Properties

Label 1296.5.g.e.1135.3
Level $1296$
Weight $5$
Character 1296.1135
Analytic conductor $133.967$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1296,5,Mod(1135,1296)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1296.1135"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1296, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 1296 = 2^{4} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 1296.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(133.967472157\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-19}, \sqrt{-39})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 29x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1135.3
Root \(-5.30195i\) of defining polynomial
Character \(\chi\) \(=\) 1296.1135
Dual form 1296.5.g.e.1135.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+39.2213 q^{5} -95.4351i q^{7} -61.4853i q^{11} -119.664 q^{13} -147.885 q^{17} -566.196i q^{19} +735.945i q^{23} +913.312 q^{25} -1070.53 q^{29} -967.179i q^{31} -3743.09i q^{35} +705.648 q^{37} -2045.95 q^{41} -1915.12i q^{43} +1963.77i q^{47} -6706.85 q^{49} -3497.90 q^{53} -2411.53i q^{55} +5645.38i q^{59} +4317.55 q^{61} -4693.38 q^{65} -2397.93i q^{67} +4667.25i q^{71} -2687.64 q^{73} -5867.85 q^{77} -425.861i q^{79} -6994.30i q^{83} -5800.25 q^{85} +7129.82 q^{89} +11420.1i q^{91} -22207.0i q^{95} +2277.85 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 48 q^{5} - 152 q^{13} - 156 q^{17} + 1040 q^{25} - 1560 q^{29} + 536 q^{37} - 2304 q^{41} - 9188 q^{49} - 2232 q^{53} + 3224 q^{61} - 10716 q^{65} - 7484 q^{73} - 5832 q^{77} - 13728 q^{85} + 20244 q^{89}+ \cdots - 8528 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1296\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1217\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 39.2213 1.56885 0.784426 0.620222i \(-0.212958\pi\)
0.784426 + 0.620222i \(0.212958\pi\)
\(6\) 0 0
\(7\) − 95.4351i − 1.94765i −0.227289 0.973827i \(-0.572986\pi\)
0.227289 0.973827i \(-0.427014\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 61.4853i − 0.508143i −0.967185 0.254071i \(-0.918230\pi\)
0.967185 0.254071i \(-0.0817698\pi\)
\(12\) 0 0
\(13\) −119.664 −0.708071 −0.354035 0.935232i \(-0.615191\pi\)
−0.354035 + 0.935232i \(0.615191\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −147.885 −0.511714 −0.255857 0.966715i \(-0.582358\pi\)
−0.255857 + 0.966715i \(0.582358\pi\)
\(18\) 0 0
\(19\) − 566.196i − 1.56841i −0.620502 0.784205i \(-0.713071\pi\)
0.620502 0.784205i \(-0.286929\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 735.945i 1.39120i 0.718429 + 0.695600i \(0.244861\pi\)
−0.718429 + 0.695600i \(0.755139\pi\)
\(24\) 0 0
\(25\) 913.312 1.46130
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1070.53 −1.27293 −0.636464 0.771306i \(-0.719604\pi\)
−0.636464 + 0.771306i \(0.719604\pi\)
\(30\) 0 0
\(31\) − 967.179i − 1.00643i −0.864161 0.503215i \(-0.832150\pi\)
0.864161 0.503215i \(-0.167850\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 3743.09i − 3.05558i
\(36\) 0 0
\(37\) 705.648 0.515447 0.257724 0.966219i \(-0.417028\pi\)
0.257724 + 0.966219i \(0.417028\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2045.95 −1.21710 −0.608552 0.793514i \(-0.708249\pi\)
−0.608552 + 0.793514i \(0.708249\pi\)
\(42\) 0 0
\(43\) − 1915.12i − 1.03576i −0.855454 0.517879i \(-0.826722\pi\)
0.855454 0.517879i \(-0.173278\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1963.77i 0.888987i 0.895782 + 0.444494i \(0.146616\pi\)
−0.895782 + 0.444494i \(0.853384\pi\)
\(48\) 0 0
\(49\) −6706.85 −2.79336
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −3497.90 −1.24525 −0.622624 0.782521i \(-0.713933\pi\)
−0.622624 + 0.782521i \(0.713933\pi\)
\(54\) 0 0
\(55\) − 2411.53i − 0.797201i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5645.38i 1.62177i 0.585207 + 0.810884i \(0.301013\pi\)
−0.585207 + 0.810884i \(0.698987\pi\)
\(60\) 0 0
\(61\) 4317.55 1.16032 0.580160 0.814503i \(-0.302990\pi\)
0.580160 + 0.814503i \(0.302990\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −4693.38 −1.11086
\(66\) 0 0
