Properties

Label 1280.2.n.r.767.5
Level $1280$
Weight $2$
Character 1280.767
Analytic conductor $10.221$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1280,2,Mod(767,1280)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1280.767"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1280, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1280 = 2^{8} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1280.n (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,-4,0,0,0,0,0,0,0,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2208514587\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.125772815663104.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 27x^{8} + 107x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: no (minimal twist has level 640)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 767.5
Root \(1.53448 + 1.53448i\) of defining polynomial
Character \(\chi\) \(=\) 1280.767
Dual form 1280.2.n.r.1023.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.20864 + 1.20864i) q^{3} +(-2.17009 - 0.539189i) q^{5} +(-0.446112 + 0.446112i) q^{7} -0.0783777i q^{9} -3.72065i q^{11} +(-0.709275 + 0.709275i) q^{13} +(-1.97117 - 3.27454i) q^{15} +(3.34017 + 3.34017i) q^{17} +4.35348 q^{19} -1.07838 q^{21} +(5.69182 + 5.69182i) q^{23} +(4.41855 + 2.34017i) q^{25} +(3.72065 - 3.72065i) q^{27} -1.41855i q^{29} -5.72678i q^{31} +(4.49693 - 4.49693i) q^{33} +(1.20864 - 0.727563i) q^{35} +(3.78765 + 3.78765i) q^{37} -1.71452 q^{39} +9.75872 q^{41} +(-1.20864 - 1.20864i) q^{43} +(-0.0422604 + 0.170086i) q^{45} +(-4.79960 + 4.79960i) q^{47} +6.60197i q^{49} +8.07413i q^{51} +(9.04945 - 9.04945i) q^{53} +(-2.00613 + 8.07413i) q^{55} +(5.26180 + 5.26180i) q^{57} -11.7948 q^{59} +0.340173 q^{61} +(0.0349653 + 0.0349653i) q^{63} +(1.92162 - 1.15676i) q^{65} +(-4.44821 + 4.44821i) q^{67} +13.7587i q^{69} -14.4338i q^{71} +(-0.261795 + 0.261795i) q^{73} +(2.51201 + 8.16887i) q^{75} +(1.65983 + 1.65983i) q^{77} +16.1483 q^{79} +8.75872 q^{81} +(-5.56212 - 5.56212i) q^{83} +(-5.44748 - 9.04945i) q^{85} +(1.71452 - 1.71452i) q^{87} -2.15676i q^{89} -0.632832i q^{91} +(6.92162 - 6.92162i) q^{93} +(-9.44744 - 2.34735i) q^{95} +(6.41855 + 6.41855i) q^{97} -0.291616 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{5} + 20 q^{13} - 4 q^{17} - 4 q^{25} - 16 q^{33} + 4 q^{37} + 16 q^{41} - 64 q^{45} + 36 q^{53} + 32 q^{57} - 40 q^{61} + 36 q^{65} + 28 q^{73} + 64 q^{77} + 4 q^{81} - 68 q^{85} + 96 q^{93}+ \cdots + 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1280\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.20864 + 1.20864i 0.697809 + 0.697809i 0.963937 0.266129i \(-0.0857446\pi\)
−0.266129 + 0.963937i \(0.585745\pi\)
\(4\) 0 0
\(5\) −2.17009 0.539189i −0.970492 0.241133i
\(6\) 0 0
\(7\) −0.446112 + 0.446112i −0.168614 + 0.168614i −0.786370 0.617756i \(-0.788042\pi\)
0.617756 + 0.786370i \(0.288042\pi\)
\(8\) 0 0
\(9\) 0.0783777i 0.0261259i
\(10\) 0 0
\(11\) 3.72065i 1.12182i −0.827877 0.560909i \(-0.810452\pi\)
0.827877 0.560909i \(-0.189548\pi\)
\(12\) 0 0
\(13\) −0.709275 + 0.709275i −0.196718 + 0.196718i −0.798591 0.601874i \(-0.794421\pi\)
0.601874 + 0.798591i \(0.294421\pi\)
\(14\) 0 0
\(15\) −1.97117 3.27454i −0.508953 0.845482i
\(16\) 0 0
\(17\) 3.34017 + 3.34017i 0.810111 + 0.810111i 0.984650 0.174539i \(-0.0558436\pi\)
−0.174539 + 0.984650i \(0.555844\pi\)
\(18\) 0 0
\(19\) 4.35348 0.998758 0.499379 0.866384i \(-0.333562\pi\)
0.499379 + 0.866384i \(0.333562\pi\)
\(20\) 0 0
\(21\) −1.07838 −0.235321
\(22\) 0 0
\(23\) 5.69182 + 5.69182i 1.18683 + 1.18683i 0.977940 + 0.208887i \(0.0669839\pi\)
0.208887 + 0.977940i \(0.433016\pi\)
\(24\) 0 0
\(25\) 4.41855 + 2.34017i 0.883710 + 0.468035i
\(26\) 0 0
\(27\) 3.72065 3.72065i 0.716040 0.716040i
\(28\) 0 0
\(29\) 1.41855i 0.263418i −0.991288 0.131709i \(-0.957954\pi\)
0.991288 0.131709i \(-0.0420465\pi\)
\(30\) 0 0
\(31\) 5.72678i 1.02856i −0.857622 0.514280i \(-0.828059\pi\)
0.857622 0.514280i \(-0.171941\pi\)
\(32\) 0 0
\(33\) 4.49693 4.49693i 0.782815 0.782815i
\(34\) 0 0
\(35\) 1.20864 0.727563i 0.204297 0.122981i
\(36\) 0 0
\(37\) 3.78765 + 3.78765i 0.622686 + 0.622686i 0.946218 0.323531i \(-0.104870\pi\)
−0.323531 + 0.946218i \(0.604870\pi\)
\(38\) 0 0
\(39\) −1.71452 −0.274543
\(40\) 0 0
\(41\) 9.75872 1.52406 0.762028 0.647544i \(-0.224204\pi\)
0.762028 + 0.647544i \(0.224204\pi\)
\(42\) 0 0
\(43\) −1.20864 1.20864i −0.184316 0.184316i 0.608918 0.793233i \(-0.291604\pi\)
−0.793233 + 0.608918i \(0.791604\pi\)
\(44\) 0 0
\(45\) −0.0422604 + 0.170086i −0.00629981 + 0.0253550i
\(46\) 0 0
\(47\) −4.79960 + 4.79960i −0.700093 + 0.700093i −0.964430 0.264337i \(-0.914847\pi\)
0.264337 + 0.964430i \(0.414847\pi\)
\(48\) 0 0
\(49\) 6.60197i 0.943138i
\(50\) 0 0
\(51\) 8.07413i 1.13060i
\(52\) 0 0
\(53\) 9.04945 9.04945i 1.24304 1.24304i 0.284303 0.958735i \(-0.408238\pi\)
0.958735 0.284303i \(-0.0917621\pi\)
\(54\) 0 0
\(55\) −2.00613 + 8.07413i −0.270507 + 1.08872i
\(56\) 0 0
\(57\) 5.26180 + 5.26180i 0.696942 + 0.696942i
\(58\) 0 0
\(59\) −11.7948 −1.53555 −0.767775 0.640719i \(-0.778636\pi\)
−0.767775 + 0.640719i \(0.778636\pi\)
\(60\) 0 0
\(61\) 0.340173 0.0435547 0.0217773 0.999763i \(-0.493068\pi\)
0.0217773 + 0.999763i \(0.493068\pi\)
