Properties

Label 1280.2.j.d.63.14
Level $1280$
Weight $2$
Character 1280.63
Analytic conductor $10.221$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1280,2,Mod(63,1280)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1280.63"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1280, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1280 = 2^{8} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1280.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,0,0,-32,0,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2208514587\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 63.14
Character \(\chi\) \(=\) 1280.63
Dual form 1280.2.j.d.447.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.41944i q^{3} +(-2.21185 + 0.328182i) q^{5} +(0.988699 - 0.988699i) q^{7} -2.85370 q^{9} +(3.82960 - 3.82960i) q^{11} -1.72421 q^{13} +(-0.794018 - 5.35145i) q^{15} +(5.54452 - 5.54452i) q^{17} +(0.392303 - 0.392303i) q^{19} +(2.39210 + 2.39210i) q^{21} +(-4.28678 - 4.28678i) q^{23} +(4.78459 - 1.45178i) q^{25} +0.353970i q^{27} +(4.24211 + 4.24211i) q^{29} -6.43503i q^{31} +(9.26549 + 9.26549i) q^{33} +(-1.86238 + 2.51133i) q^{35} -0.399068 q^{37} -4.17163i q^{39} -2.41844i q^{41} -1.73814 q^{43} +(6.31196 - 0.936533i) q^{45} +(2.36373 + 2.36373i) q^{47} +5.04495i q^{49} +(13.4146 + 13.4146i) q^{51} +6.63925i q^{53} +(-7.21370 + 9.72732i) q^{55} +(0.949154 + 0.949154i) q^{57} +(-6.32477 - 6.32477i) q^{59} +(7.89676 - 7.89676i) q^{61} +(-2.82145 + 2.82145i) q^{63} +(3.81371 - 0.565856i) q^{65} -0.547191 q^{67} +(10.3716 - 10.3716i) q^{69} +2.49249 q^{71} +(-5.30061 + 5.30061i) q^{73} +(3.51250 + 11.5760i) q^{75} -7.57264i q^{77} +14.1666 q^{79} -9.41750 q^{81} -9.94637i q^{83} +(-10.4440 + 14.0833i) q^{85} +(-10.2635 + 10.2635i) q^{87} +8.69135 q^{89} +(-1.70473 + 1.70473i) q^{91} +15.5692 q^{93} +(-0.738970 + 0.996463i) q^{95} +(-3.81410 + 3.81410i) q^{97} +(-10.9285 + 10.9285i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 32 q^{9} + 16 q^{13} + 8 q^{17} + 8 q^{21} + 16 q^{25} - 16 q^{29} + 56 q^{33} - 40 q^{45} - 8 q^{57} - 8 q^{61} - 72 q^{65} + 40 q^{69} + 8 q^{73} - 64 q^{81} - 24 q^{85} - 16 q^{89} + 224 q^{93}+ \cdots + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1280\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.41944i 1.39687i 0.715676 + 0.698433i \(0.246119\pi\)
−0.715676 + 0.698433i \(0.753881\pi\)
\(4\) 0 0
\(5\) −2.21185 + 0.328182i −0.989171 + 0.146768i
\(6\) 0 0
\(7\) 0.988699 0.988699i 0.373693 0.373693i −0.495127 0.868820i \(-0.664879\pi\)
0.868820 + 0.495127i \(0.164879\pi\)
\(8\) 0 0
\(9\) −2.85370 −0.951232
\(10\) 0 0
\(11\) 3.82960 3.82960i 1.15467 1.15467i 0.169062 0.985605i \(-0.445926\pi\)
0.985605 0.169062i \(-0.0540737\pi\)
\(12\) 0 0
\(13\) −1.72421 −0.478211 −0.239105 0.970994i \(-0.576854\pi\)
−0.239105 + 0.970994i \(0.576854\pi\)
\(14\) 0 0
\(15\) −0.794018 5.35145i −0.205014 1.38174i
\(16\) 0 0
\(17\) 5.54452 5.54452i 1.34474 1.34474i 0.453473 0.891270i \(-0.350185\pi\)
0.891270 0.453473i \(-0.149815\pi\)
\(18\) 0 0
\(19\) 0.392303 0.392303i 0.0900004 0.0900004i −0.660673 0.750674i \(-0.729729\pi\)
0.750674 + 0.660673i \(0.229729\pi\)
\(20\) 0 0
\(21\) 2.39210 + 2.39210i 0.521999 + 0.521999i
\(22\) 0 0
\(23\) −4.28678 4.28678i −0.893855 0.893855i 0.101029 0.994883i \(-0.467787\pi\)
−0.994883 + 0.101029i \(0.967787\pi\)
\(24\) 0 0
\(25\) 4.78459 1.45178i 0.956919 0.290356i
\(26\) 0 0
\(27\) 0.353970i 0.0681216i
\(28\) 0 0
\(29\) 4.24211 + 4.24211i 0.787741 + 0.787741i 0.981123 0.193383i \(-0.0619459\pi\)
−0.193383 + 0.981123i \(0.561946\pi\)
\(30\) 0 0
\(31\) 6.43503i 1.15577i −0.816120 0.577883i \(-0.803879\pi\)
0.816120 0.577883i \(-0.196121\pi\)
\(32\) 0 0
\(33\) 9.26549 + 9.26549i 1.61291 + 1.61291i
\(34\) 0 0
\(35\) −1.86238 + 2.51133i −0.314800 + 0.424492i
\(36\) 0 0
\(37\) −0.399068 −0.0656063 −0.0328032 0.999462i \(-0.510443\pi\)
−0.0328032 + 0.999462i \(0.510443\pi\)
\(38\) 0 0
\(39\) 4.17163i 0.667996i
\(40\) 0 0
\(41\) 2.41844i 0.377696i −0.982006 0.188848i \(-0.939525\pi\)
0.982006 0.188848i \(-0.0604754\pi\)
\(42\) 0 0
\(43\) −1.73814 −0.265063 −0.132532 0.991179i \(-0.542311\pi\)
−0.132532 + 0.991179i \(0.542311\pi\)
\(44\) 0 0
\(45\) 6.31196 0.936533i 0.940932 0.139610i
\(46\) 0 0
\(47\) 2.36373 + 2.36373i 0.344786 + 0.344786i 0.858163 0.513377i \(-0.171606\pi\)
−0.513377 + 0.858163i \(0.671606\pi\)
\(48\) 0 0
\(49\) 5.04495i 0.720707i
\(50\) 0 0
\(51\) 13.4146 + 13.4146i 1.87842 + 1.87842i
\(52\) 0 0
\(53\) 6.63925i 0.911971i 0.889987 + 0.455986i \(0.150713\pi\)
