Properties

Label 130.6
Level 130
Weight 6
Dimension 760
Nonzero newspaces 12
Sturm bound 6048
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 130 = 2 \cdot 5 \cdot 13 \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 12 \)
Sturm bound: \(6048\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(130))\).

Total New Old
Modular forms 2616 760 1856
Cusp forms 2424 760 1664
Eisenstein series 192 0 192

Trace form

\( 760 q + 8 q^{2} - 8 q^{3} - 32 q^{4} - 170 q^{5} + 160 q^{6} - 568 q^{7} + 512 q^{8} + 1286 q^{9} + 420 q^{10} - 656 q^{11} - 1280 q^{12} - 6402 q^{13} - 4192 q^{14} + 736 q^{15} - 512 q^{16} + 102 q^{17}+ \cdots + 1253360 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(130))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
130.6.a \(\chi_{130}(1, \cdot)\) 130.6.a.a 2 1
130.6.a.b 2
130.6.a.c 2
130.6.a.d 2
130.6.a.e 2
130.6.a.f 3
130.6.a.g 3
130.6.a.h 4
130.6.b \(\chi_{130}(79, \cdot)\) 130.6.b.a 12 1
130.6.b.b 18
130.6.c \(\chi_{130}(129, \cdot)\) 130.6.c.a 18 1
130.6.c.b 18
130.6.d \(\chi_{130}(51, \cdot)\) 130.6.d.a 12 1
130.6.d.b 14
130.6.e \(\chi_{130}(61, \cdot)\) 130.6.e.a 10 2
130.6.e.b 10
130.6.e.c 12
130.6.e.d 12
130.6.g \(\chi_{130}(57, \cdot)\) 130.6.g.a 34 2
130.6.g.b 36
130.6.j \(\chi_{130}(47, \cdot)\) 130.6.j.a 34 2
130.6.j.b 36
130.6.l \(\chi_{130}(101, \cdot)\) 130.6.l.a 20 2
130.6.l.b 24
130.6.m \(\chi_{130}(49, \cdot)\) 130.6.m.a 36 2
130.6.m.b 36
130.6.n \(\chi_{130}(9, \cdot)\) 130.6.n.a 68 2
130.6.p \(\chi_{130}(7, \cdot)\) n/a 140 4
130.6.s \(\chi_{130}(33, \cdot)\) n/a 140 4

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(130))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(130)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(65))\)\(^{\oplus 2}\)