pi\)
0.0147673 + 0.999891i \(0.495299\pi\)
\(44\) −9487.13 −0.738760
\(45\) 5939.31 0.437225
\(46\) −19697.4 −1.37251
\(47\) −12522.3 −0.826873 −0.413437 0.910533i \(-0.635672\pi\)
−0.413437 + 0.910533i \(0.635672\pi\)
\(48\) 596.406 0.0373627
\(49\) −16663.5 −0.991463
\(50\) 2500.00 0.141421
\(51\) −2683.98 −0.144495
\(52\) 2704.00 0.138675
\(53\) 6679.07 0.326607 0.163304 0.986576i \(-0.447785\pi\)
0.163304 + 0.986576i \(0.447785\pi\)
\(54\) −4478.38 −0.208995
\(55\) 14823.6 0.660767
\(56\) −766.609 −0.0326666
\(57\) 4585.86 0.186953
\(58\) −12695.2 −0.495530
\(59\) 19291.8 0.721510 0.360755 0.932661i \(-0.382519\pi\)
0.360755 + 0.932661i \(0.382519\pi\)
\(60\) −931.884 −0.0334182
\(61\) 37674.6 1.29636 0.648178 0.761489i \(-0.275531\pi\)
0.648178 + 0.761489i \(0.275531\pi\)
\(62\) 3246.13 0.107247
\(63\) 2845.70 0.0903313
\(64\) 4096.00 0.125000
\(65\) −4225.00 −0.124035
\(66\) −5525.56 −0.156141
\(67\) −32133.1 −0.874511 −0.437256 0.899337i \(-0.644050\pi\)
−0.437256 + 0.899337i \(0.644050\pi\)
\(68\) −18433.0 −0.483420
\(69\) −11472.3 −0.290087
\(70\) 1197.83 0.0292179
\(71\) −8921.14 −0.210027 −0.105013 0.994471i \(-0.533489\pi\)
−0.105013 + 0.994471i \(0.533489\pi\)
\(72\) −15204.6 −0.345657
\(73\) 30600.6 0.672082 0.336041 0.941847i \(-0.390912\pi\)
0.336041 + 0.941847i \(0.390912\pi\)
\(74\) 14680.0 0.311635
\(75\) 1456.07 0.0298902
\(76\) 31494.8 0.625467
\(77\) 7102.46 0.136515
\(78\) 1574.88 0.0293097
\(79\) −11135.1 −0.200737 −0.100368 0.994950i \(-0.532002\pi\)
−0.100368 + 0.994950i \(0.532002\pi\)
\(80\) −6400.00 −0.111803
\(81\) 55121.8 0.933492
\(82\) −17637.3 −0.289666
\(83\) 24534.4 0.390913 0.195456 0.980712i \(-0.437381\pi\)
0.195456 + 0.980712i \(0.437381\pi\)
\(84\) −446.494 −0.00690426
\(85\) 28801.6 0.432384
\(86\) 1432.39 0.0208841
\(87\) −7394.04 −0.104733
\(88\) −37948.5 −0.522382
\(89\) −31623.3 −0.423186 −0.211593 0.977358i \(-0.567865\pi\)
−0.211593 + 0.977358i \(0.567865\pi\)
\(90\) 23757.2 0.309165
\(91\) −2024.33 −0.0256258
\(92\) −78789.7 −0.970510
\(93\) 1890.64 0.0226673
\(94\) −50089.1 −0.584688
\(95\) −49210.6 −0.559435
\(96\) 2385.62 0.0264194
\(97\) 138544. 1.49506 0.747531 0.664226i \(-0.231239\pi\)
0.747531 + 0.664226i \(0.231239\pi\)
\(98\) −66654.1 −0.701070
\(99\) 140868. 1.44452
\(100\) 10000.0 0.100000
\(101\) 111185. 1.08453 0.542265 0.840208i \(-0.317567\pi\)
0.542265 + 0.840208i \(0.317567\pi\)
\(102\) −10735.9 −0.102174
\(103\) 29905.5 0.277753 0.138876 0.990310i \(-0.455651\pi\)
0.138876 + 0.990310i \(0.455651\pi\)
\(104\) 10816.0 0.0980581
\(105\) 697.647 0.00617536
\(106\) 26716.3 0.230946
\(107\) 214435. 1.81066 0.905329 0.424710i \(-0.139624\pi\)
0.905329 + 0.424710i \(0.139624\pi\)
\(108\) −17913.5 −0.147782
\(109\) −229893. −1.85336 −0.926681 0.375849i \(-0.877351\pi\)
−0.926681 + 0.375849i \(0.877351\pi\)
\(110\) 59294.6 0.467233
\(111\) 8550.03 0.0658659
\(112\) −3066.43 −0.0230988
\(113\) −187452. −1.38100 −0.690501 0.723331i \(-0.742610\pi\)
−0.690501 + 0.723331i \(0.742610\pi\)
\(114\) 18343.4 0.132196
\(115\) 123109. 0.868051
\(116\) −50780.9 −0.350393
\(117\) −40149.7 −0.271155
\(118\) 77167.2 0.510185
\(119\) 13799.7 0.0893312
\(120\) −3727.54 −0.0236303
\(121\) 190534. 1.18306
\(122\) 150699. 0.916662
\(123\) −10272.5 −0.0612225
\(124\) 12984.5 0.0758354
\(125\) −15625.0 −0.0894427
\(126\) 11382.8 0.0638739
\(127\) 234608. 1.29072 0.645361 0.763878i \(-0.276707\pi\)
0.645361 + 0.763878i \(0.276707\pi\)
\(128\) 16384.0 0.0883883
\(129\) 834.264 0.00441397
\(130\) −16900.0 −0.0877058
\(131\) 165736. 0.843799 0.421899 0.906643i \(-0.361364\pi\)
0.421899 + 0.906643i \(0.361364\pi\)
\(132\) −22102.3 −0.110408
\(133\) −23578.3 −0.115580
\(134\) −128532. −0.618373
\(135\) 27989.9 0.132180
\(136\) −73732.2 −0.341830
\(137\) −22506.0 −0.102446 −0.0512231 0.998687i \(-0.516312\pi\)
−0.0512231 + 0.998687i \(0.516312\pi\)
\(138\) −45889.3 −0.205123
\(139\) −121670. −0.534128 −0.267064 0.963679i \(-0.586053\pi\)
−0.267064 + 0.963679i \(0.586053\pi\)
\(140\) 4791.30 0.0206602
\(141\) −29173.3 −0.123577
\(142\) −35684.6 −0.148511
\(143\) −100208. −0.409790
\(144\) −60818.5 −0.244416
\(145\) 79345.1 0.313401
\(146\) 122402. 0.475234
\(147\) −38821.2 −0.148175
\(148\) 58720.0 0.220359
\(149\) −395990. −1.46123 −0.730614 0.682791i \(-0.760766\pi\)
−0.730614 + 0.682791i \(0.760766\pi\)
\(150\) 5824.27 0.0211356
\(151\) −426046. −1.52060 −0.760299 0.649573i \(-0.774948\pi\)
−0.760299 + 0.649573i \(0.774948\pi\)
\(152\) 125979. 0.442272
\(153\) 273699. 0.945245
\(154\) 28409.8 0.0965310
\(155\) −20288.3 −0.0678292
\(156\) 6299.54 0.0207251
\(157\) −383765. −1.24256 −0.621279 0.783589i \(-0.713387\pi\)
−0.621279 + 0.783589i \(0.713387\pi\)
\(158\) −44540.4 −0.141942
\(159\) 15560.3 0.0488118