\(67\) − 2397.93i − 0.534178i −0.963672 0.267089i \(-0.913938\pi\)
0.963672 0.267089i \(-0.0860618\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4667.25i 0.925857i 0.886396 + 0.462929i \(0.153201\pi\)
−0.886396 + 0.462929i \(0.846799\pi\)
\(72\) 0 0
\(73\) −2687.64 −0.504342 −0.252171 0.967683i \(-0.581145\pi\)
−0.252171 + 0.967683i \(0.581145\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −5867.85 −0.989687
\(78\) 0 0
\(79\) − 425.861i − 0.0682360i −0.999418 0.0341180i \(-0.989138\pi\)
0.999418 0.0341180i \(-0.0108622\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 6994.30i − 1.01528i −0.861568 0.507642i \(-0.830517\pi\)
0.861568 0.507642i \(-0.169483\pi\)
\(84\) 0 0
\(85\) −5800.25 −0.802803
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 7129.82 0.900116 0.450058 0.892999i \(-0.351403\pi\)
0.450058 + 0.892999i \(0.351403\pi\)
\(90\) 0 0
\(91\) 11420.1i 1.37908i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 22207.0i − 2.46060i
\(96\) 0 0
\(97\) 2277.85 0.242093 0.121047 0.992647i \(-0.461375\pi\)
0.121047 + 0.992647i \(0.461375\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −10470.0 −1.02637 −0.513183 0.858279i \(-0.671534\pi\)
−0.513183 + 0.858279i \(0.671534\pi\)
\(102\) 0 0
\(103\) 10725.7i 1.01100i 0.862828 + 0.505498i \(0.168691\pi\)
−0.862828 + 0.505498i \(0.831309\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 14838.1i 1.29602i 0.761632 + 0.648009i \(0.224398\pi\)
−0.761632 + 0.648009i \(0.775602\pi\)
\(108\) 0 0
\(109\) 3108.14 0.261606 0.130803 0.991408i \(-0.458244\pi\)
0.130803 + 0.991408i \(0.458244\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 22826.3 1.78764 0.893818 0.448431i \(-0.148017\pi\)
0.893818 + 0.448431i \(0.148017\pi\)
\(114\) 0 0
\(115\) 28864.7i 2.18259i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 14113.4i 0.996642i
\(120\) 0 0
\(121\) 10860.6 0.741791
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11308.0 0.723709
\(126\) 0 0
\(127\) − 818.872i − 0.0507702i −0.999678 0.0253851i \(-0.991919\pi\)
0.999678 0.0253851i \(-0.00808119\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1149.44i 0.0669796i 0.999439 + 0.0334898i \(0.0106621\pi\)
−0.999439 + 0.0334898i \(0.989338\pi\)
\(132\) 0 0
\(133\) −54035.0 −3.05472
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2463.88 −0.131274 −0.0656370 0.997844i \(-0.520908\pi\)
−0.0656370 + 0.997844i \(0.520908\pi\)
\(138\) 0 0
\(139\) 29355.5i 1.51936i 0.650298 + 0.759679i \(0.274644\pi\)
−0.650298 + 0.759679i \(0.725356\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 7357.57i 0.359801i
\(144\) 0 0
\(145\) −41987.7 −1.99704
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 102.860 0.00463314 0.00231657 0.999997i \(-0.499263\pi\)
0.00231657 + 0.999997i \(0.499263\pi\)
\(150\) 0 0
\(151\) − 41850.3i − 1.83546i −0.397205 0.917730i \(-0.630020\pi\)
0.397205 0.917730i \(-0.369980\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 37934.0i − 1.57894i
\(156\) 0 0
\(157\) 25172.7 1.02125 0.510623 0.859804i \(-0.329415\pi\)
0.510623 + 0.859804i \(0.329415\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 70235.0 2.70958
\(162\) 0 0
\(163\) − 4059.59i − 0.152794i −0.997077 0.0763971i \(-0.975658\pi\)
0.997077 0.0763971i \(-0.0243417\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3210.38i 0.115113i 0.998342 + 0.0575565i \(0.0183309\pi\)
−0.998342 + 0.0575565i \(0.981669\pi\)
\(168\) 0 0
\(169\) −14241.5 −0.498636
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −23891.0 −0.798256 −0.399128 0.916895i \(-0.630687\pi\)
−0.399128 + 0.916895i \(0.630687\pi\)
\(174\) 0 0
\(175\) − 87162.0i − 2.84610i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 42054.9i − 1.31254i −0.754528 0.656268i \(-0.772134\pi\)
0.754528 0.656268i \(-0.227866\pi\)
\(180\) 0 0
\(181\) 2337.41 0.0713474 0.0356737 0.999363i \(-0.488642\pi\)
0.0356737 + 0.999363i \(0.488642\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 27676.4 0.808661
\(186\) 0 0
\(187\) 9092.77i 0.260024i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 51678.6i 1.41659i 0.705917 + 0.708294i \(0.250535\pi\)
