Properties

Label 1296.5.g.e
Level $1296$
Weight $5$
Character orbit 1296.g
Analytic conductor $133.967$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1296,5,Mod(1135,1296)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1296.1135"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1296, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 1296 = 2^{4} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 1296.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(133.967472157\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-19}, \sqrt{-39})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 29x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{3} + 12) q^{5} + \beta_1 q^{7} - \beta_{2} q^{11} + (3 \beta_{3} - 38) q^{13} + (4 \beta_{3} - 39) q^{17} + ( - 3 \beta_{2} + 4 \beta_1) q^{19} + ( - 2 \beta_{2} - 9 \beta_1) q^{23} + ( - 24 \beta_{3} + 260) q^{25}+ \cdots + ( - 162 \beta_{3} - 2132) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 48 q^{5} - 152 q^{13} - 156 q^{17} + 1040 q^{25} - 1560 q^{29} + 536 q^{37} - 2304 q^{41} - 9188 q^{49} - 2232 q^{53} + 3224 q^{61} - 10716 q^{65} - 7484 q^{73} - 5832 q^{77} - 13728 q^{85} + 20244 q^{89}+ \cdots - 8528 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 29x^{2} + 25 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 18\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 36\nu^{3} + 954\nu ) / 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\nu^{2} + 29 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 18 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - 29 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 5\beta_{2} - 53\beta_1 ) / 36 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1296\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1217\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1135.1
0.943050i
0.943050i
5.30195i
5.30195i
0 0 0 −15.2213 0 16.9749i 0 0 0
1135.2 0 0 0 −15.2213 0 16.9749i 0 0 0
1135.3 0 0 0 39.2213 0 95.4351i 0 0 0
1135.4 0 0 0 39.2213 0 95.4351i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1296.5.g.e yes 4
3.b odd 2 1 1296.5.g.c 4
4.b odd 2 1 inner 1296.5.g.e yes 4
12.b even 2 1 1296.5.g.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1296.5.g.c 4 3.b odd 2 1
1296.5.g.c 4 12.b even 2 1
1296.5.g.e yes 4 1.a even 1 1 trivial
1296.5.g.e yes 4 4.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - 24T_{5} - 597 \) acting on \(S_{5}^{\mathrm{new}}(1296, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} - 24 T - 597)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} + 9396 T^{2} + 2624400 \) Copy content Toggle raw display
$11$ \( T^{4} + 34020 T^{2} + 114318864 \) Copy content Toggle raw display
$13$ \( (T^{2} + 76 T - 5225)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 78 T - 10335)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 66014052624 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 135709718544 \) Copy content Toggle raw display
$29$ \( (T^{2} + 780 T - 311025)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 1535061528576 \) Copy content Toggle raw display
$37$ \( (T^{2} - 268 T - 308825)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 1152 T - 1828980)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 2938769632656 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 586657956096 \) Copy content Toggle raw display
$53$ \( (T^{2} + 1116 T - 8331660)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 7176140884224 \) Copy content Toggle raw display
$61$ \( (T^{2} - 1612 T - 11681345)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 264469947051024 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 647993069781264 \) Copy content Toggle raw display
$73$ \( (T^{2} + 3742 T + 2833741)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 3447869640336 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 37403303198976 \) Copy content Toggle raw display
$89$ \( (T^{2} - 10122 T + 21333705)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 4264 T - 14901380)^{2} \) Copy content Toggle raw display
show more
show less