\(160\) −25600.0 −0.0790569
\(161\) 58985.2 0.179341
\(162\) 220487. 0.660079
\(163\) −389149. −1.14722 −0.573611 0.819128i \(-0.694458\pi\)
−0.573611 + 0.819128i \(0.694458\pi\)
\(164\) −70549.2 −0.204825
\(165\) 34534.8 0.0987522
\(166\) 98137.5 0.276417
\(167\) −260784. −0.723586 −0.361793 0.932259i \(-0.617835\pi\)
−0.361793 + 0.932259i \(0.617835\pi\)
\(168\) −1785.98 −0.00488205
\(169\) 28561.0 0.0769231
\(170\) 115207. 0.305742
\(171\) −467643. −1.22299
\(172\) 5729.57 0.0147673
\(173\) −76020.3 −0.193114 −0.0965572 0.995327i \(-0.530783\pi\)
−0.0965572 + 0.995327i \(0.530783\pi\)
\(174\) −29576.2 −0.0740575
\(175\) −7486.41 −0.0184790
\(176\) −151794. −0.369380
\(177\) 44944.3 0.107830
\(178\) −126493. −0.299238
\(179\) −693005. −1.61661 −0.808303 0.588767i \(-0.799613\pi\)
−0.808303 + 0.588767i \(0.799613\pi\)
\(180\) 95029.0 0.218612
\(181\) −491399. −1.11491 −0.557453 0.830209i \(-0.688221\pi\)
−0.557453 + 0.830209i \(0.688221\pi\)
\(182\) −8097.30 −0.0181202
\(183\) 87771.0 0.193742
\(184\) −315159. −0.686254
\(185\) −91750.0 −0.197096
\(186\) 7562.54 0.0160282
\(187\) 683112. 1.42853
\(188\) −200357. −0.413437
\(189\) 13410.8 0.0273086
\(190\) −196842. −0.395580
\(191\) 748139. 1.48388 0.741941 0.670466i \(-0.233906\pi\)
0.741941 + 0.670466i \(0.233906\pi\)
\(192\) 9542.49 0.0186814
\(193\) −588558. −1.13736 −0.568678 0.822561i \(-0.692545\pi\)
−0.568678 + 0.822561i \(0.692545\pi\)
\(194\) 554177. 1.05717
\(195\) −9843.02 −0.0185371
\(196\) −266616. −0.495732
\(197\) 150202. 0.275747 0.137873 0.990450i \(-0.455973\pi\)
0.137873 + 0.990450i \(0.455973\pi\)
\(198\) 563470. 1.02143
\(199\) −742264. −1.32870 −0.664348 0.747423i \(-0.731291\pi\)
−0.664348 + 0.747423i \(0.731291\pi\)
\(200\) 40000.0 0.0707107
\(201\) −74860.8 −0.130697
\(202\) 444739. 0.766878
\(203\) 38016.6 0.0647491
\(204\) −42943.6 −0.0722476
\(205\) 110233. 0.183201
\(206\) 119622. 0.196401
\(207\) 1.16989e6 1.89767
\(208\) 43264.0 0.0693375
\(209\) −1.16717e6 −1.84828
\(210\) 2790.59 0.00436664
\(211\) −144836. −0.223960 −0.111980 0.993710i \(-0.535719\pi\)
−0.111980 + 0.993710i \(0.535719\pi\)
\(212\) 106865. 0.163304
\(213\) −20783.7 −0.0313887
\(214\) 857741. 1.28033
\(215\) −8952.45 −0.0132083
\(216\) −71654.0 −0.104498
\(217\) −9720.75 −0.0140136
\(218\) −919574. −1.31052
\(219\) 71290.4 0.100443
\(220\) 237178. 0.330383
\(221\) −194699. −0.268153
\(222\) 34200.1 0.0465742
\(223\) −79928.8 −0.107632 −0.0538159 0.998551i \(-0.517138\pi\)
−0.0538159 + 0.998551i \(0.517138\pi\)
\(224\) −12265.7 −0.0163333
\(225\) −148483. −0.195533
\(226\) −749809. −0.976516
\(227\) 1.03559e6 1.33390 0.666949 0.745103i \(-0.267600\pi\)
0.666949 + 0.745103i \(0.267600\pi\)
\(228\) 73373.7 0.0934767
\(229\) −1.12731e6 −1.42054 −0.710272 0.703927i \(-0.751428\pi\)
−0.710272 + 0.703927i \(0.751428\pi\)
\(230\) 492436. 0.613805
\(231\) 16546.7 0.0204024
\(232\) −203123. −0.247765
\(233\) −790483. −0.953900 −0.476950 0.878930i \(-0.658258\pi\)
−0.476950 + 0.878930i \(0.658258\pi\)
\(234\) −160599. −0.191736
\(235\) 313057. 0.369789
\(236\) 308669. 0.360755
\(237\) −25941.6 −0.0300003
\(238\) 55198.9 0.0631667
\(239\) 1.42285e6 1.61126 0.805629 0.592421i \(-0.201828\pi\)
0.805629 + 0.592421i \(0.201828\pi\)
\(240\) −14910.1 −0.0167091
\(241\) −470644. −0.521976 −0.260988 0.965342i \(-0.584048\pi\)
−0.260988 + 0.965342i \(0.584048\pi\)
\(242\) 762134. 0.836552
\(243\) 400479. 0.435075
\(244\) 602794. 0.648178
\(245\) 416588. 0.443396
\(246\) −41089.8 −0.0432909
\(247\) 332664. 0.346947
\(248\) 51938.1 0.0536237
\(249\) 57158.0 0.0584223
\(250\) −62500.0 −0.0632456
\(251\) −715187. −0.716531 −0.358266 0.933620i \(-0.616632\pi\)
−0.358266 + 0.933620i \(0.616632\pi\)
\(252\) 45531.3 0.0451657
\(253\) 2.91988e6 2.86790
\(254\) 938430. 0.912678
\(255\) 67099.4 0.0646202
\(256\) 65536.0 0.0625000
\(257\) 558699. 0.527649 0.263824 0.964571i \(-0.415016\pi\)
0.263824 + 0.964571i \(0.415016\pi\)
\(258\) 3337.06 0.00312115
\(259\) −43960.2 −0.0407202
\(260\) −67600.0 −0.0620174
\(261\) 754008. 0.685133
\(262\) 662945. 0.596656
\(263\) 324539. 0.289319 0.144660 0.989481i \(-0.453791\pi\)
0.144660 + 0.989481i \(0.453791\pi\)
\(264\) −88409.0 −0.0780705
\(265\) −166977. −0.146063
\(266\) −94313.2 −0.0817275
\(267\) −73673.0 −0.0632456
\(268\) −514129. −0.437256
\(269\) −570285. −0.480520 −0.240260 0.970709i \(-0.577233\pi\)
−0.240260 + 0.970709i \(0.577233\pi\)
\(270\) 111959. 0.0934655
\(271\) 1.61579e6 1.33647 0.668237 0.743949i \(-0.267049\pi\)
0.668237 + 0.743949i \(0.267049\pi\)
\(272\) −294929. −0.241710
\(273\) −4716.09 −0.00382980
\(274\) −90023.8 −0.0724404
\(275\) −370591. −0.295504
\(276\) −183557. −0.145044
\(277\) 1.45584e6 1.14002 0.570011 0.821637i \(-0.306939\pi\)