−0.705917 + 0.708294i \(0.749465\pi\)
\(192\) 0 0
\(193\) −39478.2 −1.05985 −0.529923 0.848046i \(-0.677779\pi\)
−0.529923 + 0.848046i \(0.677779\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 51268.2 1.32104 0.660519 0.750809i \(-0.270336\pi\)
0.660519 + 0.750809i \(0.270336\pi\)
\(198\) 0 0
\(199\) − 56884.0i − 1.43643i −0.695822 0.718214i \(-0.744960\pi\)
0.695822 0.718214i \(-0.255040\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 102166.i 2.47922i
\(204\) 0 0
\(205\) −80244.9 −1.90946
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −34812.7 −0.796977
\(210\) 0 0
\(211\) 5262.54i 0.118203i 0.998252 + 0.0591017i \(0.0188236\pi\)
−0.998252 + 0.0591017i \(0.981176\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 75113.4i − 1.62495i
\(216\) 0 0
\(217\) −92302.8 −1.96018
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 17696.5 0.362329
\(222\) 0 0
\(223\) − 22951.7i − 0.461535i −0.973009 0.230767i \(-0.925876\pi\)
0.973009 0.230767i \(-0.0741236\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 19133.2i 0.371309i 0.982615 + 0.185655i \(0.0594406\pi\)
−0.982615 + 0.185655i \(0.940559\pi\)
\(228\) 0 0
\(229\) −68010.9 −1.29690 −0.648452 0.761256i \(-0.724583\pi\)
−0.648452 + 0.761256i \(0.724583\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −5496.60 −0.101247 −0.0506235 0.998718i \(-0.516121\pi\)
−0.0506235 + 0.998718i \(0.516121\pi\)
\(234\) 0 0
\(235\) 77021.7i 1.39469i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 41030.8i − 0.718315i −0.933277 0.359157i \(-0.883064\pi\)
0.933277 0.359157i \(-0.116936\pi\)
\(240\) 0 0
\(241\) 71605.5 1.23286 0.616428 0.787411i \(-0.288579\pi\)
0.616428 + 0.787411i \(0.288579\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −263052. −4.38237
\(246\) 0 0
\(247\) 67753.3i 1.11055i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 6291.66i 0.0998660i 0.998753 + 0.0499330i \(0.0159008\pi\)
−0.998753 + 0.0499330i \(0.984099\pi\)
\(252\) 0 0
\(253\) 45249.8 0.706929
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −10475.8 −0.158607 −0.0793033 0.996851i \(-0.525270\pi\)
−0.0793033 + 0.996851i \(0.525270\pi\)
\(258\) 0 0
\(259\) − 67343.5i − 1.00391i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 25865.1i − 0.373941i −0.982365 0.186971i \(-0.940133\pi\)
0.982365 0.186971i \(-0.0598669\pi\)
\(264\) 0 0
\(265\) −137192. −1.95361
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 55591.1 0.768246 0.384123 0.923282i \(-0.374504\pi\)
0.384123 + 0.923282i \(0.374504\pi\)
\(270\) 0 0
\(271\) − 49383.5i − 0.672424i −0.941786 0.336212i \(-0.890854\pi\)
0.941786 0.336212i \(-0.109146\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 56155.2i − 0.742548i
\(276\) 0 0
\(277\) −27278.6 −0.355519 −0.177759 0.984074i \(-0.556885\pi\)
−0.177759 + 0.984074i \(0.556885\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −53783.9 −0.681145 −0.340573 0.940218i \(-0.610621\pi\)
−0.340573 + 0.940218i \(0.610621\pi\)
\(282\) 0 0
\(283\) − 45742.8i − 0.571149i −0.958356 0.285575i \(-0.907816\pi\)
0.958356 0.285575i \(-0.0921844\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 195255.i 2.37050i
\(288\) 0 0
\(289\) −61650.9 −0.738149
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −148321. −1.72770 −0.863849 0.503750i \(-0.831953\pi\)
−0.863849 + 0.503750i \(0.831953\pi\)
\(294\) 0 0
\(295\) 221419.i 2.54432i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 88066.1i − 0.985068i
\(300\) 0 0
\(301\) −182769. −2.01730
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 169340. 1.82037
\(306\) 0 0
\(307\) − 76869.7i − 0.815602i −0.913071 0.407801i \(-0.866296\pi\)
0.913071 0.407801i \(-0.133704\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) − 120301.i − 1.24379i −0.783100 0.621896i \(-0.786363\pi\)
0.783100 0.621896i \(-0.213637\pi\)
\(312\) 0 0
\(313\) 21203.1 0.216427 0.108213 0.994128i \(-0.465487\pi\)
0.108213 + 0.994128i \(0.465487\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −136811. −1.36146 −0.680728 0.732536i \(-0.738337\pi\)
−0.680728 + 0.732536i \(0.738337\pi\)
\(318\) 0 0
