Properties

Label 2-130-1.1-c5-0-18
Degree $2$
Conductor $130$
Sign $-1$
Analytic cond. $20.8498$
Root an. cond. $4.56616$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 2.32·3-s + 16·4-s − 25·5-s + 9.31·6-s − 11.9·7-s + 64·8-s − 237.·9-s − 100·10-s − 592.·11-s + 37.2·12-s + 169·13-s − 47.9·14-s − 58.2·15-s + 256·16-s − 1.15e3·17-s − 950.·18-s + 1.96e3·19-s − 400·20-s − 27.9·21-s − 2.37e3·22-s − 4.92e3·23-s + 149.·24-s + 625·25-s + 676·26-s − 1.11e3·27-s − 191.·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.149·3-s + 0.5·4-s − 0.447·5-s + 0.105·6-s − 0.0923·7-s + 0.353·8-s − 0.977·9-s − 0.316·10-s − 1.47·11-s + 0.0747·12-s + 0.277·13-s − 0.0653·14-s − 0.0668·15-s + 0.250·16-s − 0.966·17-s − 0.691·18-s + 1.25·19-s − 0.223·20-s − 0.0138·21-s − 1.04·22-s − 1.94·23-s + 0.0528·24-s + 0.200·25-s + 0.196·26-s − 0.295·27-s − 0.0461·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 130 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 130 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(130\)    =    \(2 \cdot 5 \cdot 13\)
Sign: $-1$
Analytic conductor: \(20.8498\)
Root analytic conductor: \(4.56616\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 130,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 4T \)
5 \( 1 + 25T \)
13 \( 1 - 169T \)
good3 \( 1 - 2.32T + 243T^{2} \)
7 \( 1 + 11.9T + 1.68e4T^{2} \)
11 \( 1 + 592.T + 1.61e5T^{2} \)
17 \( 1 + 1.15e3T + 1.41e6T^{2} \)
19 \( 1 - 1.96e3T + 2.47e6T^{2} \)
23 \( 1 + 4.92e3T + 6.43e6T^{2} \)
29 \( 1 + 3.17e3T + 2.05e7T^{2} \)
31 \( 1 - 811.T + 2.86e7T^{2} \)
37 \( 1 - 3.66e3T + 6.93e7T^{2} \)
41 \( 1 + 4.40e3T + 1.15e8T^{2} \)
43 \( 1 - 358.T + 1.47e8T^{2} \)
47 \( 1 + 1.25e4T + 2.29e8T^{2} \)
53 \( 1 - 6.67e3T + 4.18e8T^{2} \)
59 \( 1 - 1.92e4T + 7.14e8T^{2} \)
61 \( 1 - 3.76e4T + 8.44e8T^{2} \)
67 \( 1 + 3.21e4T + 1.35e9T^{2} \)
71 \( 1 + 8.92e3T + 1.80e9T^{2} \)
73 \( 1 - 3.06e4T + 2.07e9T^{2} \)
79 \( 1 + 1.11e4T + 3.07e9T^{2} \)
83 \( 1 - 2.45e4T + 3.93e9T^{2} \)
89 \( 1 + 3.16e4T + 5.58e9T^{2} \)
97 \( 1 - 1.38e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.84437966496191401156316829978, −11.13165633020076596959326662164, −9.941312811394734616827437330305, −8.413377543717375617545702426836, −7.57124551990048567275701191475, −6.07628190405153258233047025570, −5.03963424363305903155129842208, −3.56905866703009578913117371452, −2.36734827443036508490741970084, 0, 2.36734827443036508490741970084, 3.56905866703009578913117371452, 5.03963424363305903155129842208, 6.07628190405153258233047025570, 7.57124551990048567275701191475, 8.413377543717375617545702426836, 9.941312811394734616827437330305, 11.13165633020076596959326662164, 11.84437966496191401156316829978

Graph of the $Z$-function along the critical line