0.570011 + 0.821637i \(0.306939\pi\)
\(278\) −486678. −0.377685
\(279\) −192798. −0.148283
\(280\) 19165.2 0.0146089
\(281\) −2.51152e6 −1.89745 −0.948726 0.316098i \(-0.897627\pi\)
−0.948726 + 0.316098i \(0.897627\pi\)
\(282\) −116693. −0.0873821
\(283\) 1.71185e6 1.27057 0.635286 0.772277i \(-0.280882\pi\)
0.635286 + 0.772277i \(0.280882\pi\)
\(284\) −142738. −0.105013
\(285\) −114646. −0.0836081
\(286\) −400831. −0.289765
\(287\) 52816.0 0.0378496
\(288\) −243274. −0.172828
\(289\) −92602.7 −0.0652197
\(290\) 317380. 0.221608
\(291\) 322768. 0.223439
\(292\) 489609. 0.336041
\(293\) 136642. 0.0929854 0.0464927 0.998919i \(-0.485196\pi\)
0.0464927 + 0.998919i \(0.485196\pi\)
\(294\) −155285. −0.104776
\(295\) −482295. −0.322669
\(296\) 234880. 0.155818
\(297\) 663859. 0.436701
\(298\) −1.58396e6 −1.03324
\(299\) −832217. −0.538342
\(300\) 23297.1 0.0149451
\(301\) −4289.39 −0.00272885
\(302\) −1.70418e6 −1.07522
\(303\) 259028. 0.162084
\(304\) 503917. 0.312734
\(305\) −941866. −0.579748
\(306\) 1.09480e6 0.668389
\(307\) 773128. 0.468172 0.234086 0.972216i \(-0.424790\pi\)
0.234086 + 0.972216i \(0.424790\pi\)
\(308\) 113639. 0.0682577
\(309\) 69671.2 0.0415104
\(310\) −81153.3 −0.0479625
\(311\) −1.00187e6 −0.587368 −0.293684 0.955903i \(-0.594881\pi\)
−0.293684 + 0.955903i \(0.594881\pi\)
\(312\) 25198.1 0.0146549
\(313\) −2.47191e6 −1.42617 −0.713085 0.701077i \(-0.752703\pi\)
−0.713085 + 0.701077i \(0.752703\pi\)
\(314\) −1.53506e6 −0.878621
\(315\) −71142.6 −0.0403974
\(316\) −178162. −0.100368
\(317\) −930057. −0.519830 −0.259915 0.965632i \(-0.583695\pi\)
−0.259915 + 0.965632i \(0.583695\pi\)
\(318\) 62241.1 0.0345151
\(319\) 1.88189e6 1.03542
\(320\) −102400. −0.0559017
\(321\) 499572. 0.270605
\(322\) 235941. 0.126813
\(323\) −2.26775e6 −1.20945
\(324\) 881948. 0.466746
\(325\) 105625. 0.0554700
\(326\) −1.55660e6 −0.811208
\(327\) −535585. −0.276987
\(328\) −282197. −0.144833
\(329\) 149995. 0.0763990
\(330\) 138139. 0.0698284
\(331\) 3.12514e6 1.56783 0.783916 0.620866i \(-0.213219\pi\)
0.783916 + 0.620866i \(0.213219\pi\)
\(332\) 392550. 0.195456
\(333\) −871891. −0.430875
\(334\) −1.04314e6 −0.511652
\(335\) 803327. 0.391093
\(336\) −7143.90 −0.00345213
\(337\) 1.69627e6 0.813617 0.406809 0.913513i \(-0.366642\pi\)
0.406809 + 0.913513i \(0.366642\pi\)
\(338\) 114244. 0.0543928
\(339\) −436709. −0.206392
\(340\) 460826. 0.216192
\(341\) −481195. −0.224096
\(342\) −1.87057e6 −0.864788
\(343\) 400919. 0.184001
\(344\) 22918.3 0.0104420
\(345\) 286808. 0.129731
\(346\) −304081. −0.136552
\(347\) −1.14325e6 −0.509704 −0.254852 0.966980i \(-0.582027\pi\)
−0.254852 + 0.966980i \(0.582027\pi\)
\(348\) −118305. −0.0523665
\(349\) −3.76980e6 −1.65674 −0.828371 0.560180i \(-0.810732\pi\)
−0.828371 + 0.560180i \(0.810732\pi\)
\(350\) −29945.6 −0.0130666
\(351\) −189211. −0.0819747
\(352\) −607176. −0.261191
\(353\) −1.39455e6 −0.595657 −0.297829 0.954619i \(-0.596262\pi\)
−0.297829 + 0.954619i \(0.596262\pi\)
\(354\) 179777. 0.0762476
\(355\) 223029. 0.0939268
\(356\) −505972. −0.211593
\(357\) 32149.4 0.0133506
\(358\) −2.77202e6 −1.14311
\(359\) −1.66623e6 −0.682338 −0.341169 0.940002i \(-0.610823\pi\)
−0.341169 + 0.940002i \(0.610823\pi\)
\(360\) 380116. 0.154582
\(361\) 1.39859e6 0.564837
\(362\) −1.96560e6 −0.788357
\(363\) 443888. 0.176810
\(364\) −32389.2 −0.0128129
\(365\) −765014. −0.300564
\(366\) 351084. 0.136996
\(367\) 265755. 0.102995 0.0514975 0.998673i \(-0.483601\pi\)
0.0514975 + 0.998673i \(0.483601\pi\)
\(368\) −1.26064e6 −0.485255
\(369\) 1.04753e6 0.400500
\(370\) −367000. −0.139368
\(371\) −80003.6 −0.0301769
\(372\) 30250.2 0.0113337
\(373\) 3.43512e6 1.27841 0.639205 0.769037i \(-0.279264\pi\)
0.639205 + 0.769037i \(0.279264\pi\)
\(374\) 2.73245e6 1.01012
\(375\) −36401.7 −0.0133673
\(376\) −801426. −0.292344
\(377\) −536373. −0.194363
\(378\) 53643.2 0.0193101
\(379\) −1.48045e6 −0.529416 −0.264708 0.964329i \(-0.585276\pi\)
−0.264708 + 0.964329i \(0.585276\pi\)
\(380\) −787370. −0.279717
\(381\) 546567. 0.192900
\(382\) 2.99256e6 1.04926
\(383\) 4.28932e6 1.49414 0.747070 0.664745i \(-0.231460\pi\)
0.747070 + 0.664745i \(0.231460\pi\)
\(384\) 38170.0 0.0132097
\(385\) −177561. −0.0610516
\(386\) −2.35423e6 −0.804232
\(387\) −85074.2 −0.0288749
\(388\) 2.21671e6 0.747531
\(389\) 2.22336e6 0.744964 0.372482 0.928039i \(-0.378507\pi\)
0.372482 + 0.928039i \(0.378507\pi\)
\(390\) −39372.1 −0.0131077
\(391\) 5.67318e6 1.87666
\(392\) −1.06647e6 −0.350535
\(393\) 386117. 0.126107
\(394\) 600809. 0.194983
\(395\) 278378. 0.0897722
\(396\) 2.25388e6 0.722259
\(397\) −5.42270e6 −1.72679 −0.863395 0.504528i \(-0.831667\pi\)
−0.863395 + 0.504528i \(0.831667\pi\)
\(398\) −2.96906e6 −0.939530
\(399\) −54930.6 −0.0172736
\(400\) 160000. 0.0500000