\(319\) 65822.0i 0.646830i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 83732.1i 0.802577i
\(324\) 0 0
\(325\) −109290. −1.03470
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 187413. 1.73144
\(330\) 0 0
\(331\) 15705.6i 0.143350i 0.997428 + 0.0716751i \(0.0228345\pi\)
−0.997428 + 0.0716751i \(0.977166\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 94049.8i − 0.838047i
\(336\) 0 0
\(337\) −148152. −1.30451 −0.652257 0.757998i \(-0.726178\pi\)
−0.652257 + 0.757998i \(0.726178\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −59467.3 −0.511410
\(342\) 0 0
\(343\) 410929.i 3.49284i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 128291.i − 1.06546i −0.846284 0.532732i \(-0.821165\pi\)
0.846284 0.532732i \(-0.178835\pi\)
\(348\) 0 0
\(349\) −119096. −0.977792 −0.488896 0.872342i \(-0.662600\pi\)
−0.488896 + 0.872342i \(0.662600\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −207280. −1.66344 −0.831722 0.555193i \(-0.812645\pi\)
−0.831722 + 0.555193i \(0.812645\pi\)
\(354\) 0 0
\(355\) 183056.i 1.45253i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 67284.6i − 0.522067i −0.965330 0.261034i \(-0.915937\pi\)
0.965330 0.261034i \(-0.0840634\pi\)
\(360\) 0 0
\(361\) −190257. −1.45991
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −105413. −0.791239
\(366\) 0 0
\(367\) − 171363.i − 1.27228i −0.771572 0.636142i \(-0.780529\pi\)
0.771572 0.636142i \(-0.219471\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 333823.i 2.42531i
\(372\) 0 0
\(373\) 132742. 0.954094 0.477047 0.878878i \(-0.341707\pi\)
0.477047 + 0.878878i \(0.341707\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 128104. 0.901323
\(378\) 0 0
\(379\) − 195728.i − 1.36262i −0.731996 0.681309i \(-0.761411\pi\)
0.731996 0.681309i \(-0.238589\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 277896.i 1.89446i 0.320556 + 0.947230i \(0.396130\pi\)
−0.320556 + 0.947230i \(0.603870\pi\)
\(384\) 0 0
\(385\) −230145. −1.55267
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 130440. 0.862009 0.431005 0.902350i \(-0.358159\pi\)
0.431005 + 0.902350i \(0.358159\pi\)
\(390\) 0 0
\(391\) − 108835.i − 0.711896i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 16702.8i − 0.107052i
\(396\) 0 0
\(397\) 62335.7 0.395509 0.197754 0.980252i \(-0.436635\pi\)
0.197754 + 0.980252i \(0.436635\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 111606. 0.694065 0.347033 0.937853i \(-0.387189\pi\)
0.347033 + 0.937853i \(0.387189\pi\)
\(402\) 0 0
\(403\) 115736.i 0.712624i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 43386.9i − 0.261921i
\(408\) 0 0
\(409\) 168750. 1.00878 0.504390 0.863476i \(-0.331717\pi\)
0.504390 + 0.863476i \(0.331717\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 538767. 3.15864
\(414\) 0 0
\(415\) − 274325.i − 1.59283i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 24779.9i − 0.141147i −0.997507 0.0705736i \(-0.977517\pi\)
0.997507 0.0705736i \(-0.0224830\pi\)
\(420\) 0 0
\(421\) −85242.0 −0.480938 −0.240469 0.970657i \(-0.577301\pi\)
−0.240469 + 0.970657i \(0.577301\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −135065. −0.747766
\(426\) 0 0
\(427\) − 412046.i − 2.25990i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 240656.i − 1.29551i −0.761847 0.647757i \(-0.775707\pi\)
0.761847 0.647757i \(-0.224293\pi\)
\(432\) 0 0
\(433\) 155361. 0.828640 0.414320 0.910131i \(-0.364019\pi\)
0.414320 + 0.910131i \(0.364019\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 416689. 2.18197
\(438\) 0 0
\(439\) − 70986.9i − 0.368340i −0.982894 0.184170i \(-0.941040\pi\)
0.982894 0.184170i \(-0.0589598\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 101898.i − 0.519226i −0.965713 0.259613i \(-0.916405\pi\)
0.965713 0.259613i \(-0.0835950\pi\)
\(444\) 0 0
\(445\) 279641. 1.41215
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −218354. −1.08310 −0.541551 0.840668i \(-0.682163\pi\)
−0.541551 + 0.840668i \(0.682163\pi\)
\(450\) 0 0
\(451\) 125796.i 0.618462i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 447913.i 2.16357i
\(456\) 0 0