\(62\) 0 0
\(63\) 0.0349653 + 0.0349653i 0.00440521 + 0.00440521i
\(64\) 0 0
\(65\) 1.92162 1.15676i 0.238348 0.143478i
\(66\) 0 0
\(67\) −4.44821 + 4.44821i −0.543436 + 0.543436i −0.924534 0.381099i \(-0.875546\pi\)
0.381099 + 0.924534i \(0.375546\pi\)
\(68\) 0 0
\(69\) 13.7587i 1.65636i
\(70\) 0 0
\(71\) 14.4338i 1.71297i −0.516171 0.856486i \(-0.672643\pi\)
0.516171 0.856486i \(-0.327357\pi\)
\(72\) 0 0
\(73\) −0.261795 + 0.261795i −0.0306408 + 0.0306408i −0.722261 0.691620i \(-0.756897\pi\)
0.691620 + 0.722261i \(0.256897\pi\)
\(74\) 0 0
\(75\) 2.51201 + 8.16887i 0.290062 + 0.943259i
\(76\) 0 0
\(77\) 1.65983 + 1.65983i 0.189155 + 0.189155i
\(78\) 0 0
\(79\) 16.1483 1.81682 0.908411 0.418078i \(-0.137296\pi\)
0.908411 + 0.418078i \(0.137296\pi\)
\(80\) 0 0
\(81\) 8.75872 0.973192
\(82\) 0 0
\(83\) −5.56212 5.56212i −0.610522 0.610522i 0.332560 0.943082i \(-0.392088\pi\)
−0.943082 + 0.332560i \(0.892088\pi\)
\(84\) 0 0
\(85\) −5.44748 9.04945i −0.590862 0.981550i
\(86\) 0 0
\(87\) 1.71452 1.71452i 0.183816 0.183816i
\(88\) 0 0
\(89\) 2.15676i 0.228616i −0.993445 0.114308i \(-0.963535\pi\)
0.993445 0.114308i \(-0.0364650\pi\)
\(90\) 0 0
\(91\) 0.632832i 0.0663389i
\(92\) 0 0
\(93\) 6.92162 6.92162i 0.717739 0.717739i
\(94\) 0 0
\(95\) −9.44744 2.34735i −0.969286 0.240833i
\(96\) 0 0
\(97\) 6.41855 + 6.41855i 0.651705 + 0.651705i 0.953403 0.301698i \(-0.0975535\pi\)
−0.301698 + 0.953403i \(0.597554\pi\)
\(98\) 0 0
\(99\) −0.291616 −0.0293085
\(100\) 0 0
\(101\) −10.5236 −1.04714 −0.523568 0.851984i \(-0.675399\pi\)
−0.523568 + 0.851984i \(0.675399\pi\)
\(102\) 0 0
\(103\) −1.74948 1.74948i −0.172382 0.172382i 0.615643 0.788025i \(-0.288896\pi\)
−0.788025 + 0.615643i \(0.788896\pi\)
\(104\) 0 0
\(105\) 2.34017 + 0.581449i 0.228377 + 0.0567436i
\(106\) 0 0
\(107\) −2.99309 + 2.99309i −0.289353 + 0.289353i −0.836824 0.547472i \(-0.815590\pi\)
0.547472 + 0.836824i \(0.315590\pi\)
\(108\) 0 0
\(109\) 13.7587i 1.31785i 0.752210 + 0.658923i \(0.228988\pi\)
−0.752210 + 0.658923i \(0.771012\pi\)
\(110\) 0 0
\(111\) 9.15582i 0.869032i
\(112\) 0 0
\(113\) 1.92162 1.92162i 0.180771 0.180771i −0.610921 0.791692i \(-0.709201\pi\)
0.791692 + 0.610921i \(0.209201\pi\)
\(114\) 0 0
\(115\) −9.28277 15.4207i −0.865623 1.43799i
\(116\) 0 0
\(117\) 0.0555914 + 0.0555914i 0.00513943 + 0.00513943i
\(118\) 0 0
\(119\) −2.98018 −0.273193
\(120\) 0 0
\(121\) −2.84324 −0.258477
\(122\) 0 0
\(123\) 11.7948 + 11.7948i 1.06350 + 1.06350i
\(124\) 0 0
\(125\) −8.32684 7.46081i −0.744775 0.667315i
\(126\) 0 0
\(127\) −6.99519 + 6.99519i −0.620723 + 0.620723i −0.945716 0.324993i \(-0.894638\pi\)
0.324993 + 0.945716i \(0.394638\pi\)
\(128\) 0 0
\(129\) 2.92162i 0.257234i
\(130\) 0 0
\(131\) 7.73292i 0.675628i −0.941213 0.337814i \(-0.890312\pi\)
0.941213 0.337814i \(-0.109688\pi\)
\(132\) 0 0
\(133\) −1.94214 + 1.94214i −0.168405 + 0.168405i
\(134\) 0 0
\(135\) −10.0803 + 6.06800i −0.867571 + 0.522250i
\(136\) 0 0
\(137\) −5.00000 5.00000i −0.427179 0.427179i 0.460487 0.887666i \(-0.347675\pi\)
−0.887666 + 0.460487i \(0.847675\pi\)
\(138\) 0 0
\(139\) −0.341216 −0.0289416 −0.0144708 0.999895i \(-0.504606\pi\)
−0.0144708 + 0.999895i \(0.504606\pi\)
\(140\) 0 0
\(141\) −11.6020 −0.977062
\(142\) 0 0
\(143\) 2.63897 + 2.63897i 0.220681 + 0.220681i
\(144\) 0 0
\(145\) −0.764867 + 3.07838i −0.0635187 + 0.255645i
\(146\) 0 0
\(147\) −7.97940 + 7.97940i −0.658130 + 0.658130i
\(148\) 0 0
\(149\) 10.4391i 0.855202i −0.903968 0.427601i \(-0.859359\pi\)
0.903968 0.427601i \(-0.140641\pi\)
\(150\) 0 0
\(151\) 13.1681i 1.07160i −0.844344 0.535802i \(-0.820009\pi\)
0.844344 0.535802i \(-0.179991\pi\)
\(152\) 0 0
\(153\) 0.261795 0.261795i 0.0211649 0.0211649i
\(154\) 0 0
\(155\) −3.08782 + 12.4276i −0.248020 + 0.998210i
\(156\) 0 0
\(157\) 4.55252 + 4.55252i 0.363331 + 0.363331i 0.865038 0.501707i \(-0.167294\pi\)
−0.501707 + 0.865038i \(0.667294\pi\)
\(158\) 0 0
\(159\) 21.8751 1.73480
\(160\) 0 0
\(161\) −5.07838 −0.400232
\(162\) 0 0
\(163\) −6.23266 6.23266i −0.488180 0.488180i 0.419552 0.907731i \(-0.362187\pi\)
−0.907731 + 0.419552i \(0.862187\pi\)
\(164\) 0 0
\(165\) −12.1834 + 7.33403i −0.948478 + 0.570953i
\(166\) 0 0
\(167\) 12.2409 12.2409i 0.947229 0.947229i −0.0514466 0.998676i \(-0.516383\pi\)
0.998676 + 0.0514466i \(0.0163832\pi\)
\(168\) 0 0
\(169\) 11.9939i 0.922604i
\(170\) 0 0
\(171\) 0.341216i 0.0260935i
\(172\) 0 0
\(173\) 9.94441 9.94441i 0.756059 0.756059i −0.219543 0.975603i \(-0.570457\pi\)
0.975603 + 0.219543i \(0.0704567\pi\)
\(174\) 0 0
\(175\) −3.01515 + 0.927189i −0.227924 + 0.0700889i
\(176\) 0 0
\(177\) −14.2557 14.2557i −1.07152 1.07152i
\(178\) 0 0
\(179\) 23.2484 1.73766 0.868832 0.495107i \(-0.164871\pi\)
0.868832 + 0.495107i \(0.164871\pi\)
\(180\) 0 0
\(181\) 7.20394 0.535464 0.267732 0.963493i \(-0.413726\pi\)
0.267732 + 0.963493i \(0.413726\pi\)
\(182\) 0 0
\(183\) 0.411147 + 0.411147i 0.0303928 + 0.0303928i
\(184\) 0 0
\(185\) −6.17727 10.2618i −0.454162 0.754462i
\(186\) 0 0
\(187\) 12.4276 12.4276i 0.908797 0.908797i
\(188\) 0 0
\(189\) 3.31965i 0.241469i
\(190\) 0 0
\(191\) 10.4215i 0.754072i 0.926199 + 0.377036i \(0.123057\pi\)
−0.926199 + 0.377036i \(0.876943\pi\)
\(192\) 0 0