\(401\) −2.06419e6 −0.641044 −0.320522 0.947241i \(-0.603858\pi\)
−0.320522 + 0.947241i \(0.603858\pi\)
\(402\) −299443. −0.0924164
\(403\) 137149. 0.0420659
\(404\) 1.77895e6 0.542265
\(405\) −1.37804e6 −0.417470
\(406\) 152067. 0.0457845
\(407\) −2.17611e6 −0.651171
\(408\) −171775. −0.0510868
\(409\) −430276. −0.127186 −0.0635930 0.997976i \(-0.520256\pi\)
−0.0635930 + 0.997976i \(0.520256\pi\)
\(410\) 440933. 0.129543
\(411\) −52432.3 −0.0153107
\(412\) 478489. 0.138876
\(413\) −231082. −0.0666640
\(414\) 4.67957e6 1.34185
\(415\) −613359. −0.174821
\(416\) 173056. 0.0490290
\(417\) −283455. −0.0798259
\(418\) −4.66867e6 −1.30693
\(419\) −3.98854e6 −1.10989 −0.554944 0.831888i \(-0.687260\pi\)
−0.554944 + 0.831888i \(0.687260\pi\)
\(420\) 11162.3 0.00308768
\(421\) −1.46324e6 −0.402357 −0.201178 0.979555i \(-0.564477\pi\)
−0.201178 + 0.979555i \(0.564477\pi\)
\(422\) −579343. −0.158363
\(423\) 2.97495e6 0.808404
\(424\) 427460. 0.115473
\(425\) −720041. −0.193368
\(426\) −83134.7 −0.0221952
\(427\) −451276. −0.119777
\(428\) 3.43096e6 0.905329
\(429\) −233455. −0.0612435
\(430\) −35809.8 −0.00933965
\(431\) −1.18853e6 −0.308188 −0.154094 0.988056i \(-0.549246\pi\)
−0.154094 + 0.988056i \(0.549246\pi\)
\(432\) −286616. −0.0738910
\(433\) 1.82965e6 0.468974 0.234487 0.972119i \(-0.424659\pi\)
0.234487 + 0.972119i \(0.424659\pi\)
\(434\) −38883.0 −0.00990913
\(435\) 184851. 0.0468381
\(436\) −3.67829e6 −0.926681
\(437\) −9.69322e6 −2.42809
\(438\) 285162. 0.0710241
\(439\) 4.15757e6 1.02962 0.514812 0.857303i \(-0.327862\pi\)
0.514812 + 0.857303i \(0.327862\pi\)
\(440\) 948713. 0.233616
\(441\) 3.95879e6 0.969318
\(442\) −778796. −0.189613
\(443\) 7.16327e6 1.73421 0.867106 0.498124i \(-0.165977\pi\)
0.867106 + 0.498124i \(0.165977\pi\)
\(444\) 136801. 0.0329329
\(445\) 790582. 0.189255
\(446\) −319715. −0.0761072
\(447\) −922541. −0.218382
\(448\) −49062.9 −0.0115494
\(449\) 663475. 0.155313 0.0776566 0.996980i \(-0.475256\pi\)
0.0776566 + 0.996980i \(0.475256\pi\)
\(450\) −593931. −0.138263
\(451\) 2.61449e6 0.605265
\(452\) −2.99923e6 −0.690501
\(453\) −992564. −0.227255
\(454\) 4.14235e6 0.943208
\(455\) 50608.1 0.0114602
\(456\) 293495. 0.0660980
\(457\) −4.10927e6 −0.920396 −0.460198 0.887816i \(-0.652222\pi\)
−0.460198 + 0.887816i \(0.652222\pi\)
\(458\) −4.50924e6 −1.00448
\(459\) 1.28985e6 0.285763
\(460\) 1.96974e6 0.434025
\(461\) 4.89027e6 1.07172 0.535859 0.844307i \(-0.319988\pi\)
0.535859 + 0.844307i \(0.319988\pi\)
\(462\) 66186.6 0.0144266
\(463\) 6.29740e6 1.36524 0.682619 0.730774i \(-0.260841\pi\)
0.682619 + 0.730774i \(0.260841\pi\)
\(464\) −812494. −0.175196
\(465\) −47265.9 −0.0101371
\(466\) −3.16193e6 −0.674509
\(467\) −3.70606e6 −0.786358 −0.393179 0.919462i \(-0.628625\pi\)
−0.393179 + 0.919462i \(0.628625\pi\)
\(468\) −642396. −0.135578
\(469\) 384898. 0.0808005
\(470\) 1.25223e6 0.261480
\(471\) −894062. −0.185701
\(472\) 1.23467e6 0.255092
\(473\) −212333. −0.0436379
\(474\) −103766. −0.0212134
\(475\) 1.23026e6 0.250187
\(476\) 220796. 0.0446656
\(477\) −1.58676e6 −0.319312
\(478\) 5.69141e6 1.13933
\(479\) −1.60841e6 −0.320300 −0.160150 0.987093i \(-0.551198\pi\)
−0.160150 + 0.987093i \(0.551198\pi\)
\(480\) −59640.6 −0.0118151
\(481\) 620230. 0.122233
\(482\) −1.88258e6 −0.369093
\(483\) 137418. 0.0268026
\(484\) 3.04854e6 0.591532
\(485\) −3.46361e6 −0.668612
\(486\) 1.60192e6 0.307645
\(487\) 7.96047e6 1.52095 0.760477 0.649365i \(-0.224965\pi\)
0.760477 + 0.649365i \(0.224965\pi\)
\(488\) 2.41118e6 0.458331
\(489\) −906605. −0.171453
\(490\) 1.66635e6 0.313528
\(491\) 4.21788e6 0.789570 0.394785 0.918774i \(-0.370819\pi\)
0.394785 + 0.918774i \(0.370819\pi\)
\(492\) −164359. −0.0306113
\(493\) 3.65643e6 0.677548
\(494\) 1.33065e6 0.245328
\(495\) −3.52169e6 −0.646008
\(496\) 207752. 0.0379177
\(497\) 106860. 0.0194054
\(498\) 228632. 0.0413108
\(499\) −8.07469e6 −1.45169 −0.725846 0.687857i \(-0.758552\pi\)
−0.725846 + 0.687857i \(0.758552\pi\)
\(500\) −250000. −0.0447214
\(501\) −607551. −0.108141
\(502\) −2.86075e6 −0.506664
\(503\) −4.93452e6 −0.869610 −0.434805 0.900525i \(-0.643183\pi\)
−0.434805 + 0.900525i \(0.643183\pi\)
\(504\) 182125. 0.0319369
\(505\) −2.77962e6 −0.485016
\(506\) 1.16795e7 2.02791
\(507\) 66538.8 0.0114962
\(508\) 3.75372e6 0.645361
\(509\) −6.00126e6 −1.02671 −0.513356 0.858176i \(-0.671598\pi\)
−0.513356 + 0.858176i \(0.671598\pi\)
\(510\) 268398. 0.0456934
\(511\) −366541. −0.0620970
\(512\) 262144. 0.0441942
\(513\) −2.20384e6 −0.369731
\(514\) 2.23480e6 0.373104
\(515\) −747638. −0.124215
\(516\) 13348.2 0.00220699
\(517\) 7.42503e6 1.22172
\(518\) −175841. −0.0287936
\(519\) −177105. −0.0288611
\(520\) −270400. −0.0438529
\(521\) −1.00674e7 −1.62489 −0.812447 0.583035i \(-0.801865\pi\)