\(457\) −310389. −1.48619 −0.743095 0.669186i \(-0.766643\pi\)
−0.743095 + 0.669186i \(0.766643\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −88024.7 −0.414193 −0.207097 0.978321i \(-0.566401\pi\)
−0.207097 + 0.978321i \(0.566401\pi\)
\(462\) 0 0
\(463\) 87008.4i 0.405881i 0.979191 + 0.202941i \(0.0650499\pi\)
−0.979191 + 0.202941i \(0.934950\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 169998.i − 0.779488i −0.920923 0.389744i \(-0.872564\pi\)
0.920923 0.389744i \(-0.127436\pi\)
\(468\) 0 0
\(469\) −228846. −1.04039
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −117751. −0.526313
\(474\) 0 0
\(475\) − 517113.i − 2.29192i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 392018.i − 1.70858i −0.519799 0.854288i \(-0.673993\pi\)
0.519799 0.854288i \(-0.326007\pi\)
\(480\) 0 0
\(481\) −84440.6 −0.364973
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 89340.4 0.379808
\(486\) 0 0
\(487\) − 191123.i − 0.805851i −0.915233 0.402925i \(-0.867993\pi\)
0.915233 0.402925i \(-0.132007\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 264539.i − 1.09730i −0.836051 0.548652i \(-0.815141\pi\)
0.836051 0.548652i \(-0.184859\pi\)
\(492\) 0 0
\(493\) 158316. 0.651375
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 445419. 1.80325
\(498\) 0 0
\(499\) − 201153.i − 0.807840i −0.914794 0.403920i \(-0.867647\pi\)
0.914794 0.403920i \(-0.132353\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 377433.i − 1.49178i −0.666071 0.745889i \(-0.732025\pi\)
0.666071 0.745889i \(-0.267975\pi\)
\(504\) 0 0
\(505\) −410645. −1.61022
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −84475.5 −0.326058 −0.163029 0.986621i \(-0.552126\pi\)
−0.163029 + 0.986621i \(0.552126\pi\)
\(510\) 0 0
\(511\) 256495.i 0.982284i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 420674.i 1.58610i
\(516\) 0 0
\(517\) 120743. 0.451732
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −115569. −0.425760 −0.212880 0.977078i \(-0.568284\pi\)
−0.212880 + 0.977078i \(0.568284\pi\)
\(522\) 0 0
\(523\) − 197602.i − 0.722416i −0.932485 0.361208i \(-0.882364\pi\)
0.932485 0.361208i \(-0.117636\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 143032.i 0.515004i
\(528\) 0 0
\(529\) −261774. −0.935439
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 244827. 0.861795
\(534\) 0 0
\(535\) 581970.i 2.03326i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 412373.i 1.41943i
\(540\) 0 0
\(541\) 402304. 1.37455 0.687274 0.726398i \(-0.258807\pi\)
0.687274 + 0.726398i \(0.258807\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 121905. 0.410421
\(546\) 0 0
\(547\) 353602.i 1.18179i 0.806748 + 0.590895i \(0.201225\pi\)
−0.806748 + 0.590895i \(0.798775\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 606132.i 1.99647i
\(552\) 0 0
\(553\) −40642.1 −0.132900
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −85669.4 −0.276131 −0.138065 0.990423i \(-0.544088\pi\)
−0.138065 + 0.990423i \(0.544088\pi\)
\(558\) 0 0
\(559\) 229170.i 0.733390i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 268439.i − 0.846893i −0.905921 0.423446i \(-0.860820\pi\)
0.905921 0.423446i \(-0.139180\pi\)
\(564\) 0 0
\(565\) 895278. 2.80454
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −460185. −1.42137 −0.710687 0.703509i \(-0.751616\pi\)
−0.710687 + 0.703509i \(0.751616\pi\)
\(570\) 0 0
\(571\) 312881.i 0.959636i 0.877368 + 0.479818i \(0.159297\pi\)
−0.877368 + 0.479818i \(0.840703\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 672147.i 2.03296i
\(576\) 0 0
\(577\) 629966. 1.89219 0.946097 0.323884i \(-0.104989\pi\)
0.946097 + 0.323884i \(0.104989\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −667501. −1.97742
\(582\) 0 0
\(583\) 215070.i 0.632764i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 575551.i − 1.67035i −0.549984 0.835175i \(-0.685366\pi\)
0.549984 0.835175i \(-0.314634\pi\)
\(588\) 0 0
\(589\) −547613. −1.57850
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −501917. −1.42732 −0.713662 0.700490i \(-0.752965\pi\)
−0.713662 + 0.700490i \(0.752965\pi\)
\(594\) 0 0