\(193\) −16.1773 + 16.1773i −1.16447 + 1.16447i −0.180979 + 0.983487i \(0.557926\pi\)
−0.983487 + 0.180979i \(0.942074\pi\)
\(194\) 0 0
\(195\) 3.72065 + 0.924449i 0.266441 + 0.0662011i
\(196\) 0 0
\(197\) 13.7877 + 13.7877i 0.982330 + 0.982330i 0.999847 0.0175170i \(-0.00557611\pi\)
−0.0175170 + 0.999847i \(0.505576\pi\)
\(198\) 0 0
\(199\) −16.1483 −1.14472 −0.572360 0.820002i \(-0.693972\pi\)
−0.572360 + 0.820002i \(0.693972\pi\)
\(200\) 0 0
\(201\) −10.7526 −0.758429
\(202\) 0 0
\(203\) 0.632832 + 0.632832i 0.0444161 + 0.0444161i
\(204\) 0 0
\(205\) −21.1773 5.26180i −1.47909 0.367500i
\(206\) 0 0
\(207\) 0.446112 0.446112i 0.0310069 0.0310069i
\(208\) 0 0
\(209\) 16.1978i 1.12042i
\(210\) 0 0
\(211\) 7.73292i 0.532356i 0.963924 + 0.266178i \(0.0857609\pi\)
−0.963924 + 0.266178i \(0.914239\pi\)
\(212\) 0 0
\(213\) 17.4452 17.4452i 1.19533 1.19533i
\(214\) 0 0
\(215\) 1.97117 + 3.27454i 0.134433 + 0.223322i
\(216\) 0 0
\(217\) 2.55479 + 2.55479i 0.173430 + 0.173430i
\(218\) 0 0
\(219\) −0.632832 −0.0427629
\(220\) 0 0
\(221\) −4.73820 −0.318726
\(222\) 0 0
\(223\) 1.33834 + 1.33834i 0.0896216 + 0.0896216i 0.750496 0.660875i \(-0.229815\pi\)
−0.660875 + 0.750496i \(0.729815\pi\)
\(224\) 0 0
\(225\) 0.183417 0.346316i 0.0122278 0.0230877i
\(226\) 0 0
\(227\) 12.8140 12.8140i 0.850493 0.850493i −0.139701 0.990194i \(-0.544614\pi\)
0.990194 + 0.139701i \(0.0446141\pi\)
\(228\) 0 0
\(229\) 21.4186i 1.41538i 0.706524 + 0.707689i \(0.250262\pi\)
−0.706524 + 0.707689i \(0.749738\pi\)
\(230\) 0 0
\(231\) 4.01227i 0.263988i
\(232\) 0 0
\(233\) 10.0205 10.0205i 0.656466 0.656466i −0.298076 0.954542i \(-0.596345\pi\)
0.954542 + 0.298076i \(0.0963449\pi\)
\(234\) 0 0
\(235\) 13.0034 7.82765i 0.848250 0.510620i
\(236\) 0 0
\(237\) 19.5174 + 19.5174i 1.26779 + 1.26779i
\(238\) 0 0
\(239\) −18.8949 −1.22221 −0.611104 0.791550i \(-0.709274\pi\)
−0.611104 + 0.791550i \(0.709274\pi\)
\(240\) 0 0
\(241\) −16.9627 −1.09266 −0.546330 0.837570i \(-0.683976\pi\)
−0.546330 + 0.837570i \(0.683976\pi\)
\(242\) 0 0
\(243\) −0.575808 0.575808i −0.0369381 0.0369381i
\(244\) 0 0
\(245\) 3.55971 14.3268i 0.227421 0.915308i
\(246\) 0 0
\(247\) −3.08782 + 3.08782i −0.196473 + 0.196473i
\(248\) 0 0
\(249\) 13.4452i 0.852056i
\(250\) 0 0
\(251\) 11.1620i 0.704536i −0.935899 0.352268i \(-0.885411\pi\)
0.935899 0.352268i \(-0.114589\pi\)
\(252\) 0 0
\(253\) 21.1773 21.1773i 1.33140 1.33140i
\(254\) 0 0
\(255\) 4.35348 17.5216i 0.272626 1.09724i
\(256\) 0 0
\(257\) −8.60197 8.60197i −0.536576 0.536576i 0.385946 0.922522i \(-0.373875\pi\)
−0.922522 + 0.385946i \(0.873875\pi\)
\(258\) 0 0
\(259\) −3.37943 −0.209988
\(260\) 0 0
\(261\) −0.111183 −0.00688204
\(262\) 0 0
\(263\) 13.5443 + 13.5443i 0.835175 + 0.835175i 0.988219 0.153044i \(-0.0489076\pi\)
−0.153044 + 0.988219i \(0.548908\pi\)
\(264\) 0 0
\(265\) −24.5174 + 14.7587i −1.50609 + 0.906621i
\(266\) 0 0
\(267\) 2.60674 2.60674i 0.159530 0.159530i
\(268\) 0 0
\(269\) 18.0722i 1.10188i 0.834544 + 0.550942i \(0.185731\pi\)
−0.834544 + 0.550942i \(0.814269\pi\)
\(270\) 0 0
\(271\) 17.8628i 1.08509i −0.840028 0.542544i \(-0.817461\pi\)
0.840028 0.542544i \(-0.182539\pi\)
\(272\) 0 0
\(273\) 0.764867 0.764867i 0.0462918 0.0462918i
\(274\) 0 0
\(275\) 8.70697 16.4399i 0.525050 0.991362i
\(276\) 0 0
\(277\) −7.38962 7.38962i −0.443999 0.443999i 0.449354 0.893354i \(-0.351654\pi\)
−0.893354 + 0.449354i \(0.851654\pi\)
\(278\) 0 0
\(279\) −0.448852 −0.0268721
\(280\) 0 0
\(281\) −22.0722 −1.31672 −0.658360 0.752704i \(-0.728749\pi\)
−0.658360 + 0.752704i \(0.728749\pi\)
\(282\) 0 0
\(283\) −10.5861 10.5861i −0.629281 0.629281i 0.318606 0.947887i \(-0.396785\pi\)
−0.947887 + 0.318606i \(0.896785\pi\)
\(284\) 0 0
\(285\) −8.58145 14.2557i −0.508321 0.844432i
\(286\) 0 0
\(287\) −4.35348 + 4.35348i −0.256978 + 0.256978i
\(288\) 0 0
\(289\) 5.31351i 0.312559i
\(290\) 0 0
\(291\) 15.5154i 0.909531i
\(292\) 0 0
\(293\) −8.80817 + 8.80817i −0.514579 + 0.514579i −0.915926 0.401347i \(-0.868542\pi\)
0.401347 + 0.915926i \(0.368542\pi\)
\(294\) 0 0
\(295\) 25.5957 + 6.35962i 1.49024 + 0.370271i
\(296\) 0 0
\(297\) −13.8432 13.8432i −0.803267 0.803267i
\(298\) 0 0
\(299\) −8.07413 −0.466939
\(300\) 0 0
\(301\) 1.07838 0.0621567
\(302\) 0 0
\(303\) −12.7192 12.7192i −0.730701 0.730701i
\(304\) 0 0
\(305\) −0.738205 0.183417i −0.0422695 0.0105025i
\(306\) 0 0
\(307\) −15.9018 + 15.9018i −0.907563 + 0.907563i −0.996075 0.0885124i \(-0.971789\pi\)
0.0885124 + 0.996075i \(0.471789\pi\)
\(308\) 0 0
\(309\) 4.22899i 0.240579i
\(310\) 0 0
\(311\) 4.46112i 0.252967i 0.991969 + 0.126483i \(0.0403691\pi\)
−0.991969 + 0.126483i \(0.959631\pi\)
\(312\) 0 0
\(313\) −18.6020 + 18.6020i −1.05145 + 1.05145i −0.0528426 + 0.998603i \(0.516828\pi\)
−0.998603 + 0.0528426i \(0.983172\pi\)
\(314\) 0 0
\(315\) −0.0570247 0.0947305i −0.00321298 0.00533746i
\(316\) 0 0
\(317\) 4.02893 + 4.02893i 0.226287 + 0.226287i 0.811140 0.584852i \(-0.198848\pi\)
−0.584852 + 0.811140i \(0.698848\pi\)
\(318\) 0 0
\(319\) −5.27793 −0.295507
\(320\) 0 0
\(321\) −7.23513 −0.403826
\(322\) 0 0
\(323\) 14.5414 + 14.5414i 0.809104 + 0.809104i
\(324\) 0 0
\(325\) −4.79380 + 1.47414i −0.265912 + 0.0817707i
\(326\) 0 0
\(327\) −16.6293 + 16.6293i −0.919605 + 0.919605i