−0.812447 + 0.583035i \(0.801865\pi\)
\(522\) 3.01603e6 0.484462
\(523\) −2.91846e6 −0.466552 −0.233276 0.972411i \(-0.574945\pi\)
−0.233276 + 0.972411i \(0.574945\pi\)
\(524\) 2.65178e6 0.421899
\(525\) −17441.2 −0.00276170
\(526\) 1.29816e6 0.204580
\(527\) −934939. −0.146641
\(528\) −353636. −0.0552042
\(529\) 1.78130e7 2.76756
\(530\) −667907. −0.103282
\(531\) −4.58320e6 −0.705395
\(532\) −377253. −0.0577901
\(533\) −745176. −0.113616
\(534\) −294692. −0.0447214
\(535\) −5.36088e6 −0.809751
\(536\) −2.05652e6 −0.309186
\(537\) −1.61450e6 −0.241603
\(538\) −2.28114e6 −0.339779
\(539\) 9.88056e6 1.46491
\(540\) 447838. 0.0660901
\(541\) 1.10243e7 1.61941 0.809704 0.586839i \(-0.199628\pi\)
0.809704 + 0.586839i \(0.199628\pi\)
\(542\) 6.46314e6 0.945030
\(543\) −1.14482e6 −0.166624
\(544\) −1.17971e6 −0.170915
\(545\) 5.74733e6 0.828849
\(546\) −18864.4 −0.00270807
\(547\) −860978. −0.123034 −0.0615168 0.998106i \(-0.519594\pi\)
−0.0615168 + 0.998106i \(0.519594\pi\)
\(548\) −360095. −0.0512231
\(549\) −8.95045e6 −1.26740
\(550\) −1.48236e6 −0.208953
\(551\) −6.24739e6 −0.876637
\(552\) −734229. −0.102561
\(553\) 133379. 0.0185471
\(554\) 5.82335e6 0.806117
\(555\) −213751. −0.0294561
\(556\) −1.94671e6 −0.267064
\(557\) 6.49940e6 0.887637 0.443818 0.896117i \(-0.353624\pi\)
0.443818 + 0.896117i \(0.353624\pi\)
\(558\) −771191. −0.104852
\(559\) 60518.6 0.00819142
\(560\) 76660.9 0.0103301
\(561\) 1.59145e6 0.213494
\(562\) −1.00461e7 −1.34170
\(563\) −5.46465e6 −0.726594 −0.363297 0.931673i \(-0.618349\pi\)
−0.363297 + 0.931673i \(0.618349\pi\)
\(564\) −466773. −0.0617885
\(565\) 4.68630e6 0.617603
\(566\) 6.84739e6 0.898430
\(567\) −660263. −0.0862500
\(568\) −570953. −0.0742557
\(569\) 8.30646e6 1.07556 0.537781 0.843085i \(-0.319263\pi\)
0.537781 + 0.843085i \(0.319263\pi\)
\(570\) −458586. −0.0591198
\(571\) −2.57189e6 −0.330112 −0.165056 0.986284i \(-0.552780\pi\)
−0.165056 + 0.986284i \(0.552780\pi\)
\(572\) −1.60333e6 −0.204895
\(573\) 1.74295e6 0.221767
\(574\) 211264. 0.0267637
\(575\) −3.07772e6 −0.388204
\(576\) −973097. −0.122208
\(577\) −1.38747e7 −1.73494 −0.867470 0.497490i \(-0.834255\pi\)
−0.867470 + 0.497490i \(0.834255\pi\)
\(578\) −370411. −0.0461173
\(579\) −1.37117e6 −0.169979
\(580\) 1.26952e6 0.156700
\(581\) −293879. −0.0361184
\(582\) 1.29107e6 0.157995
\(583\) −3.96032e6 −0.482569
\(584\) 1.95844e6 0.237617
\(585\) 1.00374e6 0.121264
\(586\) 546568. 0.0657506
\(587\) −1.36095e7 −1.63022 −0.815112 0.579304i \(-0.803324\pi\)
−0.815112 + 0.579304i \(0.803324\pi\)
\(588\) −621139. −0.0740876
\(589\) 1.59744e6 0.189730
\(590\) −1.92918e6 −0.228162
\(591\) 349928. 0.0412106
\(592\) 939520. 0.110180
\(593\) 4.97677e6 0.581180 0.290590 0.956848i \(-0.406148\pi\)
0.290590 + 0.956848i \(0.406148\pi\)
\(594\) 2.65543e6 0.308794
\(595\) −344993. −0.0399501
\(596\) −6.33583e6 −0.730614
\(597\) −1.72926e6 −0.198575
\(598\) −3.32887e6 −0.380665
\(599\) 529408. 0.0602870 0.0301435 0.999546i \(-0.490404\pi\)
0.0301435 + 0.999546i \(0.490404\pi\)
\(600\) 93188.4 0.0105678
\(601\) −3.47716e6 −0.392680 −0.196340 0.980536i \(-0.562906\pi\)
−0.196340 + 0.980536i \(0.562906\pi\)
\(602\) −17157.6 −0.00192959
\(603\) 7.63394e6 0.854979
\(604\) −6.81674e6 −0.760299
\(605\) −4.76334e6 −0.529082
\(606\) 1.03611e6 0.114611
\(607\) 3.14423e6 0.346372 0.173186 0.984889i \(-0.444594\pi\)
0.173186 + 0.984889i \(0.444594\pi\)
\(608\) 2.01567e6 0.221136
\(609\) 88567.8 0.00967681
\(610\) −3.76746e6 −0.409944
\(611\) −2.11627e6 −0.229333
\(612\) 4.37918e6 0.472623
\(613\) 2.57275e6 0.276532 0.138266 0.990395i \(-0.455847\pi\)
0.138266 + 0.990395i \(0.455847\pi\)
\(614\) 3.09251e6 0.331048
\(615\) 256811. 0.0273795
\(616\) 454557. 0.0482655
\(617\) −5.35535e6 −0.566337 −0.283169 0.959070i \(-0.591386\pi\)
−0.283169 + 0.959070i \(0.591386\pi\)
\(618\) 278685. 0.0293523
\(619\) −2.64595e6 −0.277559 −0.138779 0.990323i \(-0.544318\pi\)
−0.138779 + 0.990323i \(0.544318\pi\)
\(620\) −324613. −0.0339146
\(621\) 5.51328e6 0.573695
\(622\) −4.00748e6 −0.415332
\(623\) 378792. 0.0391003
\(624\) 100793. 0.0103626
\(625\) 390625. 0.0400000
\(626\) −9.88763e6 −1.00846
\(627\) −2.71916e6 −0.276227
\(628\) −6.14025e6 −0.621279
\(629\) −4.22808e6 −0.426105
\(630\) −284570. −0.0285653
\(631\) −1.08305e7 −1.08287 −0.541433 0.840744i \(-0.682118\pi\)
−0.541433 + 0.840744i \(0.682118\pi\)
\(632\) −712647. −0.0709711
\(633\) −337425. −0.0334710
\(634\) −3.72023e6 −0.367575
\(635\) −5.86519e6 −0.577228
\(636\) 248965. 0.0244059
\(637\) −2.81614e6 −0.274982
\(638\) 7.52757e6 0.732155
\(639\) 2.11942e6 0.205336
\(640\) −409600. −0.0395285
\(641\) 6.96410e6 0.669453 0.334726 0.942315i \(-0.391356\pi\)
0.334726 + 0.942315i \(0.391356\pi\)