\(595\) 553548.i 1.56358i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 606236.i − 1.68962i −0.535070 0.844808i \(-0.679715\pi\)
0.535070 0.844808i \(-0.320285\pi\)
\(600\) 0 0
\(601\) −25098.1 −0.0694850 −0.0347425 0.999396i \(-0.511061\pi\)
−0.0347425 + 0.999396i \(0.511061\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 425965. 1.16376
\(606\) 0 0
\(607\) − 484991.i − 1.31631i −0.752884 0.658153i \(-0.771338\pi\)
0.752884 0.658153i \(-0.228662\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 234993.i − 0.629466i
\(612\) 0 0
\(613\) −95820.3 −0.254998 −0.127499 0.991839i \(-0.540695\pi\)
−0.127499 + 0.991839i \(0.540695\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −495158. −1.30069 −0.650345 0.759639i \(-0.725376\pi\)
−0.650345 + 0.759639i \(0.725376\pi\)
\(618\) 0 0
\(619\) − 164955.i − 0.430512i −0.976558 0.215256i \(-0.930941\pi\)
0.976558 0.215256i \(-0.0690585\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 680435.i − 1.75312i
\(624\) 0 0
\(625\) −127307. −0.325905
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −104355. −0.263762
\(630\) 0 0
\(631\) 658369.i 1.65352i 0.562552 + 0.826762i \(0.309820\pi\)
−0.562552 + 0.826762i \(0.690180\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 32117.2i − 0.0796509i
\(636\) 0 0
\(637\) 802568. 1.97790
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 257045. 0.625594 0.312797 0.949820i \(-0.398734\pi\)
0.312797 + 0.949820i \(0.398734\pi\)
\(642\) 0 0
\(643\) 188005.i 0.454723i 0.973810 + 0.227362i \(0.0730099\pi\)
−0.973810 + 0.227362i \(0.926990\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 737262.i 1.76122i 0.473844 + 0.880609i \(0.342866\pi\)
−0.473844 + 0.880609i \(0.657134\pi\)
\(648\) 0 0
\(649\) 347108. 0.824090
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 414420. 0.971884 0.485942 0.873991i \(-0.338477\pi\)
0.485942 + 0.873991i \(0.338477\pi\)
\(654\) 0 0
\(655\) 45082.4i 0.105081i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 215117.i − 0.495341i −0.968844 0.247671i \(-0.920335\pi\)
0.968844 0.247671i \(-0.0796651\pi\)
\(660\) 0 0
\(661\) 313934. 0.718515 0.359258 0.933238i \(-0.383030\pi\)
0.359258 + 0.933238i \(0.383030\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −2.11932e6 −4.79241
\(666\) 0 0
\(667\) − 787853.i − 1.77090i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) − 265466.i − 0.589608i
\(672\) 0 0
\(673\) 372599. 0.822643 0.411322 0.911490i \(-0.365067\pi\)
0.411322 + 0.911490i \(0.365067\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −287283. −0.626805 −0.313402 0.949620i \(-0.601469\pi\)
−0.313402 + 0.949620i \(0.601469\pi\)
\(678\) 0 0
\(679\) − 217387.i − 0.471514i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 303751.i 0.651143i 0.945517 + 0.325572i \(0.105557\pi\)
−0.945517 + 0.325572i \(0.894443\pi\)
\(684\) 0 0
\(685\) −96636.7 −0.205950
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 418573. 0.881724
\(690\) 0 0
\(691\) 605388.i 1.26788i 0.773383 + 0.633940i \(0.218563\pi\)
−0.773383 + 0.633940i \(0.781437\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.15136e6i 2.38365i
\(696\) 0 0
\(697\) 302566. 0.622809
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 607994. 1.23727 0.618633 0.785680i \(-0.287687\pi\)
0.618633 + 0.785680i \(0.287687\pi\)
\(702\) 0 0
\(703\) − 399535.i − 0.808433i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 999201.i 1.99900i
\(708\) 0 0
\(709\) 565849. 1.12566 0.562831 0.826572i \(-0.309712\pi\)
0.562831 + 0.826572i \(0.309712\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 711791. 1.40015
\(714\) 0 0
\(715\) 288574.i 0.564475i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) − 24589.7i − 0.0475660i −0.999717 0.0237830i \(-0.992429\pi\)
0.999717 0.0237830i \(-0.00757107\pi\)
\(720\) 0 0
\(721\) 1.02360e6 1.96907
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −977730. −1.86013
\(726\) 0 0
\(727\) − 879787.i − 1.66459i −0.554329 0.832297i \(-0.687025\pi\)
0.554329 0.832297i \(-0.312975\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 283217.i 0.530011i
\(732\) 0 0