\(328\) 0 0
\(329\) 4.28231i 0.236092i
\(330\) 0 0
\(331\) 0.291616i 0.0160287i −0.999968 0.00801434i \(-0.997449\pi\)
0.999968 0.00801434i \(-0.00255107\pi\)
\(332\) 0 0
\(333\) 0.296868 0.296868i 0.0162683 0.0162683i
\(334\) 0 0
\(335\) 12.0514 7.25458i 0.658440 0.396360i
\(336\) 0 0
\(337\) −2.68649 2.68649i −0.146342 0.146342i 0.630140 0.776482i \(-0.282998\pi\)
−0.776482 + 0.630140i \(0.782998\pi\)
\(338\) 0 0
\(339\) 4.64510 0.252287
\(340\) 0 0
\(341\) −21.3074 −1.15386
\(342\) 0 0
\(343\) −6.06800 6.06800i −0.327641 0.327641i
\(344\) 0 0
\(345\) 7.41855 29.8576i 0.399401 1.60748i
\(346\) 0 0
\(347\) −8.80170 + 8.80170i −0.472500 + 0.472500i −0.902723 0.430223i \(-0.858435\pi\)
0.430223 + 0.902723i \(0.358435\pi\)
\(348\) 0 0
\(349\) 11.9421i 0.639248i 0.947544 + 0.319624i \(0.103557\pi\)
−0.947544 + 0.319624i \(0.896443\pi\)
\(350\) 0 0
\(351\) 5.27793i 0.281715i
\(352\) 0 0
\(353\) −1.15676 + 1.15676i −0.0615679 + 0.0615679i −0.737220 0.675652i \(-0.763862\pi\)
0.675652 + 0.737220i \(0.263862\pi\)
\(354\) 0 0
\(355\) −7.78252 + 31.3225i −0.413053 + 1.66243i
\(356\) 0 0
\(357\) −3.60197 3.60197i −0.190636 0.190636i
\(358\) 0 0
\(359\) 12.1360 0.640514 0.320257 0.947331i \(-0.396231\pi\)
0.320257 + 0.947331i \(0.396231\pi\)
\(360\) 0 0
\(361\) −0.0471809 −0.00248321
\(362\) 0 0
\(363\) −3.43646 3.43646i −0.180367 0.180367i
\(364\) 0 0
\(365\) 0.709275 0.426961i 0.0371252 0.0223482i
\(366\) 0 0
\(367\) 4.45838 4.45838i 0.232726 0.232726i −0.581104 0.813829i \(-0.697379\pi\)
0.813829 + 0.581104i \(0.197379\pi\)
\(368\) 0 0
\(369\) 0.764867i 0.0398174i
\(370\) 0 0
\(371\) 8.07413i 0.419188i
\(372\) 0 0
\(373\) 19.0494 19.0494i 0.986343 0.986343i −0.0135649 0.999908i \(-0.504318\pi\)
0.999908 + 0.0135649i \(0.00431799\pi\)
\(374\) 0 0
\(375\) −1.04672 19.0816i −0.0540524 0.985369i
\(376\) 0 0
\(377\) 1.00614 + 1.00614i 0.0518190 + 0.0518190i
\(378\) 0 0
\(379\) −15.8071 −0.811954 −0.405977 0.913883i \(-0.633069\pi\)
−0.405977 + 0.913883i \(0.633069\pi\)
\(380\) 0 0
\(381\) −16.9093 −0.866292
\(382\) 0 0
\(383\) −10.1152 10.1152i −0.516864 0.516864i 0.399757 0.916621i \(-0.369095\pi\)
−0.916621 + 0.399757i \(0.869095\pi\)
\(384\) 0 0
\(385\) −2.70701 4.49693i −0.137962 0.229185i
\(386\) 0 0
\(387\) −0.0947305 + 0.0947305i −0.00481542 + 0.00481542i
\(388\) 0 0
\(389\) 25.2762i 1.28155i 0.767728 + 0.640776i \(0.221387\pi\)
−0.767728 + 0.640776i \(0.778613\pi\)
\(390\) 0 0
\(391\) 38.0233i 1.92292i
\(392\) 0 0
\(393\) 9.34632 9.34632i 0.471459 0.471459i
\(394\) 0 0
\(395\) −35.0431 8.70697i −1.76321 0.438095i
\(396\) 0 0
\(397\) −14.8348 14.8348i −0.744539 0.744539i 0.228909 0.973448i \(-0.426484\pi\)
−0.973448 + 0.228909i \(0.926484\pi\)
\(398\) 0 0
\(399\) −4.69470 −0.235029
\(400\) 0 0
\(401\) 6.36683 0.317945 0.158972 0.987283i \(-0.449182\pi\)
0.158972 + 0.987283i \(0.449182\pi\)
\(402\) 0 0
\(403\) 4.06187 + 4.06187i 0.202336 + 0.202336i
\(404\) 0 0
\(405\) −19.0072 4.72261i −0.944475 0.234668i
\(406\) 0 0
\(407\) 14.0925 14.0925i 0.698541 0.698541i
\(408\) 0 0
\(409\) 19.2762i 0.953145i 0.879135 + 0.476573i \(0.158121\pi\)
−0.879135 + 0.476573i \(0.841879\pi\)
\(410\) 0 0
\(411\) 12.0864i 0.596178i
\(412\) 0 0
\(413\) 5.26180 5.26180i 0.258916 0.258916i
\(414\) 0 0
\(415\) 9.07125 + 15.0693i 0.445290 + 0.739724i
\(416\) 0 0
\(417\) −0.412408 0.412408i −0.0201957 0.0201957i
\(418\) 0 0
\(419\) −24.5140 −1.19759 −0.598794 0.800903i \(-0.704353\pi\)
−0.598794 + 0.800903i \(0.704353\pi\)
\(420\) 0 0
\(421\) −18.6947 −0.911125 −0.455562 0.890204i \(-0.650562\pi\)
−0.455562 + 0.890204i \(0.650562\pi\)
\(422\) 0 0
\(423\) 0.376181 + 0.376181i 0.0182906 + 0.0182906i
\(424\) 0 0
\(425\) 6.94214 + 22.5753i 0.336743 + 1.09506i
\(426\) 0 0
\(427\) −0.151755 + 0.151755i −0.00734395 + 0.00734395i
\(428\) 0 0
\(429\) 6.37912i 0.307987i
\(430\) 0 0
\(431\) 14.4338i 0.695249i 0.937634 + 0.347625i \(0.113012\pi\)
−0.937634 + 0.347625i \(0.886988\pi\)
\(432\) 0 0
\(433\) −4.10504 + 4.10504i −0.197276 + 0.197276i −0.798831 0.601555i \(-0.794548\pi\)
0.601555 + 0.798831i \(0.294548\pi\)
\(434\) 0 0
\(435\) −4.64510 + 2.79620i −0.222715 + 0.134068i
\(436\) 0 0
\(437\) 24.7792 + 24.7792i 1.18535 + 1.18535i
\(438\) 0 0
\(439\) −20.1605 −0.962210 −0.481105 0.876663i \(-0.659764\pi\)
−0.481105 + 0.876663i \(0.659764\pi\)
\(440\) 0 0
\(441\) 0.517447 0.0246404
\(442\) 0 0
\(443\) −3.14484 3.14484i −0.149416 0.149416i 0.628441 0.777857i \(-0.283693\pi\)
−0.777857 + 0.628441i \(0.783693\pi\)
\(444\) 0 0
\(445\) −1.16290 + 4.68035i −0.0551267 + 0.221870i
\(446\) 0 0
\(447\) 12.6171 12.6171i 0.596767 0.596767i
\(448\) 0 0
\(449\) 15.3919i 0.726388i −0.931714 0.363194i \(-0.881686\pi\)
0.931714 0.363194i \(-0.118314\pi\)
\(450\) 0 0
\(451\) 36.3088i 1.70971i
\(452\) 0 0
\(453\) 15.9155 15.9155i 0.747774 0.747774i
\(454\) 0 0
\(455\) −0.341216 + 1.37330i −0.0159965 + 0.0643814i
\(456\) 0 0
\(457\) −8.07838 8.07838i −0.377891 0.377891i 0.492450 0.870341i \(-0.336101\pi\)
−0.870341 + 0.492450i \(0.836101\pi\)
\(458\) 0 0
\(459\) 24.8552 1.16014
\(460\) 0 0
\(461\) −17.1629 −0.799356 −0.399678 0.916656i \(-0.630878\pi\)
−0.399678 + 0.916656i \(0.630878\pi\)
\(462\) 0 0
\(463\) 3.01515 + 3.01515i 0.140126 + 0.140126i 0.773690 0.633564i \(-0.218409\pi\)