\(642\) 1.99829e6 0.191346
\(643\) 7.71015e6 0.735420 0.367710 0.929941i \(-0.380142\pi\)
0.367710 + 0.929941i \(0.380142\pi\)
\(644\) 943764. 0.0896703
\(645\) −20856.6 −0.00197399
\(646\) −9.07101e6 −0.855213
\(647\) 7.99108e6 0.750489 0.375245 0.926926i \(-0.377559\pi\)
0.375245 + 0.926926i \(0.377559\pi\)
\(648\) 3.52779e6 0.330039
\(649\) −1.14390e7 −1.06605
\(650\) 422500. 0.0392232
\(651\) −22646.5 −0.00209435
\(652\) −6.22639e6 −0.573611
\(653\) −1.59994e7 −1.46832 −0.734160 0.678976i \(-0.762424\pi\)
−0.734160 + 0.678976i \(0.762424\pi\)
\(654\) −2.14234e6 −0.195859
\(655\) −4.14340e6 −0.377358
\(656\) −1.12879e6 −0.102412
\(657\) −7.26985e6 −0.657071
\(658\) 599981. 0.0540222
\(659\) 1.04554e7 0.937834 0.468917 0.883242i \(-0.344644\pi\)
0.468917 + 0.883242i \(0.344644\pi\)
\(660\) 552556. 0.0493761
\(661\) −1.08083e7 −0.962175 −0.481087 0.876673i \(-0.659758\pi\)
−0.481087 + 0.876673i \(0.659758\pi\)
\(662\) 1.25006e7 1.10863
\(663\) −453592. −0.0400758
\(664\) 1.57020e6 0.138208
\(665\) 589457. 0.0516890
\(666\) −3.48756e6 −0.304675
\(667\) 1.56290e7 1.36024
\(668\) −4.17255e6 −0.361793
\(669\) −186211. −0.0160857
\(670\) 3.21331e6 0.276545
\(671\) −2.23390e7 −1.91539
\(672\) −28575.6 −0.00244103
\(673\) 4.48913e6 0.382054 0.191027 0.981585i \(-0.438818\pi\)
0.191027 + 0.981585i \(0.438818\pi\)
\(674\) 6.78508e6 0.575314
\(675\) −699746. −0.0591128
\(676\) 456976. 0.0384615
\(677\) 2.18426e7 1.83161 0.915805 0.401622i \(-0.131553\pi\)
0.915805 + 0.401622i \(0.131553\pi\)
\(678\) −1.74684e6 −0.145941
\(679\) −1.65952e6 −0.138136
\(680\) 1.84330e6 0.152871
\(681\) 2.41262e6 0.199352
\(682\) −1.92478e6 −0.158460
\(683\) −1.89182e7 −1.55177 −0.775887 0.630872i \(-0.782697\pi\)
−0.775887 + 0.630872i \(0.782697\pi\)
\(684\) −7.48229e6 −0.611497
\(685\) 562649. 0.0458154
\(686\) 1.60367e6 0.130109
\(687\) −2.62631e6 −0.212302
\(688\) 91673.1 0.00738364
\(689\) 1.12876e6 0.0905846
\(690\) 1.14723e6 0.0917337
\(691\) 1.16916e7 0.931492 0.465746 0.884918i \(-0.345786\pi\)
0.465746 + 0.884918i \(0.345786\pi\)
\(692\) −1.21633e6 −0.0965572
\(693\) −1.68735e6 −0.133466
\(694\) −4.57300e6 −0.360415
\(695\) 3.04174e6 0.238869
\(696\) −473219. −0.0370287
\(697\) 5.07983e6 0.396066
\(698\) −1.50792e7 −1.17149
\(699\) −1.84160e6 −0.142561
\(700\) −119783. −0.00923950
\(701\) 1.91539e7 1.47218 0.736090 0.676883i \(-0.236670\pi\)
0.736090 + 0.676883i \(0.236670\pi\)
\(702\) −756846. −0.0579648
\(703\) 7.22412e6 0.551311
\(704\) −2.42871e6 −0.184690
\(705\) 729332. 0.0552653
\(706\) −5.57819e6 −0.421193
\(707\) −1.33180e6 −0.100205
\(708\) 719108. 0.0539152
\(709\) −1.09998e6 −0.0821805 −0.0410902 0.999155i \(-0.513083\pi\)
−0.0410902 + 0.999155i \(0.513083\pi\)
\(710\) 892114. 0.0664163
\(711\) 2.64540e6 0.196253
\(712\) −2.02389e6 −0.149619
\(713\) −3.99628e6 −0.294396
\(714\) 128598. 0.00944033
\(715\) 2.50520e6 0.183264
\(716\) −1.10881e7 −0.808303
\(717\) 3.31483e6 0.240804
\(718\) −6.66493e6 −0.482486
\(719\) 2.18007e7 1.57271 0.786354 0.617776i \(-0.211966\pi\)
0.786354 + 0.617776i \(0.211966\pi\)
\(720\) 1.52046e6 0.109306
\(721\) −358216. −0.0256630
\(722\) 5.59437e6 0.399400
\(723\) −1.09646e6 −0.0780098
\(724\) −7.86239e6 −0.557453
\(725\) −1.98363e6 −0.140157
\(726\) 1.77555e6 0.125024
\(727\) 2.51245e7 1.76304 0.881519 0.472149i \(-0.156522\pi\)
0.881519 + 0.472149i \(0.156522\pi\)
\(728\) −129557. −0.00906008
\(729\) −1.24616e7 −0.868470
\(730\) −3.06006e6 −0.212531
\(731\) −412552. −0.0285552
\(732\) 1.40434e6 0.0968708
\(733\) 2.16392e7 1.48759 0.743793 0.668410i \(-0.233025\pi\)
0.743793 + 0.668410i \(0.233025\pi\)
\(734\) 1.06302e6 0.0728284
\(735\) 970529. 0.0662659
\(736\) −5.04254e6 −0.343127
\(737\) 1.90532e7 1.29211
\(738\) 4.19014e6 0.283196
\(739\) −1.98134e7 −1.33459 −0.667294 0.744794i \(-0.732548\pi\)
−0.667294 + 0.744794i \(0.732548\pi\)
\(740\) −1.46800e6 −0.0985478
\(741\) 775010. 0.0518515
\(742\) −320014. −0.0213383
\(743\) −6.05253e6 −0.402221 −0.201111 0.979569i \(-0.564455\pi\)
−0.201111 + 0.979569i \(0.564455\pi\)
\(744\) 121001. 0.00801411
\(745\) 9.89974e6 0.653481
\(746\) 1.37405e7 0.903972
\(747\) −5.82869e6 −0.382181
\(748\) 1.09298e7 0.714263
\(749\) −2.56856e6 −0.167296
\(750\) −145607. −0.00945211
\(751\) −8.24253e6 −0.533287 −0.266643 0.963795i \(-0.585915\pi\)
−0.266643 + 0.963795i \(0.585915\pi\)
\(752\) −3.20570e6 −0.206718
\(753\) −1.66618e6 −0.107086
\(754\) −2.14549e6 −0.137435
\(755\) 1.06512e7 0.680032
\(756\) 214573. 0.0136543
\(757\) −1.86071e7 −1.18015 −0.590076 0.807348i \(-0.700902\pi\)
−0.590076 + 0.807348i \(0.700902\pi\)
\(758\) −5.92182e6 −0.374354
\(759\) 6.80247e6 0.428610
\(760\) −3.14948e6 −0.197790
\(761\) 1.52852e7 0.956774 0.478387 0.878149i \(-0.341222\pi\)
0.478387 + 0.878149i \(0.341222\pi\)