−0.889987 + 0.455986i \(0.849287\pi\)
\(54\) 0 0
\(55\) −7.21370 + 9.72732i −0.972696 + 1.31163i
\(56\) 0 0
\(57\) 0.949154 + 0.949154i 0.125718 + 0.125718i
\(58\) 0 0
\(59\) −6.32477 6.32477i −0.823415 0.823415i 0.163181 0.986596i \(-0.447825\pi\)
−0.986596 + 0.163181i \(0.947825\pi\)
\(60\) 0 0
\(61\) 7.89676 7.89676i 1.01108 1.01108i 0.0111391 0.999938i \(-0.496454\pi\)
0.999938 0.0111391i \(-0.00354577\pi\)
\(62\) 0 0
\(63\) −2.82145 + 2.82145i −0.355469 + 0.355469i
\(64\) 0 0
\(65\) 3.81371 0.565856i 0.473032 0.0701858i
\(66\) 0 0
\(67\) −0.547191 −0.0668500 −0.0334250 0.999441i \(-0.510641\pi\)
−0.0334250 + 0.999441i \(0.510641\pi\)
\(68\) 0 0
\(69\) 10.3716 10.3716i 1.24859 1.24859i
\(70\) 0 0
\(71\) 2.49249 0.295804 0.147902 0.989002i \(-0.452748\pi\)
0.147902 + 0.989002i \(0.452748\pi\)
\(72\) 0 0
\(73\) −5.30061 + 5.30061i −0.620390 + 0.620390i −0.945631 0.325241i \(-0.894554\pi\)
0.325241 + 0.945631i \(0.394554\pi\)
\(74\) 0 0
\(75\) 3.51250 + 11.5760i 0.405589 + 1.33669i
\(76\) 0 0
\(77\) 7.57264i 0.862982i
\(78\) 0 0
\(79\) 14.1666 1.59387 0.796933 0.604068i \(-0.206454\pi\)
0.796933 + 0.604068i \(0.206454\pi\)
\(80\) 0 0
\(81\) −9.41750 −1.04639
\(82\) 0 0
\(83\) 9.94637i 1.09176i −0.837865 0.545878i \(-0.816196\pi\)
0.837865 0.545878i \(-0.183804\pi\)
\(84\) 0 0
\(85\) −10.4440 + 14.0833i −1.13282 + 1.52755i
\(86\) 0 0
\(87\) −10.2635 + 10.2635i −1.10037 + 1.10037i
\(88\) 0 0
\(89\) 8.69135 0.921281 0.460640 0.887587i \(-0.347620\pi\)
0.460640 + 0.887587i \(0.347620\pi\)
\(90\) 0 0
\(91\) −1.70473 + 1.70473i −0.178704 + 0.178704i
\(92\) 0 0
\(93\) 15.5692 1.61445
\(94\) 0 0
\(95\) −0.738970 + 0.996463i −0.0758167 + 0.102235i
\(96\) 0 0
\(97\) −3.81410 + 3.81410i −0.387263 + 0.387263i −0.873710 0.486447i \(-0.838293\pi\)
0.486447 + 0.873710i \(0.338293\pi\)
\(98\) 0 0
\(99\) −10.9285 + 10.9285i −1.09836 + 1.09836i
\(100\) 0 0
\(101\) 12.8267 + 12.8267i 1.27630 + 1.27630i 0.942723 + 0.333577i \(0.108256\pi\)
0.333577 + 0.942723i \(0.391744\pi\)
\(102\) 0 0
\(103\) −12.2361 12.2361i −1.20566 1.20566i −0.972418 0.233243i \(-0.925066\pi\)
−0.233243 0.972418i \(-0.574934\pi\)
\(104\) 0 0
\(105\) −6.07602 4.50593i −0.592959 0.439734i
\(106\) 0 0
\(107\) 10.3616i 1.00170i 0.865535 + 0.500848i \(0.166978\pi\)
−0.865535 + 0.500848i \(0.833022\pi\)
\(108\) 0 0
\(109\) −10.6838 10.6838i −1.02332 1.02332i −0.999722 0.0235966i \(-0.992488\pi\)
−0.0235966 0.999722i \(-0.507512\pi\)
\(110\) 0 0
\(111\) 0.965521i 0.0916432i
\(112\) 0 0
\(113\) 6.22637 + 6.22637i 0.585728 + 0.585728i 0.936472 0.350744i \(-0.114071\pi\)
−0.350744 + 0.936472i \(0.614071\pi\)
\(114\) 0 0
\(115\) 10.8886 + 8.07488i 1.01536 + 0.752986i
\(116\) 0 0
\(117\) 4.92038 0.454889
\(118\) 0 0
\(119\) 10.9637i 1.00504i
\(120\) 0 0
\(121\) 18.3316i 1.66651i
\(122\) 0 0
\(123\) 5.85126 0.527591
\(124\) 0 0
\(125\) −10.1064 + 4.78135i −0.903941 + 0.427657i
\(126\) 0 0
\(127\) 1.51284 + 1.51284i 0.134242 + 0.134242i 0.771035 0.636793i \(-0.219739\pi\)
−0.636793 + 0.771035i \(0.719739\pi\)
\(128\) 0 0
\(129\) 4.20532i 0.370258i
\(130\) 0 0
\(131\) 2.48069 + 2.48069i 0.216739 + 0.216739i 0.807123 0.590384i \(-0.201024\pi\)
−0.590384 + 0.807123i \(0.701024\pi\)
\(132\) 0 0
\(133\) 0.775739i 0.0672651i
\(134\) 0 0
\(135\) −0.116167 0.782931i −0.00999805 0.0673840i
\(136\) 0 0
\(137\) 14.5773 + 14.5773i 1.24543 + 1.24543i 0.957718 + 0.287709i \(0.0928936\pi\)
0.287709 + 0.957718i \(0.407106\pi\)
\(138\) 0 0
\(139\) −1.22127 1.22127i −0.103587 0.103587i 0.653414 0.757001i \(-0.273336\pi\)
−0.757001 + 0.653414i \(0.773336\pi\)
\(140\) 0 0
\(141\) −5.71892 + 5.71892i −0.481620 + 0.481620i
\(142\) 0 0
\(143\) −6.60304 + 6.60304i −0.552174 + 0.552174i
\(144\) 0 0
\(145\) −10.7751 7.99075i −0.894825 0.663595i
\(146\) 0 0
\(147\) −12.2060 −1.00673
\(148\) 0 0
\(149\) 8.19719 8.19719i 0.671540 0.671540i −0.286531 0.958071i \(-0.592502\pi\)
0.958071 + 0.286531i \(0.0925021\pi\)
\(150\) 0 0
\(151\) 10.3301 0.840652 0.420326 0.907373i \(-0.361916\pi\)
0.420326 + 0.907373i \(0.361916\pi\)
\(152\) 0 0
\(153\) −15.8224 + 15.8224i −1.27916 + 1.27916i
\(154\) 0 0
\(155\) 2.11186 + 14.2334i 0.169629 + 1.14325i
\(156\) 0 0
\(157\) 0.493020i 0.0393473i 0.999806 + 0.0196737i \(0.00626272\pi\)
−0.999806 + 0.0196737i \(0.993737\pi\)
\(158\) 0 0
\(159\) −16.0633 −1.27390
\(160\) 0 0
\(161\) −8.47666 −0.668055
\(162\) 0 0
\(163\) 16.9807i 1.33003i −0.746831 0.665014i \(-0.768426\pi\)
0.746831 0.665014i \(-0.231574\pi\)
\(164\) 0 0
\(165\) −23.5347 17.4531i −1.83217 1.35872i
\(166\) 0 0