−0.633564 + 0.773690i \(0.718409\pi\)
\(464\) 0 0
\(465\) −18.7526 + 11.2885i −0.869630 + 0.523490i
\(466\) 0 0
\(467\) 0.0947305 0.0947305i 0.00438360 0.00438360i −0.704912 0.709295i \(-0.749013\pi\)
0.709295 + 0.704912i \(0.249013\pi\)
\(468\) 0 0
\(469\) 3.96880i 0.183262i
\(470\) 0 0
\(471\) 11.0047i 0.507071i
\(472\) 0 0
\(473\) −4.49693 + 4.49693i −0.206769 + 0.206769i
\(474\) 0 0
\(475\) 19.2361 + 10.1879i 0.882612 + 0.467453i
\(476\) 0 0
\(477\) −0.709275 0.709275i −0.0324755 0.0324755i
\(478\) 0 0
\(479\) −35.0431 −1.60116 −0.800581 0.599225i \(-0.795476\pi\)
−0.800581 + 0.599225i \(0.795476\pi\)
\(480\) 0 0
\(481\) −5.37298 −0.244987
\(482\) 0 0
\(483\) −6.13793 6.13793i −0.279286 0.279286i
\(484\) 0 0
\(485\) −10.4680 17.3896i −0.475327 0.789622i
\(486\) 0 0
\(487\) 6.99519 6.99519i 0.316982 0.316982i −0.530625 0.847607i \(-0.678043\pi\)
0.847607 + 0.530625i \(0.178043\pi\)
\(488\) 0 0
\(489\) 15.0661i 0.681312i
\(490\) 0 0
\(491\) 25.1469i 1.13486i 0.823421 + 0.567431i \(0.192063\pi\)
−0.823421 + 0.567431i \(0.807937\pi\)
\(492\) 0 0
\(493\) 4.73820 4.73820i 0.213398 0.213398i
\(494\) 0 0
\(495\) 0.632832 + 0.157236i 0.0284437 + 0.00706724i
\(496\) 0 0
\(497\) 6.43907 + 6.43907i 0.288832 + 0.288832i
\(498\) 0 0
\(499\) 0.924449 0.0413840 0.0206920 0.999786i \(-0.493413\pi\)
0.0206920 + 0.999786i \(0.493413\pi\)
\(500\) 0 0
\(501\) 29.5897 1.32197
\(502\) 0 0
\(503\) −21.9100 21.9100i −0.976919 0.976919i 0.0228201 0.999740i \(-0.492736\pi\)
−0.999740 + 0.0228201i \(0.992736\pi\)
\(504\) 0 0
\(505\) 22.8371 + 5.67420i 1.01624 + 0.252499i
\(506\) 0 0
\(507\) −14.4963 + 14.4963i −0.643801 + 0.643801i
\(508\) 0 0
\(509\) 9.10504i 0.403574i −0.979429 0.201787i \(-0.935325\pi\)
0.979429 0.201787i \(-0.0646748\pi\)
\(510\) 0 0
\(511\) 0.233580i 0.0103330i
\(512\) 0 0
\(513\) 16.1978 16.1978i 0.715150 0.715150i
\(514\) 0 0
\(515\) 2.85323 + 4.73983i 0.125728 + 0.208862i
\(516\) 0 0
\(517\) 17.8576 + 17.8576i 0.785377 + 0.785377i
\(518\) 0 0
\(519\) 24.0384 1.05517
\(520\) 0 0
\(521\) 43.1917 1.89226 0.946130 0.323786i \(-0.104956\pi\)
0.946130 + 0.323786i \(0.104956\pi\)
\(522\) 0 0
\(523\) 8.30873 + 8.30873i 0.363315 + 0.363315i 0.865032 0.501717i \(-0.167298\pi\)
−0.501717 + 0.865032i \(0.667298\pi\)
\(524\) 0 0
\(525\) −4.76487 2.52359i −0.207956 0.110139i
\(526\) 0 0
\(527\) 19.1285 19.1285i 0.833248 0.833248i
\(528\) 0 0
\(529\) 41.7936i 1.81711i
\(530\) 0 0
\(531\) 0.924449i 0.0401177i
\(532\) 0 0
\(533\) −6.92162 + 6.92162i −0.299809 + 0.299809i
\(534\) 0 0
\(535\) 8.10910 4.88142i 0.350587 0.211042i
\(536\) 0 0
\(537\) 28.0989 + 28.0989i 1.21256 + 1.21256i
\(538\) 0 0
\(539\) 24.5636 1.05803
\(540\) 0 0
\(541\) 28.5113 1.22580 0.612898 0.790162i \(-0.290004\pi\)
0.612898 + 0.790162i \(0.290004\pi\)
\(542\) 0 0
\(543\) 8.70697 + 8.70697i 0.373652 + 0.373652i
\(544\) 0 0
\(545\) 7.41855 29.8576i 0.317776 1.27896i
\(546\) 0 0
\(547\) 26.4309 26.4309i 1.13010 1.13010i 0.139945 0.990159i \(-0.455308\pi\)
0.990159 0.139945i \(-0.0446924\pi\)
\(548\) 0 0
\(549\) 0.0266620i 0.00113791i
\(550\) 0 0
\(551\) 6.17564i 0.263091i
\(552\) 0 0
\(553\) −7.20394 + 7.20394i −0.306343 + 0.306343i
\(554\) 0 0
\(555\) 4.93672 19.8689i 0.209552 0.843389i
\(556\) 0 0
\(557\) 23.4163 + 23.4163i 0.992180 + 0.992180i 0.999970 0.00778989i \(-0.00247962\pi\)
−0.00778989 + 0.999970i \(0.502480\pi\)
\(558\) 0 0
\(559\) 1.71452 0.0725164
\(560\) 0 0
\(561\) 30.0410 1.26833
\(562\) 0 0
\(563\) −14.9396 14.9396i −0.629630 0.629630i 0.318345 0.947975i \(-0.396873\pi\)
−0.947975 + 0.318345i \(0.896873\pi\)
\(564\) 0 0
\(565\) −5.20620 + 3.13397i −0.219027 + 0.131847i
\(566\) 0 0
\(567\) −3.90737 + 3.90737i −0.164094 + 0.164094i
\(568\) 0 0
\(569\) 25.9155i 1.08643i −0.839593 0.543217i \(-0.817206\pi\)
0.839593 0.543217i \(-0.182794\pi\)
\(570\) 0 0
\(571\) 28.5759i 1.19586i 0.801547 + 0.597932i \(0.204011\pi\)
−0.801547 + 0.597932i \(0.795989\pi\)
\(572\) 0 0
\(573\) −12.5958 + 12.5958i −0.526198 + 0.526198i
\(574\) 0 0
\(575\) 11.8298 + 38.4694i 0.493335 + 1.60429i
\(576\) 0 0
\(577\) 30.4329 + 30.4329i 1.26694 + 1.26694i 0.947661 + 0.319278i \(0.103440\pi\)
0.319278 + 0.947661i \(0.396560\pi\)
\(578\) 0 0
\(579\) −39.1050 −1.62515
\(580\) 0 0
\(581\) 4.96266 0.205886
\(582\) 0 0
\(583\) −33.6698 33.6698i −1.39446 1.39446i
\(584\) 0 0
\(585\) −0.0906639 0.150612i −0.00374849 0.00622706i
\(586\) 0 0
\(587\) −4.10700 + 4.10700i −0.169514 + 0.169514i −0.786766 0.617252i \(-0.788246\pi\)
0.617252 + 0.786766i \(0.288246\pi\)
\(588\) 0 0
\(589\) 24.9315i 1.02728i
\(590\) 0 0
\(591\) 33.3286i 1.37096i
\(592\) 0 0
\(593\) 20.1506 20.1506i 0.827486 0.827486i −0.159682 0.987169i \(-0.551047\pi\)
0.987169 + 0.159682i \(0.0510469\pi\)
\(594\) 0 0
\(595\) 6.46725 + 1.60688i 0.265132 + 0.0658757i
\(596\) 0 0
\(597\) −19.5174 19.5174i −0.798796 0.798796i
\(598\) 0 0
\(599\) 8.12373 0.331927 0.165963 0.986132i \(-0.446927\pi\)
0.165963 + 0.986132i \(0.446927\pi\)
\(600\) 0 0
\(601\) −4.08452 −0.166611 −0.0833055 0.996524i \(-0.526548\pi\)
−0.0833055 + 0.996524i \(0.526548\pi\)
\(602\) 0 0
\(603\) 0.348641 + 0.348641i 0.0141978 + 0.0141978i
\(604\) 0 0
\(605\) 6.17009 + 1.53305i 0.250850 + 0.0623272i