\(762\) 2.18627e6 0.136401
\(763\) 2.75372e6 0.171241
\(764\) 1.19702e7 0.741941
\(765\) −6.84247e6 −0.422727
\(766\) 1.71573e7 1.05652
\(767\) 3.26031e6 0.200111
\(768\) 152680. 0.00934068
\(769\) −1.30293e7 −0.794520 −0.397260 0.917706i \(-0.630039\pi\)
−0.397260 + 0.917706i \(0.630039\pi\)
\(770\) −710246. −0.0431700
\(771\) 1.30161e6 0.0788576
\(772\) −9.41693e6 −0.568678
\(773\) 2.78648e7 1.67729 0.838644 0.544680i \(-0.183349\pi\)
0.838644 + 0.544680i \(0.183349\pi\)
\(774\) −340297. −0.0204176
\(775\) 507208. 0.0303341
\(776\) 8.86684e6 0.528585
\(777\) −102415. −0.00608568
\(778\) 8.89343e6 0.526769
\(779\) −8.67942e6 −0.512445
\(780\) −157488. −0.00926855
\(781\) 5.28975e6 0.310319
\(782\) 2.26927e7 1.32700
\(783\) 3.55337e6 0.207127
\(784\) −4.26586e6 −0.247866
\(785\) 9.59413e6 0.555689
\(786\) 1.54447e6 0.0891708
\(787\) 1.13972e7 0.655935 0.327968 0.944689i \(-0.393636\pi\)
0.327968 + 0.944689i \(0.393636\pi\)
\(788\) 2.40324e6 0.137873
\(789\) 756082. 0.0432391
\(790\) 1.11351e6 0.0634785
\(791\) 2.24535e6 0.127598
\(792\) 9.01552e6 0.510714
\(793\) 6.36701e6 0.359545
\(794\) −2.16908e7 −1.22103
\(795\) −389007. −0.0218293
\(796\) −1.18762e7 −0.664348
\(797\) 1.92491e7 1.07341 0.536705 0.843770i \(-0.319669\pi\)
0.536705 + 0.843770i \(0.319669\pi\)
\(798\) −219722. −0.0122143
\(799\) 1.44265e7 0.799454
\(800\) 640000. 0.0353553
\(801\) 7.51282e6 0.413734
\(802\) −8.25674e6 −0.453286
\(803\) −1.81445e7 −0.993014
\(804\) −1.19777e6 −0.0653483
\(805\) −1.47463e6 −0.0802036
\(806\) 548596. 0.0297451
\(807\) −1.32860e6 −0.0718141
\(808\) 7.11582e6 0.383439
\(809\) 2.71092e7 1.45628 0.728141 0.685427i \(-0.240385\pi\)
0.728141 + 0.685427i \(0.240385\pi\)
\(810\) −5.51218e6 −0.295196
\(811\) −2.72397e7 −1.45429 −0.727144 0.686485i \(-0.759153\pi\)
−0.727144 + 0.686485i \(0.759153\pi\)
\(812\) 608266. 0.0323745
\(813\) 3.76431e6 0.199737
\(814\) −8.70444e6 −0.460447
\(815\) 9.72873e6 0.513053
\(816\) −687098. −0.0361238
\(817\) 704889. 0.0369458
\(818\) −1.72111e6 −0.0899340
\(819\) 480924. 0.0250534
\(820\) 1.76373e6 0.0916004
\(821\) 1.42192e7 0.736236 0.368118 0.929779i \(-0.380002\pi\)
0.368118 + 0.929779i \(0.380002\pi\)
\(822\) −209729. −0.0108263
\(823\) −1.08542e7 −0.558598 −0.279299 0.960204i \(-0.590102\pi\)
−0.279299 + 0.960204i \(0.590102\pi\)
\(824\) 1.91395e6 0.0982005
\(825\) −863370. −0.0441633
\(826\) −924328. −0.0471385
\(827\) 5.97981e6 0.304035 0.152017 0.988378i \(-0.451423\pi\)
0.152017 + 0.988378i \(0.451423\pi\)
\(828\) 1.87183e7 0.948833
\(829\) 1.77871e7 0.898916 0.449458 0.893301i \(-0.351617\pi\)
0.449458 + 0.893301i \(0.351617\pi\)
\(830\) −2.45344e6 −0.123617
\(831\) 3.39168e6 0.170377
\(832\) 692224. 0.0346688
\(833\) 1.91975e7 0.958587
\(834\) −1.13382e6 −0.0564454
\(835\) 6.51960e6 0.323597
\(836\) −1.86747e7 −0.924140
\(837\) −908587. −0.0448284
\(838\) −1.59542e7 −0.784810
\(839\) −1.34398e7 −0.659153 −0.329577 0.944129i \(-0.606906\pi\)
−0.329577 + 0.944129i \(0.606906\pi\)
\(840\) 44649.4 0.00218332
\(841\) −1.04381e7 −0.508900
\(842\) −5.85298e6 −0.284509
\(843\) −5.85111e6 −0.283576
\(844\) −2.31737e6 −0.111980
\(845\) −714025. −0.0344010
\(846\) 1.18998e7 0.571628
\(847\) −2.28226e6 −0.109309
\(848\) 1.70984e6 0.0816518
\(849\) 3.98811e6 0.189888
\(850\) −2.88016e6 −0.136732
\(851\) −1.80724e7 −0.855444
\(852\) −332539. −0.0156943
\(853\) −1.33850e7 −0.629864 −0.314932 0.949114i \(-0.601982\pi\)
−0.314932 + 0.949114i \(0.601982\pi\)
\(854\) −1.80511e6 −0.0846950
\(855\) 1.16911e7 0.546940
\(856\) 1.37239e7 0.640165
\(857\) −2.99139e7 −1.39130 −0.695651 0.718380i \(-0.744884\pi\)
−0.695651 + 0.718380i \(0.744884\pi\)
\(858\) −933820. −0.0433057
\(859\) −9.44220e6 −0.436607 −0.218303 0.975881i \(-0.570052\pi\)
−0.218303 + 0.975881i \(0.570052\pi\)
\(860\) −143239. −0.00660413
\(861\) 123046. 0.00565666
\(862\) −4.75410e6 −0.217922
\(863\) −3.39118e7 −1.54997 −0.774986 0.631978i \(-0.782243\pi\)
−0.774986 + 0.631978i \(0.782243\pi\)
\(864\) −1.14646e6 −0.0522488
\(865\) 1.90051e6 0.0863634
\(866\) 7.31860e6 0.331614
\(867\) −215737. −0.00974715
\(868\) −155532. −0.00700681
\(869\) 6.60251e6 0.296592
\(870\) 739404. 0.0331195
\(871\) −5.43049e6 −0.242546
\(872\) −1.47132e7 −0.655262
\(873\) −3.29143e7 −1.46167
\(874\) −3.87729e7 −1.71692
\(875\) 187160. 0.00826406
\(876\) 1.14065e6 0.0502217
\(877\) 3.72390e7 1.63493 0.817465 0.575978i \(-0.195379\pi\)
0.817465 + 0.575978i \(0.195379\pi\)
\(878\) 1.66303e7 0.728053
\(879\) 318336. 0.0138968
\(880\) 3.79485e6 0.165192
\(881\) 2.35281e7 1.02128 0.510642 0.859794i \(-0.329408\pi\)
0.510642 + 0.859794i \(0.329408\pi\)
\(882\) 1.58352e7 0.685412
\(883\) −1.21345e7 −0.523744 −0.261872 0.965103i \(-0.584340\pi\)
−0.261872 + 0.965103i \(0.584340\pi\)
