Defining parameters
| Level: | \( N \) | = | \( 130 = 2 \cdot 5 \cdot 13 \) |
| Weight: | \( k \) | = | \( 6 \) |
| Nonzero newspaces: | \( 12 \) | ||
| Sturm bound: | \(6048\) | ||
| Trace bound: | \(4\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(130))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 2616 | 760 | 1856 |
| Cusp forms | 2424 | 760 | 1664 |
| Eisenstein series | 192 | 0 | 192 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(130))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
| Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
|---|---|---|---|---|
| 130.6.a | \(\chi_{130}(1, \cdot)\) | 130.6.a.a | 2 | 1 |
| 130.6.a.b | 2 | |||
| 130.6.a.c | 2 | |||
| 130.6.a.d | 2 | |||
| 130.6.a.e | 2 | |||
| 130.6.a.f | 3 | |||
| 130.6.a.g | 3 | |||
| 130.6.a.h | 4 | |||
| 130.6.b | \(\chi_{130}(79, \cdot)\) | 130.6.b.a | 12 | 1 |
| 130.6.b.b | 18 | |||
| 130.6.c | \(\chi_{130}(129, \cdot)\) | 130.6.c.a | 18 | 1 |
| 130.6.c.b | 18 | |||
| 130.6.d | \(\chi_{130}(51, \cdot)\) | 130.6.d.a | 12 | 1 |
| 130.6.d.b | 14 | |||
| 130.6.e | \(\chi_{130}(61, \cdot)\) | 130.6.e.a | 10 | 2 |
| 130.6.e.b | 10 | |||
| 130.6.e.c | 12 | |||
| 130.6.e.d | 12 | |||
| 130.6.g | \(\chi_{130}(57, \cdot)\) | 130.6.g.a | 34 | 2 |
| 130.6.g.b | 36 | |||
| 130.6.j | \(\chi_{130}(47, \cdot)\) | 130.6.j.a | 34 | 2 |
| 130.6.j.b | 36 | |||
| 130.6.l | \(\chi_{130}(101, \cdot)\) | 130.6.l.a | 20 | 2 |
| 130.6.l.b | 24 | |||
| 130.6.m | \(\chi_{130}(49, \cdot)\) | 130.6.m.a | 36 | 2 |
| 130.6.m.b | 36 | |||
| 130.6.n | \(\chi_{130}(9, \cdot)\) | 130.6.n.a | 68 | 2 |
| 130.6.p | \(\chi_{130}(7, \cdot)\) | n/a | 140 | 4 |
| 130.6.s | \(\chi_{130}(33, \cdot)\) | n/a | 140 | 4 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(130))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_1(130)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(65))\)\(^{\oplus 2}\)