\(167\) 3.95546 3.95546i 0.306083 0.306083i −0.537305 0.843388i \(-0.680558\pi\)
0.843388 + 0.537305i \(0.180558\pi\)
\(168\) 0 0
\(169\) −10.0271 −0.771315
\(170\) 0 0
\(171\) −1.11951 + 1.11951i −0.0856113 + 0.0856113i
\(172\) 0 0
\(173\) 0.380124 0.0289003 0.0144501 0.999896i \(-0.495400\pi\)
0.0144501 + 0.999896i \(0.495400\pi\)
\(174\) 0 0
\(175\) 3.29515 6.16590i 0.249090 0.466098i
\(176\) 0 0
\(177\) 15.3024 15.3024i 1.15020 1.15020i
\(178\) 0 0
\(179\) 10.6632 10.6632i 0.797007 0.797007i −0.185615 0.982622i \(-0.559428\pi\)
0.982622 + 0.185615i \(0.0594279\pi\)
\(180\) 0 0
\(181\) −13.1021 13.1021i −0.973875 0.973875i 0.0257926 0.999667i \(-0.491789\pi\)
−0.999667 + 0.0257926i \(0.991789\pi\)
\(182\) 0 0
\(183\) 19.1058 + 19.1058i 1.41234 + 1.41234i
\(184\) 0 0
\(185\) 0.882680 0.130967i 0.0648959 0.00962888i
\(186\) 0 0
\(187\) 42.4665i 3.10546i
\(188\) 0 0
\(189\) 0.349970 + 0.349970i 0.0254566 + 0.0254566i
\(190\) 0 0
\(191\) 11.2575i 0.814565i −0.913302 0.407282i \(-0.866477\pi\)
0.913302 0.407282i \(-0.133523\pi\)
\(192\) 0 0
\(193\) 8.11178 + 8.11178i 0.583898 + 0.583898i 0.935972 0.352074i \(-0.114523\pi\)
−0.352074 + 0.935972i \(0.614523\pi\)
\(194\) 0 0
\(195\) 1.36906 + 9.22704i 0.0980401 + 0.660762i
\(196\) 0 0
\(197\) 9.56913 0.681772 0.340886 0.940105i \(-0.389273\pi\)
0.340886 + 0.940105i \(0.389273\pi\)
\(198\) 0 0
\(199\) 3.28634i 0.232962i −0.993193 0.116481i \(-0.962839\pi\)
0.993193 0.116481i \(-0.0371615\pi\)
\(200\) 0 0
\(201\) 1.32390i 0.0933804i
\(202\) 0 0
\(203\) 8.38834 0.588746
\(204\) 0 0
\(205\) 0.793687 + 5.34923i 0.0554335 + 0.373606i
\(206\) 0 0
\(207\) 12.2332 + 12.2332i 0.850264 + 0.850264i
\(208\) 0 0
\(209\) 3.00472i 0.207841i
\(210\) 0 0
\(211\) −12.0755 12.0755i −0.831309 0.831309i 0.156387 0.987696i \(-0.450015\pi\)
−0.987696 + 0.156387i \(0.950015\pi\)
\(212\) 0 0
\(213\) 6.03044i 0.413199i
\(214\) 0 0
\(215\) 3.84450 0.570425i 0.262193 0.0389027i
\(216\) 0 0
\(217\) −6.36231 6.36231i −0.431902 0.431902i
\(218\) 0 0
\(219\) −12.8245 12.8245i −0.866601 0.866601i
\(220\) 0 0
\(221\) −9.55993 + 9.55993i −0.643070 + 0.643070i
\(222\) 0 0
\(223\) −8.59151 + 8.59151i −0.575330 + 0.575330i −0.933613 0.358283i \(-0.883362\pi\)
0.358283 + 0.933613i \(0.383362\pi\)
\(224\) 0 0
\(225\) −13.6538 + 4.14295i −0.910252 + 0.276196i
\(226\) 0 0
\(227\) −20.0186 −1.32868 −0.664339 0.747431i \(-0.731287\pi\)
−0.664339 + 0.747431i \(0.731287\pi\)
\(228\) 0 0
\(229\) −13.1114 + 13.1114i −0.866426 + 0.866426i −0.992075 0.125649i \(-0.959899\pi\)
0.125649 + 0.992075i \(0.459899\pi\)
\(230\) 0 0
\(231\) 18.3216 1.20547
\(232\) 0 0
\(233\) 8.96222 8.96222i 0.587134 0.587134i −0.349720 0.936854i \(-0.613723\pi\)
0.936854 + 0.349720i \(0.113723\pi\)
\(234\) 0 0
\(235\) −6.00397 4.45250i −0.391656 0.290449i
\(236\) 0 0
\(237\) 34.2752i 2.22642i
\(238\) 0 0
\(239\) 21.6813 1.40244 0.701222 0.712943i \(-0.252638\pi\)
0.701222 + 0.712943i \(0.252638\pi\)
\(240\) 0 0
\(241\) 1.18683 0.0764507 0.0382254 0.999269i \(-0.487830\pi\)
0.0382254 + 0.999269i \(0.487830\pi\)
\(242\) 0 0
\(243\) 21.7232i 1.39354i
\(244\) 0 0
\(245\) −1.65566 11.1587i −0.105776 0.712902i
\(246\) 0 0
\(247\) −0.676414 + 0.676414i −0.0430392 + 0.0430392i
\(248\) 0 0
\(249\) 24.0647 1.52504
\(250\) 0 0
\(251\) 8.90640 8.90640i 0.562167 0.562167i −0.367755 0.929923i \(-0.619874\pi\)
0.929923 + 0.367755i \(0.119874\pi\)
\(252\) 0 0
\(253\) −32.8333 −2.06421
\(254\) 0 0
\(255\) −34.0737 25.2688i −2.13378 1.58239i
\(256\) 0 0
\(257\) 1.35457 1.35457i 0.0844959 0.0844959i −0.663596 0.748091i \(-0.730970\pi\)
0.748091 + 0.663596i \(0.230970\pi\)
\(258\) 0 0
\(259\) −0.394558 + 0.394558i −0.0245166 + 0.0245166i
\(260\) 0 0
\(261\) −12.1057 12.1057i −0.749324 0.749324i
\(262\) 0 0
\(263\) 7.07763 + 7.07763i 0.436426 + 0.436426i 0.890807 0.454382i \(-0.150140\pi\)
−0.454382 + 0.890807i \(0.650140\pi\)
\(264\) 0 0
\(265\) −2.17888 14.6851i −0.133848 0.902096i
\(266\) 0 0
\(267\) 21.0282i 1.28691i
\(268\) 0 0
\(269\) 4.60770 + 4.60770i 0.280936 + 0.280936i 0.833482 0.552546i \(-0.186344\pi\)
−0.552546 + 0.833482i \(0.686344\pi\)
\(270\) 0 0
\(271\) 9.23996i 0.561288i 0.959812 + 0.280644i \(0.0905480\pi\)
−0.959812 + 0.280644i \(0.909452\pi\)
\(272\) 0 0
\(273\) −4.12449 4.12449i −0.249625 0.249625i
\(274\) 0 0
\(275\) 12.7633 23.8828i 0.769658 1.44019i
\(276\) 0 0
\(277\) −2.60749 −0.156669 −0.0783345 0.996927i \(-0.524960\pi\)
−0.0783345 + 0.996927i \(0.524960\pi\)
\(278\) 0 0
\(279\) 18.3636i 1.09940i
\(280\) 0 0
\(281\) 8.70372i 0.519220i 0.965714 + 0.259610i \(0.0835941\pi\)