\(606\) 0 0
\(607\) 15.3609 15.3609i 0.623481 0.623481i −0.322939 0.946420i \(-0.604671\pi\)
0.946420 + 0.322939i \(0.104671\pi\)
\(608\) 0 0
\(609\) 1.52973i 0.0619879i
\(610\) 0 0
\(611\) 6.80847i 0.275441i
\(612\) 0 0
\(613\) 14.0700 14.0700i 0.568281 0.568281i −0.363366 0.931647i \(-0.618373\pi\)
0.931647 + 0.363366i \(0.118373\pi\)
\(614\) 0 0
\(615\) −19.2361 31.9553i −0.775674 1.28856i
\(616\) 0 0
\(617\) −21.8104 21.8104i −0.878055 0.878055i 0.115278 0.993333i \(-0.463224\pi\)
−0.993333 + 0.115278i \(0.963224\pi\)
\(618\) 0 0
\(619\) 5.61915 0.225853 0.112926 0.993603i \(-0.463978\pi\)
0.112926 + 0.993603i \(0.463978\pi\)
\(620\) 0 0
\(621\) 42.3545 1.69963
\(622\) 0 0
\(623\) 0.962154 + 0.962154i 0.0385479 + 0.0385479i
\(624\) 0 0
\(625\) 14.0472 + 20.6803i 0.561887 + 0.827214i
\(626\) 0 0
\(627\) 19.5773 19.5773i 0.781842 0.781842i
\(628\) 0 0
\(629\) 25.3028i 1.00889i
\(630\) 0 0
\(631\) 13.8505i 0.551380i 0.961247 + 0.275690i \(0.0889064\pi\)
−0.961247 + 0.275690i \(0.911094\pi\)
\(632\) 0 0
\(633\) −9.34632 + 9.34632i −0.371483 + 0.371483i
\(634\) 0 0
\(635\) 18.9519 11.4084i 0.752083 0.452730i
\(636\) 0 0
\(637\) −4.68261 4.68261i −0.185532 0.185532i
\(638\) 0 0
\(639\) −1.13128 −0.0447529
\(640\) 0 0
\(641\) 4.08452 0.161329 0.0806644 0.996741i \(-0.474296\pi\)
0.0806644 + 0.996741i \(0.474296\pi\)
\(642\) 0 0
\(643\) 28.0001 + 28.0001i 1.10422 + 1.10422i 0.993896 + 0.110319i \(0.0351873\pi\)
0.110319 + 0.993896i \(0.464813\pi\)
\(644\) 0 0
\(645\) −1.57531 + 6.34017i −0.0620276 + 0.249644i
\(646\) 0 0
\(647\) −5.14081 + 5.14081i −0.202106 + 0.202106i −0.800902 0.598796i \(-0.795646\pi\)
0.598796 + 0.800902i \(0.295646\pi\)
\(648\) 0 0
\(649\) 43.8843i 1.72261i
\(650\) 0 0
\(651\) 6.17564i 0.242042i
\(652\) 0 0
\(653\) −15.2062 + 15.2062i −0.595065 + 0.595065i −0.938995 0.343930i \(-0.888242\pi\)
0.343930 + 0.938995i \(0.388242\pi\)
\(654\) 0 0
\(655\) −4.16950 + 16.7811i −0.162916 + 0.655692i
\(656\) 0 0
\(657\) 0.0205189 + 0.0205189i 0.000800519 + 0.000800519i
\(658\) 0 0
\(659\) −1.60688 −0.0625952 −0.0312976 0.999510i \(-0.509964\pi\)
−0.0312976 + 0.999510i \(0.509964\pi\)
\(660\) 0 0
\(661\) −34.7480 −1.35154 −0.675771 0.737111i \(-0.736189\pi\)
−0.675771 + 0.737111i \(0.736189\pi\)
\(662\) 0 0
\(663\) −5.72678 5.72678i −0.222410 0.222410i
\(664\) 0 0
\(665\) 5.26180 3.16743i 0.204044 0.122828i
\(666\) 0 0
\(667\) 8.07413 8.07413i 0.312632 0.312632i
\(668\) 0 0
\(669\) 3.23513i 0.125077i
\(670\) 0 0
\(671\) 1.26566i 0.0488605i
\(672\) 0 0
\(673\) −0.785386 + 0.785386i −0.0302744 + 0.0302744i −0.722082 0.691808i \(-0.756815\pi\)
0.691808 + 0.722082i \(0.256815\pi\)
\(674\) 0 0
\(675\) 25.1469 7.73292i 0.967903 0.297640i
\(676\) 0 0
\(677\) −5.72979 5.72979i −0.220214 0.220214i 0.588375 0.808588i \(-0.299768\pi\)
−0.808588 + 0.588375i \(0.799768\pi\)
\(678\) 0 0
\(679\) −5.72678 −0.219774
\(680\) 0 0
\(681\) 30.9749 1.18696
\(682\) 0 0
\(683\) 6.23266 + 6.23266i 0.238486 + 0.238486i 0.816223 0.577737i \(-0.196064\pi\)
−0.577737 + 0.816223i \(0.696064\pi\)
\(684\) 0 0
\(685\) 8.15449 + 13.5464i 0.311567 + 0.517580i
\(686\) 0 0
\(687\) −25.8873 + 25.8873i −0.987663 + 0.987663i
\(688\) 0 0
\(689\) 12.8371i 0.489055i
\(690\) 0 0
\(691\) 39.4462i 1.50061i −0.661095 0.750303i \(-0.729908\pi\)
0.661095 0.750303i \(-0.270092\pi\)
\(692\) 0 0
\(693\) 0.130094 0.130094i 0.00494184 0.00494184i
\(694\) 0 0
\(695\) 0.740469 + 0.183980i 0.0280876 + 0.00697876i
\(696\) 0 0
\(697\) 32.5958 + 32.5958i 1.23465 + 1.23465i
\(698\) 0 0
\(699\) 24.2224 0.916175
\(700\) 0 0
\(701\) −21.3874 −0.807789 −0.403895 0.914806i \(-0.632344\pi\)
−0.403895 + 0.914806i \(0.632344\pi\)
\(702\) 0 0
\(703\) 16.4895 + 16.4895i 0.621913 + 0.621913i
\(704\) 0 0
\(705\) 25.1773 + 6.25565i 0.948231 + 0.235601i
\(706\) 0 0
\(707\) 4.69470 4.69470i 0.176562 0.176562i
\(708\) 0 0
\(709\) 28.8827i 1.08471i −0.840149 0.542356i \(-0.817532\pi\)
0.840149 0.542356i \(-0.182468\pi\)
\(710\) 0 0
\(711\) 1.26566i 0.0474661i
\(712\) 0 0
\(713\) 32.5958 32.5958i 1.22072 1.22072i
\(714\) 0 0
\(715\) −4.30388 7.14969i −0.160956 0.267383i
\(716\) 0 0
\(717\) −22.8371 22.8371i −0.852867 0.852867i
\(718\) 0 0
\(719\) 1.48094 0.0552296 0.0276148 0.999619i \(-0.491209\pi\)
0.0276148 + 0.999619i \(0.491209\pi\)
\(720\) 0 0
\(721\) 1.56093 0.0581321
\(722\) 0 0
\(723\) −20.5018 20.5018i −0.762468 0.762468i
\(724\) 0 0
\(725\) 3.31965 6.26794i 0.123289 0.232785i
\(726\) 0 0
\(727\) −10.4187 + 10.4187i −0.386410 + 0.386410i −0.873405 0.486995i \(-0.838093\pi\)
0.486995 + 0.873405i \(0.338093\pi\)
\(728\) 0 0
\(729\) 27.6681i 1.02474i
\(730\) 0 0
\(731\) 8.07413i 0.298633i
\(732\) 0 0
\(733\) −0.579182 + 0.579182i −0.0213926 + 0.0213926i −0.717722 0.696330i \(-0.754815\pi\)
0.696330 + 0.717722i \(0.254815\pi\)
\(734\) 0 0
\(735\) 21.6184 13.0136i 0.797407 0.480014i
\(736\) 0 0
\(737\) 16.5503 + 16.5503i 0.609636 + 0.609636i
\(738\) 0 0
\(739\) −2.19011 −0.0805646 −0.0402823 0.999188i \(-0.512826\pi\)
−0.0402823 + 0.999188i \(0.512826\pi\)
\(740\) 0 0
\(741\) −7.46412 −0.274201
\(742\) 0 0
\(743\) 5.42053 + 5.42053i 0.198860 + 0.198860i 0.799511 0.600651i \(-0.205092\pi\)
−0.600651 + 0.799511i \(0.705092\pi\)
\(744\) 0 0