\(733\) −104477. −0.194452 −0.0972260 0.995262i \(-0.530997\pi\)
−0.0972260 + 0.995262i \(0.530997\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −147437. −0.271439
\(738\) 0 0
\(739\) 588536.i 1.07767i 0.842412 + 0.538833i \(0.181135\pi\)
−0.842412 + 0.538833i \(0.818865\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 505323.i − 0.915360i −0.889117 0.457680i \(-0.848681\pi\)
0.889117 0.457680i \(-0.151319\pi\)
\(744\) 0 0
\(745\) 4034.32 0.00726871
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1.41608e6 2.52420
\(750\) 0 0
\(751\) 74574.4i 0.132224i 0.997812 + 0.0661119i \(0.0210594\pi\)
−0.997812 + 0.0661119i \(0.978941\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 1.64142e6i − 2.87957i
\(756\) 0 0
\(757\) 55418.8 0.0967086 0.0483543 0.998830i \(-0.484602\pi\)
0.0483543 + 0.998830i \(0.484602\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 78533.4 0.135608 0.0678040 0.997699i \(-0.478401\pi\)
0.0678040 + 0.997699i \(0.478401\pi\)
\(762\) 0 0
\(763\) − 296626.i − 0.509518i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 675548.i − 1.14833i
\(768\) 0 0
\(769\) −55527.1 −0.0938972 −0.0469486 0.998897i \(-0.514950\pi\)
−0.0469486 + 0.998897i \(0.514950\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 290784. 0.486645 0.243322 0.969945i \(-0.421763\pi\)
0.243322 + 0.969945i \(0.421763\pi\)
\(774\) 0 0
\(775\) − 883336.i − 1.47069i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.15841e6i 1.90892i
\(780\) 0 0
\(781\) 286967. 0.470468
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 987307. 1.60219
\(786\) 0 0
\(787\) − 286886.i − 0.463191i −0.972812 0.231596i \(-0.925605\pi\)
0.972812 0.231596i \(-0.0743946\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 2.17843e6i − 3.48170i
\(792\) 0 0
\(793\) −516655. −0.821588
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −284903. −0.448518 −0.224259 0.974530i \(-0.571996\pi\)
−0.224259 + 0.974530i \(0.571996\pi\)
\(798\) 0 0
\(799\) − 290413.i − 0.454907i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 165250.i 0.256278i
\(804\) 0 0
\(805\) 2.75471e6 4.25093
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −824554. −1.25986 −0.629929 0.776652i \(-0.716916\pi\)
−0.629929 + 0.776652i \(0.716916\pi\)
\(810\) 0 0
\(811\) 377547.i 0.574022i 0.957927 + 0.287011i \(0.0926617\pi\)
−0.957927 + 0.287011i \(0.907338\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 159222.i − 0.239711i
\(816\) 0 0
\(817\) −1.08433e6 −1.62449
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 444605. 0.659611 0.329805 0.944049i \(-0.393017\pi\)
0.329805 + 0.944049i \(0.393017\pi\)
\(822\) 0 0
\(823\) − 227777.i − 0.336287i −0.985763 0.168143i \(-0.946223\pi\)
0.985763 0.168143i \(-0.0537772\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.03418e6i 1.51212i 0.654504 + 0.756059i \(0.272878\pi\)
−0.654504 + 0.756059i \(0.727122\pi\)
\(828\) 0 0
\(829\) 1.25037e6 1.81940 0.909702 0.415261i \(-0.136310\pi\)
0.909702 + 0.415261i \(0.136310\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 991845. 1.42940
\(834\) 0 0
\(835\) 125915.i 0.180595i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 291698.i 0.414390i 0.978300 + 0.207195i \(0.0664335\pi\)
−0.978300 + 0.207195i \(0.933567\pi\)
\(840\) 0 0
\(841\) 438760. 0.620347
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −558572. −0.782286
\(846\) 0 0
\(847\) − 1.03648e6i − 1.44475i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 519318.i 0.717091i
\(852\) 0 0
\(853\) −495456. −0.680937 −0.340469 0.940256i \(-0.610586\pi\)
−0.340469 + 0.940256i \(0.610586\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 748306. 1.01887 0.509434 0.860510i \(-0.329855\pi\)
0.509434 + 0.860510i \(0.329855\pi\)
\(858\) 0 0
\(859\) − 1.01314e6i − 1.37305i −0.727108 0.686523i \(-0.759136\pi\)
0.727108 0.686523i \(-0.240864\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 517950.i 0.695450i 0.937597 + 0.347725i \(0.113046\pi\)
−0.937597 + 0.347725i \(0.886954\pi\)
\(864\) 0 0
\(865\) −937036. −1.25235
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −26184.2 −0.0346737