−0.965714 + 0.259610i \(0.916406\pi\)
\(282\) 0 0
\(283\) −12.6355 −0.751105 −0.375553 0.926801i \(-0.622547\pi\)
−0.375553 + 0.926801i \(0.622547\pi\)
\(284\) 0 0
\(285\) −2.41088 1.78789i −0.142808 0.105906i
\(286\) 0 0
\(287\) −2.39110 2.39110i −0.141142 0.141142i
\(288\) 0 0
\(289\) 44.4833i 2.61667i
\(290\) 0 0
\(291\) −9.22799 9.22799i −0.540955 0.540955i
\(292\) 0 0
\(293\) 12.5444i 0.732850i 0.930448 + 0.366425i \(0.119418\pi\)
−0.930448 + 0.366425i \(0.880582\pi\)
\(294\) 0 0
\(295\) 16.0651 + 11.9138i 0.935349 + 0.693648i
\(296\) 0 0
\(297\) 1.35556 + 1.35556i 0.0786578 + 0.0786578i
\(298\) 0 0
\(299\) 7.39131 + 7.39131i 0.427451 + 0.427451i
\(300\) 0 0
\(301\) −1.71849 + 1.71849i −0.0990523 + 0.0990523i
\(302\) 0 0
\(303\) −31.0333 + 31.0333i −1.78282 + 1.78282i
\(304\) 0 0
\(305\) −14.8749 + 20.0581i −0.851735 + 1.14852i
\(306\) 0 0
\(307\) 5.83167 0.332831 0.166416 0.986056i \(-0.446781\pi\)
0.166416 + 0.986056i \(0.446781\pi\)
\(308\) 0 0
\(309\) 29.6046 29.6046i 1.68415 1.68415i
\(310\) 0 0
\(311\) −15.0727 −0.854697 −0.427348 0.904087i \(-0.640552\pi\)
−0.427348 + 0.904087i \(0.640552\pi\)
\(312\) 0 0
\(313\) −5.72437 + 5.72437i −0.323560 + 0.323560i −0.850131 0.526571i \(-0.823477\pi\)
0.526571 + 0.850131i \(0.323477\pi\)
\(314\) 0 0
\(315\) 5.31468 7.16658i 0.299448 0.403791i
\(316\) 0 0
\(317\) 17.6245i 0.989888i −0.868925 0.494944i \(-0.835189\pi\)
0.868925 0.494944i \(-0.164811\pi\)
\(318\) 0 0
\(319\) 32.4912 1.81916
\(320\) 0 0
\(321\) −25.0693 −1.39923
\(322\) 0 0
\(323\) 4.35026i 0.242055i
\(324\) 0 0
\(325\) −8.24966 + 2.50318i −0.457609 + 0.138851i
\(326\) 0 0
\(327\) 25.8487 25.8487i 1.42944 1.42944i
\(328\) 0 0
\(329\) 4.67404 0.257688
\(330\) 0 0
\(331\) −13.5768 + 13.5768i −0.746247 + 0.746247i −0.973772 0.227525i \(-0.926937\pi\)
0.227525 + 0.973772i \(0.426937\pi\)
\(332\) 0 0
\(333\) 1.13882 0.0624069
\(334\) 0 0
\(335\) 1.21031 0.179578i 0.0661261 0.00981141i
\(336\) 0 0
\(337\) −13.1727 + 13.1727i −0.717560 + 0.717560i −0.968105 0.250545i \(-0.919390\pi\)
0.250545 + 0.968105i \(0.419390\pi\)
\(338\) 0 0
\(339\) −15.0643 + 15.0643i −0.818183 + 0.818183i
\(340\) 0 0
\(341\) −24.6436 24.6436i −1.33453 1.33453i
\(342\) 0 0
\(343\) 11.9088 + 11.9088i 0.643016 + 0.643016i
\(344\) 0 0
\(345\) −19.5367 + 26.3442i −1.05182 + 1.41833i
\(346\) 0 0
\(347\) 16.5605i 0.889015i 0.895775 + 0.444508i \(0.146621\pi\)
−0.895775 + 0.444508i \(0.853379\pi\)
\(348\) 0 0
\(349\) 0.491725 + 0.491725i 0.0263214 + 0.0263214i 0.720145 0.693824i \(-0.244075\pi\)
−0.693824 + 0.720145i \(0.744075\pi\)
\(350\) 0 0
\(351\) 0.610320i 0.0325765i
\(352\) 0 0
\(353\) −15.2506 15.2506i −0.811709 0.811709i 0.173181 0.984890i \(-0.444596\pi\)
−0.984890 + 0.173181i \(0.944596\pi\)
\(354\) 0 0
\(355\) −5.51302 + 0.817991i −0.292601 + 0.0434145i
\(356\) 0 0
\(357\) 26.5261 1.40391
\(358\) 0 0
\(359\) 4.01174i 0.211732i −0.994380 0.105866i \(-0.966239\pi\)
0.994380 0.105866i \(-0.0337614\pi\)
\(360\) 0 0
\(361\) 18.6922i 0.983800i
\(362\) 0 0
\(363\) 44.3523 2.32789
\(364\) 0 0
\(365\) 9.98461 13.4637i 0.522618 0.704724i
\(366\) 0 0
\(367\) 15.8315 + 15.8315i 0.826398 + 0.826398i 0.987017 0.160618i \(-0.0513488\pi\)
−0.160618 + 0.987017i \(0.551349\pi\)
\(368\) 0 0
\(369\) 6.90148i 0.359277i
\(370\) 0 0
\(371\) 6.56422 + 6.56422i 0.340797 + 0.340797i
\(372\) 0 0
\(373\) 32.8148i 1.69908i 0.527521 + 0.849542i \(0.323122\pi\)
−0.527521 + 0.849542i \(0.676878\pi\)
\(374\) 0 0
\(375\) −11.5682 24.4518i −0.597379 1.26268i
\(376\) 0 0
\(377\) −7.31430 7.31430i −0.376706 0.376706i
\(378\) 0 0
\(379\) 0.167702 + 0.167702i 0.00861429 + 0.00861429i 0.711401 0.702787i \(-0.248061\pi\)
−0.702787 + 0.711401i \(0.748061\pi\)
\(380\) 0 0
\(381\) −3.66022 + 3.66022i −0.187519 + 0.187519i
\(382\) 0 0
\(383\) −17.2141 + 17.2141i −0.879597 + 0.879597i −0.993493 0.113896i \(-0.963667\pi\)
0.113896 + 0.993493i \(0.463667\pi\)
\(384\) 0 0
\(385\) 2.48521 + 16.7496i 0.126658 + 0.853637i
\(386\) 0 0
\(387\) 4.96011 0.252137
\(388\) 0 0
\(389\) −2.78168 + 2.78168i −0.141037 + 0.141037i −0.774100 0.633063i \(-0.781797\pi\)
0.633063 + 0.774100i \(0.281797\pi\)
\(390\) 0 0
\(391\) −47.5362 −2.40401
\(392\) 0 0
\(393\) −6.00189 + 6.00189i −0.302755 + 0.302755i
\(394\) 0 0
\(395\) −31.3344 + 4.64922i −1.57661 + 0.233928i
\(396\) 0 0
\(397\) 25.7866i 1.29419i −0.762409 0.647095i \(-0.775984\pi\)
0.762409 0.647095i \(-0.224016\pi\)
\(398\) 0 0
\(399\) 1.87685 0.0939603
\(400\) 0 0
\(401\) −9.92544 −0.495653 −0.247827 0.968804i \(-0.579716\pi\)
−0.247827 + 0.968804i \(0.579716\pi\)