\(745\) −5.62863 + 22.6537i −0.206217 + 0.829967i
\(746\) 0 0
\(747\) −0.435947 + 0.435947i −0.0159505 + 0.0159505i
\(748\) 0 0
\(749\) 2.67050i 0.0975781i
\(750\) 0 0
\(751\) 51.6403i 1.88438i −0.335079 0.942190i \(-0.608763\pi\)
0.335079 0.942190i \(-0.391237\pi\)
\(752\) 0 0
\(753\) 13.4908 13.4908i 0.491632 0.491632i
\(754\) 0 0
\(755\) −7.10009 + 28.5759i −0.258399 + 1.03998i
\(756\) 0 0
\(757\) 8.80817 + 8.80817i 0.320138 + 0.320138i 0.848820 0.528682i \(-0.177313\pi\)
−0.528682 + 0.848820i \(0.677313\pi\)
\(758\) 0 0
\(759\) 51.1914 1.85813
\(760\) 0 0
\(761\) −14.6803 −0.532162 −0.266081 0.963951i \(-0.585729\pi\)
−0.266081 + 0.963951i \(0.585729\pi\)
\(762\) 0 0
\(763\) −6.13793 6.13793i −0.222208 0.222208i
\(764\) 0 0
\(765\) −0.709275 + 0.426961i −0.0256439 + 0.0154368i
\(766\) 0 0
\(767\) 8.36575 8.36575i 0.302070 0.302070i
\(768\) 0 0
\(769\) 11.1506i 0.402101i −0.979581 0.201051i \(-0.935564\pi\)
0.979581 0.201051i \(-0.0644356\pi\)
\(770\) 0 0
\(771\) 20.7934i 0.748855i
\(772\) 0 0
\(773\) −5.44748 + 5.44748i −0.195932 + 0.195932i −0.798254 0.602321i \(-0.794243\pi\)
0.602321 + 0.798254i \(0.294243\pi\)
\(774\) 0 0
\(775\) 13.4017 25.3041i 0.481402 0.908950i
\(776\) 0 0
\(777\) −4.08452 4.08452i −0.146531 0.146531i
\(778\) 0 0
\(779\) 42.4844 1.52216
\(780\) 0 0
\(781\) −53.7030 −1.92164
\(782\) 0 0
\(783\) −5.27793 5.27793i −0.188618 0.188618i
\(784\) 0 0
\(785\) −7.42469 12.3340i −0.264999 0.440220i
\(786\) 0 0
\(787\) −10.6239 + 10.6239i −0.378699 + 0.378699i −0.870633 0.491933i \(-0.836290\pi\)
0.491933 + 0.870633i \(0.336290\pi\)
\(788\) 0 0
\(789\) 32.7403i 1.16559i
\(790\) 0 0
\(791\) 1.71452i 0.0609612i
\(792\) 0 0
\(793\) −0.241276 + 0.241276i −0.00856797 + 0.00856797i
\(794\) 0 0
\(795\) −47.4708 11.7948i −1.68361 0.418318i
\(796\) 0 0
\(797\) 4.02893 + 4.02893i 0.142712 + 0.142712i 0.774853 0.632141i \(-0.217824\pi\)
−0.632141 + 0.774853i \(0.717824\pi\)
\(798\) 0 0
\(799\) −32.0630 −1.13431
\(800\) 0 0
\(801\) −0.169042 −0.00597279
\(802\) 0 0
\(803\) 0.974049 + 0.974049i 0.0343734 + 0.0343734i
\(804\) 0 0
\(805\) 11.0205 + 2.73820i 0.388422 + 0.0965090i
\(806\) 0 0
\(807\) −21.8428 + 21.8428i −0.768904 + 0.768904i
\(808\) 0 0
\(809\) 23.0349i 0.809864i 0.914347 + 0.404932i \(0.132705\pi\)
−0.914347 + 0.404932i \(0.867295\pi\)
\(810\) 0 0
\(811\) 36.0172i 1.26473i 0.774669 + 0.632367i \(0.217917\pi\)
−0.774669 + 0.632367i \(0.782083\pi\)
\(812\) 0 0
\(813\) 21.5897 21.5897i 0.757183 0.757183i
\(814\) 0 0
\(815\) 10.1648 + 16.8860i 0.356059 + 0.591491i
\(816\) 0 0
\(817\) −5.26180 5.26180i −0.184087 0.184087i
\(818\) 0 0
\(819\) −0.0496000 −0.00173316
\(820\) 0 0
\(821\) 11.9733 0.417872 0.208936 0.977929i \(-0.433000\pi\)
0.208936 + 0.977929i \(0.433000\pi\)
\(822\) 0 0
\(823\) 33.2937 + 33.2937i 1.16054 + 1.16054i 0.984357 + 0.176187i \(0.0563764\pi\)
0.176187 + 0.984357i \(0.443624\pi\)
\(824\) 0 0
\(825\) 30.3935 9.34632i 1.05817 0.325397i
\(826\) 0 0
\(827\) −24.9500 + 24.9500i −0.867595 + 0.867595i −0.992206 0.124610i \(-0.960232\pi\)
0.124610 + 0.992206i \(0.460232\pi\)
\(828\) 0 0
\(829\) 21.1317i 0.733934i 0.930234 + 0.366967i \(0.119604\pi\)
−0.930234 + 0.366967i \(0.880396\pi\)
\(830\) 0 0
\(831\) 17.8628i 0.619653i
\(832\) 0 0
\(833\) −22.0517 + 22.0517i −0.764047 + 0.764047i
\(834\) 0 0
\(835\) −33.1640 + 19.9637i −1.14769 + 0.690871i
\(836\) 0 0
\(837\) −21.3074 21.3074i −0.736490 0.736490i
\(838\) 0 0
\(839\) −12.3513 −0.426413 −0.213207 0.977007i \(-0.568391\pi\)
−0.213207 + 0.977007i \(0.568391\pi\)
\(840\) 0 0
\(841\) 26.9877 0.930611
\(842\) 0 0
\(843\) −26.6774 26.6774i −0.918818 0.918818i
\(844\) 0 0
\(845\) 6.46695 26.0277i 0.222470 0.895380i
\(846\) 0 0
\(847\) 1.26841 1.26841i 0.0435829 0.0435829i
\(848\) 0 0
\(849\) 25.5897i 0.878236i
\(850\) 0 0
\(851\) 43.1173i 1.47804i
\(852\) 0 0
\(853\) −33.9588 + 33.9588i −1.16273 + 1.16273i −0.178850 + 0.983876i \(0.557238\pi\)
−0.983876 + 0.178850i \(0.942762\pi\)
\(854\) 0 0
\(855\) −0.183980 + 0.740469i −0.00629198 + 0.0253235i
\(856\) 0 0
\(857\) 21.1568 + 21.1568i 0.722701 + 0.722701i 0.969155 0.246454i \(-0.0792653\pi\)
−0.246454 + 0.969155i \(0.579265\pi\)
\(858\) 0 0
\(859\) −14.3261 −0.488801 −0.244400 0.969674i \(-0.578591\pi\)
−0.244400 + 0.969674i \(0.578591\pi\)
\(860\) 0 0
\(861\) −10.5236 −0.358643
\(862\) 0 0
\(863\) −10.3865 10.3865i −0.353561 0.353561i 0.507872 0.861433i \(-0.330432\pi\)
−0.861433 + 0.507872i \(0.830432\pi\)
\(864\) 0 0
\(865\) −26.9421 + 16.2183i −0.916060 + 0.551439i
\(866\) 0 0
\(867\) −6.42212 + 6.42212i −0.218107 + 0.218107i
\(868\) 0 0
\(869\) 60.0821i 2.03814i
\(870\) 0 0
\(871\) 6.31002i 0.213807i
\(872\) 0 0
\(873\) 0.503072 0.503072i 0.0170264 0.0170264i
\(874\) 0 0
\(875\) 7.04306 0.386347i 0.238099 0.0130609i
\(876\) 0 0
\(877\) −9.29072 9.29072i −0.313725 0.313725i 0.532626 0.846351i \(-0.321205\pi\)
−0.846351 + 0.532626i \(0.821205\pi\)
\(878\) 0 0
\(879\) −21.2918 −0.718155
\(880\) 0 0
\(881\) 29.2762 0.986339 0.493170 0.869933i \(-0.335838\pi\)
0.493170 + 0.869933i \(0.335838\pi\)
\(882\) 0 0
\(883\) 39.6808 + 39.6808i 1.33537 + 1.33537i 0.900491 + 0.434875i \(0.143207\pi\)
0.434875 + 0.900491i \(0.356793\pi\)
\(884\) 0 0
\(885\) 23.2495 + 38.6225i 0.781524 + 1.29828i
\(886\) 0 0