\(870\) 0 0
\(871\) 286945.i 0.378236i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 1.07918e6i − 1.40954i
\(876\) 0 0
\(877\) 712741. 0.926686 0.463343 0.886179i \(-0.346650\pi\)
0.463343 + 0.886179i \(0.346650\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −154178. −0.198641 −0.0993207 0.995055i \(-0.531667\pi\)
−0.0993207 + 0.995055i \(0.531667\pi\)
\(882\) 0 0
\(883\) − 671899.i − 0.861753i −0.902411 0.430876i \(-0.858204\pi\)
0.902411 0.430876i \(-0.141796\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 166555.i − 0.211695i −0.994382 0.105848i \(-0.966244\pi\)
0.994382 0.105848i \(-0.0337555\pi\)
\(888\) 0 0
\(889\) −78149.1 −0.0988827
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1.11188e6 1.39430
\(894\) 0 0
\(895\) − 1.64945e6i − 2.05917i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1.03540e6i 1.28111i
\(900\) 0 0
\(901\) 517288. 0.637211
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 91676.4 0.111934
\(906\) 0 0
\(907\) 405449.i 0.492858i 0.969161 + 0.246429i \(0.0792572\pi\)
−0.969161 + 0.246429i \(0.920743\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1.02635e6i 1.23669i 0.785909 + 0.618343i \(0.212196\pi\)
−0.785909 + 0.618343i \(0.787804\pi\)
\(912\) 0 0
\(913\) −430046. −0.515910
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 109697. 0.130453
\(918\) 0 0
\(919\) 750897.i 0.889098i 0.895755 + 0.444549i \(0.146636\pi\)
−0.895755 + 0.444549i \(0.853364\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 558501.i − 0.655572i
\(924\) 0 0
\(925\) 644476. 0.753223
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 803129. 0.930580 0.465290 0.885158i \(-0.345950\pi\)
0.465290 + 0.885158i \(0.345950\pi\)
\(930\) 0 0
\(931\) 3.79739e6i 4.38113i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 356630.i 0.407939i
\(936\) 0 0
\(937\) −412932. −0.470326 −0.235163 0.971956i \(-0.575562\pi\)
−0.235163 + 0.971956i \(0.575562\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 305243. 0.344720 0.172360 0.985034i \(-0.444861\pi\)
0.172360 + 0.985034i \(0.444861\pi\)
\(942\) 0 0
\(943\) − 1.50571e6i − 1.69324i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 713232.i − 0.795300i −0.917537 0.397650i \(-0.869826\pi\)
0.917537 0.397650i \(-0.130174\pi\)
\(948\) 0 0
\(949\) 321614. 0.357110
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −69136.5 −0.0761241 −0.0380620 0.999275i \(-0.512118\pi\)
−0.0380620 + 0.999275i \(0.512118\pi\)
\(954\) 0 0
\(955\) 2.02690e6i 2.22242i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 235141.i 0.255677i
\(960\) 0 0
\(961\) −11914.8 −0.0129014
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −1.54839e6 −1.66274
\(966\) 0 0
\(967\) 385873.i 0.412659i 0.978483 + 0.206329i \(0.0661518\pi\)
−0.978483 + 0.206329i \(0.933848\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 345117.i − 0.366039i −0.983109 0.183020i \(-0.941413\pi\)
0.983109 0.183020i \(-0.0585872\pi\)
\(972\) 0 0
\(973\) 2.80155e6 2.95918
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.14503e6 1.19957 0.599786 0.800160i \(-0.295252\pi\)
0.599786 + 0.800160i \(0.295252\pi\)
\(978\) 0 0
\(979\) − 438379.i − 0.457388i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 951377.i 0.984568i 0.870435 + 0.492284i \(0.163838\pi\)
−0.870435 + 0.492284i \(0.836162\pi\)
\(984\) 0 0
\(985\) 2.01080e6 2.07251
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.40942e6 1.44095
\(990\) 0 0
\(991\) 1.15391e6i 1.17497i 0.809236 + 0.587484i \(0.199881\pi\)
−0.809236 + 0.587484i \(0.800119\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 2.23106e6i − 2.25354i
\(996\) 0 0
\(997\) 1.36515e6 1.37338 0.686688 0.726953i \(-0.259064\pi\)
0.686688 + 0.726953i \(0.259064\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1296.5.g.e.1135.3 yes 4
3.2 odd 2 1296.5.g.c.1135.1 4
4.3 odd 2 inner 1296.5.g.e.1135.4 yes 4
12.11 even 2 1296.5.g.c.1135.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1296.5.g.c.1135.1 4 3.2 odd 2
1296.5.g.c.1135.2 yes 4 12.11 even 2
1296.5.g.e.1135.3 yes 4 1.1 even 1 trivial
1296.5.g.e.1135.4 yes 4 4.3 odd 2 inner