\(402\) 0 0
\(403\) 11.0954i 0.552700i
\(404\) 0 0
\(405\) 20.8301 3.09066i 1.03506 0.153576i
\(406\) 0 0
\(407\) −1.52827 + 1.52827i −0.0757535 + 0.0757535i
\(408\) 0 0
\(409\) −16.1406 −0.798102 −0.399051 0.916929i \(-0.630660\pi\)
−0.399051 + 0.916929i \(0.630660\pi\)
\(410\) 0 0
\(411\) −35.2690 + 35.2690i −1.73969 + 1.73969i
\(412\) 0 0
\(413\) −12.5066 −0.615409
\(414\) 0 0
\(415\) 3.26422 + 21.9999i 0.160234 + 1.07993i
\(416\) 0 0
\(417\) 2.95479 2.95479i 0.144697 0.144697i
\(418\) 0 0
\(419\) −12.7442 + 12.7442i −0.622597 + 0.622597i −0.946195 0.323598i \(-0.895107\pi\)
0.323598 + 0.946195i \(0.395107\pi\)
\(420\) 0 0
\(421\) −6.92756 6.92756i −0.337629 0.337629i 0.517845 0.855474i \(-0.326734\pi\)
−0.855474 + 0.517845i \(0.826734\pi\)
\(422\) 0 0
\(423\) −6.74538 6.74538i −0.327972 0.327972i
\(424\) 0 0
\(425\) 18.4788 34.5777i 0.896355 1.67726i
\(426\) 0 0
\(427\) 15.6150i 0.755665i
\(428\) 0 0
\(429\) −15.9757 15.9757i −0.771313 0.771313i
\(430\) 0 0
\(431\) 11.3129i 0.544923i −0.962167 0.272462i \(-0.912162\pi\)
0.962167 0.272462i \(-0.0878378\pi\)
\(432\) 0 0
\(433\) 14.5806 + 14.5806i 0.700700 + 0.700700i 0.964561 0.263861i \(-0.0849959\pi\)
−0.263861 + 0.964561i \(0.584996\pi\)
\(434\) 0 0
\(435\) 19.3331 26.0698i 0.926953 1.24995i
\(436\) 0 0
\(437\) −3.36343 −0.160895
\(438\) 0 0
\(439\) 34.9768i 1.66935i 0.550743 + 0.834675i \(0.314344\pi\)
−0.550743 + 0.834675i \(0.685656\pi\)
\(440\) 0 0
\(441\) 14.3968i 0.685560i
\(442\) 0 0
\(443\) 7.23644 0.343814 0.171907 0.985113i \(-0.445007\pi\)
0.171907 + 0.985113i \(0.445007\pi\)
\(444\) 0 0
\(445\) −19.2240 + 2.85234i −0.911304 + 0.135214i
\(446\) 0 0
\(447\) 19.8326 + 19.8326i 0.938051 + 0.938051i
\(448\) 0 0
\(449\) 19.3556i 0.913445i −0.889609 0.456723i \(-0.849023\pi\)
0.889609 0.456723i \(-0.150977\pi\)
\(450\) 0 0
\(451\) −9.26164 9.26164i −0.436113 0.436113i
\(452\) 0 0
\(453\) 24.9931i 1.17428i
\(454\) 0 0
\(455\) 3.21115 4.33007i 0.150541 0.202997i
\(456\) 0 0
\(457\) −3.88093 3.88093i −0.181542 0.181542i 0.610485 0.792028i \(-0.290974\pi\)
−0.792028 + 0.610485i \(0.790974\pi\)
\(458\) 0 0
\(459\) 1.96260 + 1.96260i 0.0916061 + 0.0916061i
\(460\) 0 0
\(461\) −4.98860 + 4.98860i −0.232342 + 0.232342i −0.813670 0.581327i \(-0.802534\pi\)
0.581327 + 0.813670i \(0.302534\pi\)
\(462\) 0 0
\(463\) 14.2136 14.2136i 0.660560 0.660560i −0.294952 0.955512i \(-0.595304\pi\)
0.955512 + 0.294952i \(0.0953036\pi\)
\(464\) 0 0
\(465\) −34.4368 + 5.10953i −1.59697 + 0.236949i
\(466\) 0 0
\(467\) −8.37481 −0.387540 −0.193770 0.981047i \(-0.562072\pi\)
−0.193770 + 0.981047i \(0.562072\pi\)
\(468\) 0 0
\(469\) −0.541007 + 0.541007i −0.0249814 + 0.0249814i
\(470\) 0 0
\(471\) −1.19283 −0.0549629
\(472\) 0 0
\(473\) −6.65636 + 6.65636i −0.306060 + 0.306060i
\(474\) 0 0
\(475\) 1.30747 2.44655i 0.0599909 0.112255i
\(476\) 0 0
\(477\) 18.9464i 0.867497i
\(478\) 0 0
\(479\) −28.4608 −1.30041 −0.650204 0.759760i \(-0.725317\pi\)
−0.650204 + 0.759760i \(0.725317\pi\)
\(480\) 0 0
\(481\) 0.688078 0.0313736
\(482\) 0 0
\(483\) 20.5088i 0.933182i
\(484\) 0 0
\(485\) 7.18451 9.68795i 0.326232 0.439907i
\(486\) 0 0
\(487\) −4.43648 + 4.43648i −0.201036 + 0.201036i −0.800444 0.599408i \(-0.795403\pi\)
0.599408 + 0.800444i \(0.295403\pi\)
\(488\) 0 0
\(489\) 41.0837 1.85787
\(490\) 0 0
\(491\) −4.12635 + 4.12635i −0.186220 + 0.186220i −0.794060 0.607840i \(-0.792036\pi\)
0.607840 + 0.794060i \(0.292036\pi\)
\(492\) 0 0
\(493\) 47.0409 2.11862
\(494\) 0 0
\(495\) 20.5857 27.7588i 0.925260 1.24767i
\(496\) 0 0
\(497\) 2.46432 2.46432i 0.110540 0.110540i
\(498\) 0 0
\(499\) −2.20498 + 2.20498i −0.0987087 + 0.0987087i −0.754737 0.656028i \(-0.772235\pi\)
0.656028 + 0.754737i \(0.272235\pi\)
\(500\) 0 0
\(501\) 9.57001 + 9.57001i 0.427556 + 0.427556i
\(502\) 0 0
\(503\) −2.73415 2.73415i −0.121910 0.121910i 0.643520 0.765430i \(-0.277473\pi\)
−0.765430 + 0.643520i \(0.777473\pi\)
\(504\) 0 0
\(505\) −32.5802 24.1612i −1.44980 1.07516i
\(506\) 0 0
\(507\) 24.2600i 1.07742i
\(508\) 0 0
\(509\) 26.2648 + 26.2648i 1.16417 + 1.16417i 0.983554 + 0.180615i \(0.0578088\pi\)
0.180615 + 0.983554i \(0.442191\pi\)
\(510\) 0 0
\(511\) 10.4814i 0.463671i
\(512\) 0 0
\(513\) 0.138864 + 0.138864i 0.00613098 + 0.00613098i
\(514\) 0 0
\(515\) 31.0802 + 23.0488i 1.36956 + 1.01565i
\(516\) 0 0
\(517\) 18.1043 0.796226
\(518\) 0 0
\(519\) 0.919687i 0.0403698i
\(520\) 0 0
\(521\) 34.1422i 1.49579i 0.663814 + 0.747897i \(0.268936\pi\)
−0.663814 + 0.747897i \(0.731064\pi\)
\(522\) 0 0
\(523\) 12.7692 0.558357 0.279179 0.960239i \(-0.409938\pi\)
