Defining parameters
Level: | \( N \) | \(=\) | \( 13 \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 13.c (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(11\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(13, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 22 | 22 | 0 |
Cusp forms | 18 | 18 | 0 |
Eisenstein series | 4 | 4 | 0 |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(13, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
13.10.c.a | $18$ | $6.695$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(15\) | \(161\) | \(-2280\) | \(-1939\) | \(q+(-2\beta _{2}-\beta _{3})q^{2}+(-18\beta _{2}-\beta _{6}+\cdots)q^{3}+\cdots\) |