\(887\) −30.7946 + 30.7946i −1.03398 + 1.03398i −0.0345779 + 0.999402i \(0.511009\pi\)
−0.999402 + 0.0345779i \(0.988991\pi\)
\(888\) 0 0
\(889\) 6.24128i 0.209326i
\(890\) 0 0
\(891\) 32.5882i 1.09174i
\(892\) 0 0
\(893\) −20.8950 + 20.8950i −0.699223 + 0.699223i
\(894\) 0 0
\(895\) −50.4509 12.5353i −1.68639 0.419007i
\(896\) 0 0
\(897\) −9.75872 9.75872i −0.325834 0.325834i
\(898\) 0 0
\(899\) −8.12373 −0.270942
\(900\) 0 0
\(901\) 60.4534 2.01400
\(902\) 0 0
\(903\) 1.30337 + 1.30337i 0.0433735 + 0.0433735i
\(904\) 0 0
\(905\) −15.6332 3.88428i −0.519664 0.129118i
\(906\) 0 0
\(907\) −23.1536 + 23.1536i −0.768803 + 0.768803i −0.977896 0.209092i \(-0.932949\pi\)
0.209092 + 0.977896i \(0.432949\pi\)
\(908\) 0 0
\(909\) 0.824815i 0.0273574i
\(910\) 0 0
\(911\) 28.6339i 0.948684i −0.880341 0.474342i \(-0.842686\pi\)
0.880341 0.474342i \(-0.157314\pi\)
\(912\) 0 0
\(913\) −20.6947 + 20.6947i −0.684895 + 0.684895i
\(914\) 0 0
\(915\) −0.670538 1.11391i −0.0221673 0.0368247i
\(916\) 0 0
\(917\) 3.44975 + 3.44975i 0.113921 + 0.113921i
\(918\) 0 0
\(919\) 1.26566 0.0417504 0.0208752 0.999782i \(-0.493355\pi\)
0.0208752 + 0.999782i \(0.493355\pi\)
\(920\) 0 0
\(921\) −38.4391 −1.26661
\(922\) 0 0
\(923\) 10.2375 + 10.2375i 0.336972 + 0.336972i
\(924\) 0 0
\(925\) 7.87217 + 25.5997i 0.258835 + 0.841713i
\(926\) 0 0
\(927\) −0.137121 + 0.137121i −0.00450363 + 0.00450363i
\(928\) 0 0
\(929\) 8.75258i 0.287163i 0.989639 + 0.143581i \(0.0458619\pi\)
−0.989639 + 0.143581i \(0.954138\pi\)
\(930\) 0 0
\(931\) 28.7416i 0.941967i
\(932\) 0 0
\(933\) −5.39189 + 5.39189i −0.176523 + 0.176523i
\(934\) 0 0
\(935\) −33.6698 + 20.2682i −1.10112 + 0.662840i
\(936\) 0 0
\(937\) −26.6598 26.6598i −0.870939 0.870939i 0.121636 0.992575i \(-0.461186\pi\)
−0.992575 + 0.121636i \(0.961186\pi\)
\(938\) 0 0
\(939\) −44.9662 −1.46742
\(940\) 0 0
\(941\) 46.2388 1.50734 0.753671 0.657251i \(-0.228281\pi\)
0.753671 + 0.657251i \(0.228281\pi\)
\(942\) 0 0
\(943\) 55.5449 + 55.5449i 1.80879 + 1.80879i
\(944\) 0 0
\(945\) 1.78992 7.20394i 0.0582261 0.234344i
\(946\) 0 0
\(947\) −8.46048 + 8.46048i −0.274929 + 0.274929i −0.831081 0.556152i \(-0.812277\pi\)
0.556152 + 0.831081i \(0.312277\pi\)
\(948\) 0 0
\(949\) 0.371370i 0.0120552i
\(950\) 0 0
\(951\) 9.73905i 0.315810i
\(952\) 0 0
\(953\) −2.40417 + 2.40417i −0.0778789 + 0.0778789i −0.744973 0.667094i \(-0.767538\pi\)
0.667094 + 0.744973i \(0.267538\pi\)
\(954\) 0 0
\(955\) 5.61915 22.6155i 0.181831 0.731821i
\(956\) 0 0
\(957\) −6.37912 6.37912i −0.206208 0.206208i
\(958\) 0 0
\(959\) 4.46112 0.144057
\(960\) 0 0
\(961\) −1.79606 −0.0579375
\(962\) 0 0
\(963\) 0.234591 + 0.234591i 0.00755961 + 0.00755961i
\(964\) 0 0
\(965\) 43.8287 26.3835i 1.41090 0.849314i
\(966\) 0 0
\(967\) 42.3741 42.3741i 1.36266 1.36266i 0.492145 0.870513i \(-0.336213\pi\)
0.870513 0.492145i \(-0.163787\pi\)
\(968\) 0 0
\(969\) 35.1506i 1.12920i
\(970\) 0 0
\(971\) 48.0540i 1.54213i −0.636759 0.771063i \(-0.719725\pi\)
0.636759 0.771063i \(-0.280275\pi\)
\(972\) 0 0
\(973\) 0.152221 0.152221i 0.00487997 0.00487997i
\(974\) 0 0
\(975\) −7.57568 4.01227i −0.242616 0.128495i
\(976\) 0 0
\(977\) −29.2967 29.2967i −0.937284 0.937284i 0.0608620 0.998146i \(-0.480615\pi\)
−0.998146 + 0.0608620i \(0.980615\pi\)
\(978\) 0 0
\(979\) −8.02453 −0.256465
\(980\) 0 0
\(981\) 1.07838 0.0344300
\(982\) 0 0
\(983\) 22.2512 + 22.2512i 0.709704 + 0.709704i 0.966473 0.256769i \(-0.0826579\pi\)
−0.256769 + 0.966473i \(0.582658\pi\)
\(984\) 0 0
\(985\) −22.4863 37.3545i −0.716472 1.19021i
\(986\) 0 0
\(987\) 5.17578 5.17578i 0.164747 0.164747i
\(988\) 0 0
\(989\) 13.7587i 0.437502i
\(990\) 0 0
\(991\) 27.1530i 0.862543i −0.902222 0.431272i \(-0.858065\pi\)
0.902222 0.431272i \(-0.141935\pi\)
\(992\) 0 0
\(993\) 0.352459 0.352459i 0.0111850 0.0111850i
\(994\) 0 0
\(995\) 35.0431 + 8.70697i 1.11094 + 0.276029i
\(996\) 0 0
\(997\) −33.0228 33.0228i −1.04584 1.04584i −0.998897 0.0469446i \(-0.985052\pi\)
−0.0469446 0.998897i \(-0.514948\pi\)
\(998\) 0 0
\(999\) 28.1851 0.891736
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1280.2.n.r.767.5 12
4.3 odd 2 inner 1280.2.n.r.767.2 12
5.3 odd 4 inner 1280.2.n.r.1023.2 12
8.3 odd 2 1280.2.n.s.767.5 12
8.5 even 2 1280.2.n.s.767.2 12
16.3 odd 4 640.2.o.k.447.5 yes 12
16.5 even 4 640.2.o.j.447.5 yes 12
16.11 odd 4 640.2.o.j.447.2 yes 12
16.13 even 4 640.2.o.k.447.2 yes 12
20.3 even 4 inner 1280.2.n.r.1023.5 12
40.3 even 4 1280.2.n.s.1023.2 12
40.13 odd 4 1280.2.n.s.1023.5 12
80.3 even 4 640.2.o.j.63.5 yes 12
80.13 odd 4 640.2.o.j.63.2 12
80.43 even 4 640.2.o.k.63.2 yes 12
80.53 odd 4 640.2.o.k.63.5 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
640.2.o.j.63.2 12 80.13 odd 4
640.2.o.j.63.5 yes 12 80.3 even 4
640.2.o.j.447.2 yes 12 16.11 odd 4
640.2.o.j.447.5 yes 12 16.5 even 4
640.2.o.k.63.2 yes 12 80.43 even 4
640.2.o.k.63.5 yes 12 80.53 odd 4
640.2.o.k.447.2 yes 12 16.13 even 4
640.2.o.k.447.5 yes 12 16.3 odd 4
1280.2.n.r.767.2 12 4.3 odd 2 inner
1280.2.n.r.767.5 12 1.1 even 1 trivial
1280.2.n.r.1023.2 12 5.3 odd 4 inner
1280.2.n.r.1023.5 12 20.3 even 4 inner
1280.2.n.s.767.2 12 8.5 even 2
1280.2.n.s.767.5 12 8.3 odd 2
1280.2.n.s.1023.2 12 40.3 even 4
1280.2.n.s.1023.5 12 40.13 odd 4