0.279179 + 0.960239i \(0.409938\pi\)
\(524\) 0 0
\(525\) 14.9180 + 7.97241i 0.651076 + 0.347945i
\(526\) 0 0
\(527\) −35.6792 35.6792i −1.55421 1.55421i
\(528\) 0 0
\(529\) 13.7529i 0.597952i
\(530\) 0 0
\(531\) 18.0490 + 18.0490i 0.783259 + 0.783259i
\(532\) 0 0
\(533\) 4.16990i 0.180618i
\(534\) 0 0
\(535\) −3.40050 22.9184i −0.147016 0.990849i
\(536\) 0 0
\(537\) 25.7991 + 25.7991i 1.11331 + 1.11331i
\(538\) 0 0
\(539\) 19.3201 + 19.3201i 0.832177 + 0.832177i
\(540\) 0 0
\(541\) 14.2769 14.2769i 0.613812 0.613812i −0.330125 0.943937i \(-0.607091\pi\)
0.943937 + 0.330125i \(0.107091\pi\)
\(542\) 0 0
\(543\) 31.6999 31.6999i 1.36037 1.36037i
\(544\) 0 0
\(545\) 27.1371 + 20.1247i 1.16243 + 0.862047i
\(546\) 0 0
\(547\) 3.67734 0.157232 0.0786158 0.996905i \(-0.474950\pi\)
0.0786158 + 0.996905i \(0.474950\pi\)
\(548\) 0 0
\(549\) −22.5350 + 22.5350i −0.961769 + 0.961769i
\(550\) 0 0
\(551\) 3.32839 0.141794
\(552\) 0 0
\(553\) 14.0065 14.0065i 0.595617 0.595617i
\(554\) 0 0
\(555\) 0.316867 + 2.13559i 0.0134502 + 0.0906508i
\(556\) 0 0
\(557\) 22.6665i 0.960412i 0.877156 + 0.480206i \(0.159438\pi\)
−0.877156 + 0.480206i \(0.840562\pi\)
\(558\) 0 0
\(559\) 2.99692 0.126756
\(560\) 0 0
\(561\) 102.745 4.33791
\(562\) 0 0
\(563\) 36.8583i 1.55339i 0.629876 + 0.776696i \(0.283106\pi\)
−0.629876 + 0.776696i \(0.716894\pi\)
\(564\) 0 0
\(565\) −15.8152 11.7284i −0.665351 0.493419i
\(566\) 0 0
\(567\) −9.31108 + 9.31108i −0.391028 + 0.391028i
\(568\) 0 0
\(569\) 16.5462 0.693653 0.346826 0.937929i \(-0.387259\pi\)
0.346826 + 0.937929i \(0.387259\pi\)
\(570\) 0 0
\(571\) 12.7206 12.7206i 0.532340 0.532340i −0.388928 0.921268i \(-0.627155\pi\)
0.921268 + 0.388928i \(0.127155\pi\)
\(572\) 0 0
\(573\) 27.2369 1.13784
\(574\) 0 0
\(575\) −26.7339 14.2870i −1.11488 0.595810i
\(576\) 0 0
\(577\) 0.737826 0.737826i 0.0307161 0.0307161i −0.691582 0.722298i \(-0.743086\pi\)
0.722298 + 0.691582i \(0.243086\pi\)
\(578\) 0 0
\(579\) −19.6260 + 19.6260i −0.815627 + 0.815627i
\(580\) 0 0
\(581\) −9.83397 9.83397i −0.407982 0.407982i
\(582\) 0 0
\(583\) 25.4257 + 25.4257i 1.05302 + 1.05302i
\(584\) 0 0
\(585\) −10.8832 + 1.61478i −0.449963 + 0.0667630i
\(586\) 0 0
\(587\) 17.1246i 0.706808i −0.935471 0.353404i \(-0.885024\pi\)
0.935471 0.353404i \(-0.114976\pi\)
\(588\) 0 0
\(589\) −2.52448 2.52448i −0.104019 0.104019i
\(590\) 0 0
\(591\) 23.1519i 0.952344i
\(592\) 0 0
\(593\) −14.4485 14.4485i −0.593328 0.593328i 0.345201 0.938529i \(-0.387811\pi\)
−0.938529 + 0.345201i \(0.887811\pi\)
\(594\) 0 0
\(595\) 3.59810 + 24.2501i 0.147508 + 0.994159i
\(596\) 0 0
\(597\) 7.95111 0.325417
\(598\) 0 0
\(599\) 12.3096i 0.502959i −0.967863 0.251479i \(-0.919083\pi\)
0.967863 0.251479i \(-0.0809170\pi\)
\(600\) 0 0
\(601\) 7.19239i 0.293384i 0.989182 + 0.146692i \(0.0468625\pi\)
−0.989182 + 0.146692i \(0.953137\pi\)
\(602\) 0 0
\(603\) 1.56152 0.0635899
\(604\) 0 0
\(605\) 6.01612 + 40.5469i 0.244590 + 1.64847i
\(606\) 0 0
\(607\) 16.8591 + 16.8591i 0.684291 + 0.684291i 0.960964 0.276673i \(-0.0892320\pi\)
−0.276673 + 0.960964i \(0.589232\pi\)
\(608\) 0 0
\(609\) 20.2951i 0.822399i
\(610\) 0 0
\(611\) −4.07558 4.07558i −0.164880 0.164880i
\(612\) 0 0
\(613\) 0.985959i 0.0398225i −0.999802 0.0199113i \(-0.993662\pi\)
0.999802 0.0199113i \(-0.00633837\pi\)
\(614\) 0 0
\(615\) −12.9421 + 1.92028i −0.521877 + 0.0774332i
\(616\) 0 0
\(617\) 2.62025 + 2.62025i 0.105487 + 0.105487i 0.757881 0.652393i \(-0.226235\pi\)
−0.652393 + 0.757881i \(0.726235\pi\)
\(618\) 0 0
\(619\) −32.6020 32.6020i −1.31038 1.31038i −0.921131 0.389254i \(-0.872733\pi\)
−0.389254 0.921131i \(-0.627267\pi\)
\(620\) 0 0
\(621\) 1.51739 1.51739i 0.0608909 0.0608909i
\(622\) 0 0
\(623\) 8.59312 8.59312i 0.344276 0.344276i
\(624\) 0 0
\(625\) 20.7847 13.8924i 0.831386 0.555695i
\(626\) 0 0
\(627\) 7.26976 0.290326
\(628\) 0 0
\(629\) −2.21264 + 2.21264i −0.0882237 + 0.0882237i
\(630\) 0 0
\(631\) 1.98558 0.0790447 0.0395224 0.999219i \(-0.487416\pi\)
0.0395224 + 0.999219i \(0.487416\pi\)
\(632\) 0 0
\(633\) 29.2159 29.2159i 1.16123 1.16123i
\(634\) 0 0
\(635\) −3.84266 2.84969i −0.152491 0.113086i
\(636\) 0 0
\(637\) 8.69857i 0.344650i
\(638\) 0 0
\(639\) −7.11281 −0.281379
\(640\) 0 0
\(641\) 32.5701 1.28644 0.643222 0.765680i \(-0.277597\pi\)
0.643222 + 0.765680i \(0.277597\pi\)
\(642\) 0 0
\(643\) 10.1509i 0.400314i −0.979764 0.200157i \(-0.935855\pi\)
0.979764 0.200157i \(-0.0641452\pi\)
\(644\) 0 0
\(645\) 1.38011 + 9.30155i 0.0543418 + 0.366248i
\(646\) 0 0
