Properties

Label 2-6e4-4.3-c4-0-94
Degree $2$
Conductor $1296$
Sign $-1$
Analytic cond. $133.967$
Root an. cond. $11.5744$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 39.2·5-s − 95.4i·7-s − 61.4i·11-s − 119.·13-s − 147.·17-s − 566. i·19-s + 735. i·23-s + 913.·25-s − 1.07e3·29-s − 967. i·31-s − 3.74e3i·35-s + 705.·37-s − 2.04e3·41-s − 1.91e3i·43-s + 1.96e3i·47-s + ⋯
L(s)  = 1  + 1.56·5-s − 1.94i·7-s − 0.508i·11-s − 0.708·13-s − 0.511·17-s − 1.56i·19-s + 1.39i·23-s + 1.46·25-s − 1.27·29-s − 1.00i·31-s − 3.05i·35-s + 0.515·37-s − 1.21·41-s − 1.03i·43-s + 0.888i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1296 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1296\)    =    \(2^{4} \cdot 3^{4}\)
Sign: $-1$
Analytic conductor: \(133.967\)
Root analytic conductor: \(11.5744\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{1296} (1135, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1296,\ (\ :2),\ -1)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(1.475623985\)
\(L(\frac12)\) \(\approx\) \(1.475623985\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 39.2T + 625T^{2} \)
7 \( 1 + 95.4iT - 2.40e3T^{2} \)
11 \( 1 + 61.4iT - 1.46e4T^{2} \)
13 \( 1 + 119.T + 2.85e4T^{2} \)
17 \( 1 + 147.T + 8.35e4T^{2} \)
19 \( 1 + 566. iT - 1.30e5T^{2} \)
23 \( 1 - 735. iT - 2.79e5T^{2} \)
29 \( 1 + 1.07e3T + 7.07e5T^{2} \)
31 \( 1 + 967. iT - 9.23e5T^{2} \)
37 \( 1 - 705.T + 1.87e6T^{2} \)
41 \( 1 + 2.04e3T + 2.82e6T^{2} \)
43 \( 1 + 1.91e3iT - 3.41e6T^{2} \)
47 \( 1 - 1.96e3iT - 4.87e6T^{2} \)
53 \( 1 + 3.49e3T + 7.89e6T^{2} \)
59 \( 1 - 5.64e3iT - 1.21e7T^{2} \)
61 \( 1 - 4.31e3T + 1.38e7T^{2} \)
67 \( 1 + 2.39e3iT - 2.01e7T^{2} \)
71 \( 1 - 4.66e3iT - 2.54e7T^{2} \)
73 \( 1 + 2.68e3T + 2.83e7T^{2} \)
79 \( 1 + 425. iT - 3.89e7T^{2} \)
83 \( 1 + 6.99e3iT - 4.74e7T^{2} \)
89 \( 1 - 7.12e3T + 6.27e7T^{2} \)
97 \( 1 - 2.27e3T + 8.85e7T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.976591381865660319693078391357, −7.62209881723729068139762558370, −7.09454135328757253819807843861, −6.27177895706932979384788995753, −5.33188209964607193629609262626, −4.49059819594352493956720997422, −3.43722667934418784039904603952, −2.27083754264779879765252800083, −1.26547529544857791127491014332, −0.25534819573230944777788609854, 1.82196361673493678752401763551, 2.10127245722444816006113047503, 3.11114809169900610547920359172, 4.77617027520796426364599156369, 5.43630206737287688034864702855, 6.10007561841683680499577983167, 6.75821487430914971103060923004, 8.159088856764593397164458251855, 8.795172892131377976893242564390, 9.666803165748163434400067757768

Graph of the $Z$-function along the critical line