Properties

Label 13.10.c
Level 1313
Weight 1010
Character orbit 13.c
Rep. character χ13(3,)\chi_{13}(3,\cdot)
Character field Q(ζ3)\Q(\zeta_{3})
Dimension 1818
Newform subspaces 11
Sturm bound 1111
Trace bound 00

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 13 13
Weight: k k == 10 10
Character orbit: [χ][\chi] == 13.c (of order 33 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 13 13
Character field: Q(ζ3)\Q(\zeta_{3})
Newform subspaces: 1 1
Sturm bound: 1111
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M10(13,[χ])M_{10}(13, [\chi]).

Total New Old
Modular forms 22 22 0
Cusp forms 18 18 0
Eisenstein series 4 4 0

Trace form

18q+15q2+161q31793q42280q5+2118q61939q714478q833654q9+46923q105433q11+8712q12212524q139900q14347428q15+400127q16++2262149268q99+O(q100) 18 q + 15 q^{2} + 161 q^{3} - 1793 q^{4} - 2280 q^{5} + 2118 q^{6} - 1939 q^{7} - 14478 q^{8} - 33654 q^{9} + 46923 q^{10} - 5433 q^{11} + 8712 q^{12} - 212524 q^{13} - 9900 q^{14} - 347428 q^{15} + 400127 q^{16}+ \cdots + 2262149268 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S10new(13,[χ])S_{10}^{\mathrm{new}}(13, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
13.10.c.a 13.c 13.c 1818 6.6956.695 Q[x]/(x18)\mathbb{Q}[x]/(x^{18} - \cdots) None 13.10.c.a 1515 161161 2280-2280 1939-1939 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(2β2β3)q2+(18β2β6+)q3+q+(-2\beta _{2}-\beta _{3})q^{2}+(-18\beta _{2}-\beta _{6}+\cdots)q^{3}+\cdots