\(647\) 27.9290 27.9290i 1.09800 1.09800i 0.103357 0.994644i \(-0.467042\pi\)
0.994644 0.103357i \(-0.0329584\pi\)
\(648\) 0 0
\(649\) −48.4427 −1.90154
\(650\) 0 0
\(651\) 15.3932 15.3932i 0.603309 0.603309i
\(652\) 0 0
\(653\) 2.51371 0.0983691 0.0491845 0.998790i \(-0.484338\pi\)
0.0491845 + 0.998790i \(0.484338\pi\)
\(654\) 0 0
\(655\) −6.30104 4.67281i −0.246202 0.182582i
\(656\) 0 0
\(657\) 15.1263 15.1263i 0.590135 0.590135i
\(658\) 0 0
\(659\) 11.2412 11.2412i 0.437894 0.437894i −0.453409 0.891303i \(-0.649792\pi\)
0.891303 + 0.453409i \(0.149792\pi\)
\(660\) 0 0
\(661\) −3.64849 3.64849i −0.141910 0.141910i 0.632583 0.774493i \(-0.281995\pi\)
−0.774493 + 0.632583i \(0.781995\pi\)
\(662\) 0 0
\(663\) −23.1297 23.1297i −0.898283 0.898283i
\(664\) 0 0
\(665\) 0.254584 + 1.71582i 0.00987233 + 0.0665367i
\(666\) 0 0
\(667\) 36.3700i 1.40825i
\(668\) 0 0
\(669\) −20.7867 20.7867i −0.803658 0.803658i
\(670\) 0 0
\(671\) 60.4829i 2.33492i
\(672\) 0 0
\(673\) 24.4045 + 24.4045i 0.940724 + 0.940724i 0.998339 0.0576148i \(-0.0183495\pi\)
−0.0576148 + 0.998339i \(0.518350\pi\)
\(674\) 0 0
\(675\) 0.513888 + 1.69360i 0.0197796 + 0.0651869i
\(676\) 0 0
\(677\) 9.04721 0.347712 0.173856 0.984771i \(-0.444377\pi\)
0.173856 + 0.984771i \(0.444377\pi\)
\(678\) 0 0
\(679\) 7.54199i 0.289435i
\(680\) 0 0
\(681\) 48.4337i 1.85598i
\(682\) 0 0
\(683\) 6.95044 0.265951 0.132976 0.991119i \(-0.457547\pi\)
0.132976 + 0.991119i \(0.457547\pi\)
\(684\) 0 0
\(685\) −37.0270 27.4589i −1.41473 1.04915i
\(686\) 0 0
\(687\) −31.7223 31.7223i −1.21028 1.21028i
\(688\) 0 0
\(689\) 11.4475i 0.436114i
\(690\) 0 0
\(691\) 13.4279 + 13.4279i 0.510823 + 0.510823i 0.914778 0.403956i \(-0.132365\pi\)
−0.403956 + 0.914778i \(0.632365\pi\)
\(692\) 0 0
\(693\) 21.6100i 0.820897i
\(694\) 0 0
\(695\) 3.10207 + 2.30047i 0.117668 + 0.0872618i
\(696\) 0 0
\(697\) −13.4091 13.4091i −0.507904 0.507904i
\(698\) 0 0
\(699\) 21.6836 + 21.6836i 0.820148 + 0.820148i
\(700\) 0 0
\(701\) 10.8802 10.8802i 0.410939 0.410939i −0.471127 0.882066i \(-0.656152\pi\)
0.882066 + 0.471127i \(0.156152\pi\)
\(702\) 0 0
\(703\) −0.156555 + 0.156555i −0.00590460 + 0.00590460i
\(704\) 0 0
\(705\) 10.7726 14.5263i 0.405718 0.547090i
\(706\) 0 0
\(707\) 25.3634 0.953889
\(708\) 0 0
\(709\) −11.8967 + 11.8967i −0.446788 + 0.446788i −0.894285 0.447497i \(-0.852316\pi\)
0.447497 + 0.894285i \(0.352316\pi\)
\(710\) 0 0
\(711\) −40.4272 −1.51614
\(712\) 0 0
\(713\) −27.5855 + 27.5855i −1.03309 + 1.03309i
\(714\) 0 0
\(715\) 12.4380 16.7720i 0.465153 0.627236i
\(716\) 0 0
\(717\) 52.4565i 1.95903i
\(718\) 0 0
\(719\) 19.3720 0.722455 0.361227 0.932478i \(-0.382358\pi\)
0.361227 + 0.932478i \(0.382358\pi\)
\(720\) 0 0
\(721\) −24.1957 −0.901095
\(722\) 0 0
\(723\) 2.87148i 0.106791i
\(724\) 0 0
\(725\) 26.4554 + 14.1382i 0.982529 + 0.525078i
\(726\) 0 0
\(727\) −31.8862 + 31.8862i −1.18259 + 1.18259i −0.203524 + 0.979070i \(0.565239\pi\)
−0.979070 + 0.203524i \(0.934761\pi\)
\(728\) 0 0
\(729\) 24.3055 0.900203
\(730\) 0 0
\(731\) −9.63712 + 9.63712i −0.356442 + 0.356442i
\(732\) 0 0
\(733\) −8.22830 −0.303919 −0.151960 0.988387i \(-0.548558\pi\)
−0.151960 + 0.988387i \(0.548558\pi\)
\(734\) 0 0
\(735\) 26.9978 4.00578i 0.995829 0.147755i
\(736\) 0 0
\(737\) −2.09552 + 2.09552i −0.0771895 + 0.0771895i
\(738\) 0 0
\(739\) −13.6995 + 13.6995i −0.503945 + 0.503945i −0.912661 0.408717i \(-0.865976\pi\)
0.408717 + 0.912661i \(0.365976\pi\)
\(740\) 0 0
\(741\) −1.63654 1.63654i −0.0601199 0.0601199i
\(742\) 0 0
\(743\) −26.6385 26.6385i −0.977273 0.977273i 0.0224740 0.999747i \(-0.492846\pi\)
−0.999747 + 0.0224740i \(0.992846\pi\)
\(744\) 0 0
\(745\) −15.4408 + 20.8212i −0.565708 + 0.762828i
\(746\) 0 0
\(747\) 28.3839i 1.03851i
\(748\) 0 0
\(749\) 10.2445 + 10.2445i 0.374327 + 0.374327i
\(750\) 0 0
\(751\) 15.0073i 0.547625i −0.961783 0.273812i \(-0.911715\pi\)
0.961783 0.273812i \(-0.0882847\pi\)
\(752\) 0 0
\(753\) 21.5485 + 21.5485i 0.785272 + 0.785272i
\(754\) 0 0
\(755\) −22.8487 + 3.39016i −0.831549 + 0.123380i
\(756\) 0 0
\(757\) −35.3800 −1.28591 −0.642953 0.765905i \(-0.722291\pi\)
−0.642953 + 0.765905i \(0.722291\pi\)
\(758\) 0 0
\(759\) 79.4382i 2.88342i
\(760\) 0 0
\(761\) 14.1721i 0.513738i −0.966446 0.256869i \(-0.917309\pi\)
0.966446 0.256869i \(-0.0826908\pi\)
\(762\) 0 0
\(763\) −21.1260 −0.764814
\(764\) 0 0
\(765\) 29.8042 40.1894i 1.07757 1.45305i
\(766\) 0 0
\(767\) 10.9053 + 10.9053i 0.393766 + 0.393766i
\(768\) 0 0
\(769\) 3.84244i 0.138562i 0.997597 + 0.0692809i \(0.0220705\pi\)
−0.997597 + 0.0692809i \(0.977930\pi\)