\(884\) −3.11518e6 −0.134077
\(885\) −1.12361e6 −0.0482232
\(886\) 2.86531e7 1.22627
\(887\) 3.12454e7 1.33345 0.666725 0.745304i \(-0.267696\pi\)
0.666725 + 0.745304i \(0.267696\pi\)
\(888\) 547202. 0.0232871
\(889\) −2.81019e6 −0.119256
\(890\) 3.16233e6 0.133823
\(891\) −3.26842e7 −1.37925
\(892\) −1.27886e6 −0.0538159
\(893\) −2.46492e7 −1.03436
\(894\) −3.69016e6 −0.154419
\(895\) 1.73251e7 0.722968
\(896\) −196252. −0.00816664
\(897\) −1.93882e6 −0.0804557
\(898\) 2.65390e6 0.109823
\(899\) −2.57565e6 −0.106289
\(900\) −2.37572e6 −0.0977664
\(901\) −7.69472e6 −0.315777
\(902\) 1.04580e7 0.427987
\(903\) −9993.03 −0.000407829 0
\(904\) −1.19969e7 −0.488258
\(905\) 1.22850e7 0.498601
\(906\) −3.97026e6 −0.160693
\(907\) −3.90936e7 −1.57793 −0.788964 0.614440i \(-0.789382\pi\)
−0.788964 + 0.614440i \(0.789382\pi\)
\(908\) 1.65694e7 0.666949
\(909\) −2.64144e7 −1.06031
\(910\) 202433. 0.00810358
\(911\) 1.13740e7 0.454064 0.227032 0.973887i \(-0.427098\pi\)
0.227032 + 0.973887i \(0.427098\pi\)
\(912\) 1.17398e6 0.0467383
\(913\) −1.45475e7 −0.577581
\(914\) −1.64371e7 −0.650818
\(915\) −2.19427e6 −0.0866439
\(916\) −1.80370e7 −0.710272
\(917\) −1.98523e6 −0.0779628
\(918\) 5.15938e6 0.202065
\(919\) −4.78920e7 −1.87057 −0.935285 0.353897i \(-0.884856\pi\)
−0.935285 + 0.353897i \(0.884856\pi\)
\(920\) 7.87897e6 0.306902
\(921\) 1.80116e6 0.0699687
\(922\) 1.95611e7 0.757820
\(923\) −1.50767e6 −0.0582509
\(924\) 264747. 0.0102012
\(925\) 2.29375e6 0.0881438
\(926\) 2.51896e7 0.965370
\(927\) −7.10473e6 −0.271549
\(928\) −3.24998e6 −0.123883
\(929\) −2.62821e7 −0.999128 −0.499564 0.866277i \(-0.666506\pi\)
−0.499564 + 0.866277i \(0.666506\pi\)
\(930\) −189064. −0.00716804
\(931\) −3.28009e7 −1.24026
\(932\) −1.26477e7 −0.476950
\(933\) −2.33406e6 −0.0877826
\(934\) −1.48242e7 −0.556039
\(935\) −1.70778e7 −0.638856
\(936\) −2.56958e6 −0.0958679
\(937\) −1.77518e7 −0.660533 −0.330266 0.943888i \(-0.607139\pi\)
−0.330266 + 0.943888i \(0.607139\pi\)
\(938\) 1.53959e6 0.0571346
\(939\) −5.75883e6 −0.213143
\(940\) 5.00891e6 0.184894
\(941\) −2.90357e7 −1.06895 −0.534477 0.845183i \(-0.679491\pi\)
−0.534477 + 0.845183i \(0.679491\pi\)
\(942\) −3.57625e6 −0.131311
\(943\) 2.17131e7 0.795138
\(944\) 4.93870e6 0.180378
\(945\) −335270. −0.0122128
\(946\) −849330. −0.0308567
\(947\) −2.19909e7 −0.796833 −0.398416 0.917205i \(-0.630440\pi\)
−0.398416 + 0.917205i \(0.630440\pi\)
\(948\) −415065. −0.0150001
\(949\) 5.17150e6 0.186402
\(950\) 4.92106e6 0.176909
\(951\) −2.16676e6 −0.0776891
\(952\) 883183. 0.0315834
\(953\) −9.09071e6 −0.324239 −0.162120 0.986771i \(-0.551833\pi\)
−0.162120 + 0.986771i \(0.551833\pi\)
\(954\) −6.34705e6 −0.225788
\(955\) −1.87035e7 −0.663612
\(956\) 2.27656e7 0.805629
\(957\) 4.38427e6 0.154745
\(958\) −6.43363e6 −0.226487
\(959\) 269582. 0.00946552
\(960\) −238562. −0.00835456
\(961\) −2.79706e7 −0.976996
\(962\) 2.48092e6 0.0864321
\(963\) −5.09439e7 −1.77022
\(964\) −7.53031e6 −0.260988
\(965\) 1.47140e7 0.508641
\(966\) 549674. 0.0189523
\(967\) 2.73591e7 0.940884 0.470442 0.882431i \(-0.344094\pi\)
0.470442 + 0.882431i \(0.344094\pi\)
\(968\) 1.21941e7 0.418276
\(969\) −5.28321e6 −0.180754
\(970\) −1.38544e7 −0.472780
\(971\) 3.24924e7 1.10595 0.552973 0.833199i \(-0.313493\pi\)
0.552973 + 0.833199i \(0.313493\pi\)
\(972\) 6.40767e6 0.217538
\(973\) 1.45739e6 0.0493507
\(974\) 3.18419e7 1.07548
\(975\) 246076. 0.00829005
\(976\) 9.64471e6 0.324089
\(977\) 2.66119e7 0.891948 0.445974 0.895046i \(-0.352857\pi\)
0.445974 + 0.895046i \(0.352857\pi\)
\(978\) −3.62642e6 −0.121236
\(979\) 1.87509e7 0.625266
\(980\) 6.66541e6 0.221698
\(981\) 5.46163e7 1.81197
\(982\) 1.68715e7 0.558310
\(983\) 2.55262e7 0.842562 0.421281 0.906930i \(-0.361581\pi\)
0.421281 + 0.906930i \(0.361581\pi\)
\(984\) −657437. −0.0216454
\(985\) −3.75506e6 −0.123318
\(986\) 1.46257e7 0.479099
\(987\) 349445. 0.0114179
\(988\) 5.32262e6 0.173473
\(989\) −1.76340e6 −0.0573272
\(990\) −1.40868e7 −0.456797
\(991\) 3.83361e7 1.24001 0.620003 0.784599i \(-0.287131\pi\)
0.620003 + 0.784599i \(0.287131\pi\)
\(992\) 831009. 0.0268119
\(993\) 7.28067e6 0.234314
\(994\) 427439. 0.0137217
\(995\) 1.85566e7 0.594211
\(996\) 914527. 0.0292111
\(997\) −4.30414e7 −1.37135 −0.685676 0.727907i \(-0.740493\pi\)
−0.685676 + 0.727907i \(0.740493\pi\)
\(998\) −3.22988e7 −1.02650
\(999\) −4.10891e6 −0.130261
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 130.6.a.d.1.2 2
4.3 odd 2 1040.6.a.i.1.1 2
5.2 odd 4 650.6.b.b.599.3 4
5.3 odd 4 650.6.b.b.599.2 4
5.4 even 2 650.6.a.d.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.6.a.d.1.2 2 1.1 even 1 trivial
650.6.a.d.1.1 2 5.4 even 2
650.6.b.b.599.2 4 5.3 odd 4
650.6.b.b.599.3 4 5.2 odd 4
1040.6.a.i.1.1 2 4.3 odd 2