Properties

Label 13.10
Level 13
Weight 10
Dimension 57
Nonzero newspaces 4
Newform subspaces 5
Sturm bound 140
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 13 \)
Weight: \( k \) = \( 10 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 5 \)
Sturm bound: \(140\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_1(13))\).

Total New Old
Modular forms 69 67 2
Cusp forms 57 57 0
Eisenstein series 12 10 2

Trace form

\( 57 q - 6 q^{2} - 6 q^{3} - 6 q^{4} - 6 q^{5} - 6 q^{6} - 2058 q^{7} - 36870 q^{8} - 6 q^{9} + 153354 q^{10} - 18426 q^{11} - 414732 q^{12} - 108438 q^{13} + 363828 q^{14} + 596802 q^{15} - 6 q^{16} - 1407705 q^{17}+ \cdots + 7410530166 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_1(13))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
13.10.a \(\chi_{13}(1, \cdot)\) 13.10.a.a 4 1
13.10.a.b 5
13.10.b \(\chi_{13}(12, \cdot)\) 13.10.b.a 10 1
13.10.c \(\chi_{13}(3, \cdot)\) 13.10.c.a 18 2
13.10.e \(\chi_{13}(4, \cdot)\) 13.10.e.a 20 2