\(770\) 0 0
\(771\) 3.27731 + 3.27731i 0.118029 + 0.118029i
\(772\) 0 0
\(773\) 14.2733i 0.513373i −0.966495 0.256687i \(-0.917369\pi\)
0.966495 0.256687i \(-0.0826308\pi\)
\(774\) 0 0
\(775\) −9.34226 30.7890i −0.335584 1.10597i
\(776\) 0 0
\(777\) −0.954610 0.954610i −0.0342464 0.0342464i
\(778\) 0 0
\(779\) −0.948759 0.948759i −0.0339928 0.0339928i
\(780\) 0 0
\(781\) 9.54524 9.54524i 0.341555 0.341555i
\(782\) 0 0
\(783\) −1.50158 + 1.50158i −0.0536622 + 0.0536622i
\(784\) 0 0
\(785\) −0.161800 1.09049i −0.00577491 0.0389212i
\(786\) 0 0
\(787\) −42.0418 −1.49863 −0.749314 0.662215i \(-0.769616\pi\)
−0.749314 + 0.662215i \(0.769616\pi\)
\(788\) 0 0
\(789\) −17.1239 + 17.1239i −0.609628 + 0.609628i
\(790\) 0 0
\(791\) 12.3120 0.437765
\(792\) 0 0
\(793\) −13.6157 + 13.6157i −0.483508 + 0.483508i
\(794\) 0 0
\(795\) 35.5296 5.27168i 1.26011 0.186967i
\(796\) 0 0
\(797\) 28.3318i 1.00357i −0.864994 0.501783i \(-0.832678\pi\)
0.864994 0.501783i \(-0.167322\pi\)
\(798\) 0 0
\(799\) 26.2115 0.927297
\(800\) 0 0
\(801\) −24.8025 −0.876352
\(802\) 0 0
\(803\) 40.5984i 1.43269i
\(804\) 0 0
\(805\) 18.7491 2.78189i 0.660820 0.0980487i
\(806\) 0 0
\(807\) −11.1481 + 11.1481i −0.392430 + 0.392430i
\(808\) 0 0
\(809\) −30.7394 −1.08074 −0.540369 0.841428i \(-0.681715\pi\)
−0.540369 + 0.841428i \(0.681715\pi\)
\(810\) 0 0
\(811\) 17.4751 17.4751i 0.613633 0.613633i −0.330258 0.943891i \(-0.607136\pi\)
0.943891 + 0.330258i \(0.107136\pi\)
\(812\) 0 0
\(813\) −22.3555 −0.784043
\(814\) 0 0
\(815\) 5.57275 + 37.5587i 0.195205 + 1.31563i
\(816\) 0 0
\(817\) −0.681876 + 0.681876i −0.0238558 + 0.0238558i
\(818\) 0 0
\(819\) 4.86478 4.86478i 0.169989 0.169989i
\(820\) 0 0
\(821\) 21.9558 + 21.9558i 0.766262 + 0.766262i 0.977446 0.211184i \(-0.0677321\pi\)
−0.211184 + 0.977446i \(0.567732\pi\)
\(822\) 0 0
\(823\) 25.2078 + 25.2078i 0.878687 + 0.878687i 0.993399 0.114712i \(-0.0365944\pi\)
−0.114712 + 0.993399i \(0.536594\pi\)
\(824\) 0 0
\(825\) 57.7831 + 30.8801i 2.01175 + 1.07511i
\(826\) 0 0
\(827\) 41.4211i 1.44035i 0.693791 + 0.720176i \(0.255939\pi\)
−0.693791 + 0.720176i \(0.744061\pi\)
\(828\) 0 0
\(829\) 30.0058 + 30.0058i 1.04215 + 1.04215i 0.999072 + 0.0430743i \(0.0137152\pi\)
0.0430743 + 0.999072i \(0.486285\pi\)
\(830\) 0 0
\(831\) 6.30867i 0.218845i
\(832\) 0 0
\(833\) 27.9718 + 27.9718i 0.969166 + 0.969166i
\(834\) 0 0
\(835\) −7.45079 + 10.0470i −0.257845 + 0.347691i
\(836\) 0 0
\(837\) 2.27781 0.0787327
\(838\) 0 0
\(839\) 54.1116i 1.86814i 0.357091 + 0.934070i \(0.383769\pi\)
−0.357091 + 0.934070i \(0.616231\pi\)
\(840\) 0 0
\(841\) 6.99104i 0.241070i
\(842\) 0 0
\(843\) −21.0581 −0.725281
\(844\) 0 0
\(845\) 22.1785 3.29071i 0.762962 0.113204i
\(846\) 0 0
\(847\) −18.1245 18.1245i −0.622764 0.622764i
\(848\) 0 0
\(849\) 30.5710i 1.04919i
\(850\) 0 0
\(851\) 1.71071 + 1.71071i 0.0586425 + 0.0586425i
\(852\) 0 0
\(853\) 18.4025i 0.630090i −0.949077 0.315045i \(-0.897980\pi\)
0.949077 0.315045i \(-0.102020\pi\)
\(854\) 0 0
\(855\) 2.10880 2.84360i 0.0721193 0.0972492i
\(856\) 0 0
\(857\) −19.8161 19.8161i −0.676904 0.676904i 0.282394 0.959298i \(-0.408871\pi\)
−0.959298 + 0.282394i \(0.908871\pi\)
\(858\) 0 0
\(859\) 8.36310 + 8.36310i 0.285345 + 0.285345i 0.835236 0.549891i \(-0.185331\pi\)
−0.549891 + 0.835236i \(0.685331\pi\)
\(860\) 0 0
\(861\) 5.78514 5.78514i 0.197157 0.197157i
\(862\) 0 0
\(863\) −21.6634 + 21.6634i −0.737431 + 0.737431i −0.972080 0.234649i \(-0.924606\pi\)
0.234649 + 0.972080i \(0.424606\pi\)
\(864\) 0 0
\(865\) −0.840778 + 0.124750i −0.0285873 + 0.00424162i
\(866\) 0 0
\(867\) 107.625 3.65513
\(868\) 0 0
\(869\) 54.2524 54.2524i 1.84038 1.84038i
\(870\) 0 0
\(871\) 0.943473 0.0319684
\(872\) 0 0
\(873\) 10.8843 10.8843i 0.368377 0.368377i
\(874\) 0 0
\(875\) −5.26484 + 14.7195i −0.177984 + 0.497609i
\(876\) 0 0
\(877\) 40.1665i 1.35633i −0.734911 0.678164i \(-0.762776\pi\)
0.734911 0.678164i \(-0.237224\pi\)
\(878\) 0 0
\(879\) −30.3504 −1.02369
\(880\) 0 0
\(881\) −39.2893 −1.32369 −0.661845 0.749641i \(-0.730226\pi\)
−0.661845 + 0.749641i \(0.730226\pi\)
\(882\) 0 0
\(883\) 53.3120i 1.79409i 0.441938 + 0.897046i \(0.354291\pi\)
−0.441938 + 0.897046i \(0.645709\pi\)
\(884\) 0 0
\(885\) −28.8247 + 38.8687i −0.968932 + 1.30656i
\(886\) 0 0
\(887\) 10.4732 10.4732i 0.351654 0.351654i −0.509071 0.860725i \(-0.670011\pi\)
0.860725 + 0.509071i \(0.170011\pi\)
\(888\) 0 0
\(889\) 2.99148 0.100331
\(890\) 0 0
\(891\) −36.0653 + 36.0653i −1.20823 + 1.20823i
\(892\) 0 0
\(893\) 1.85460 0.0620618
\(894\) 0 0
\(895\) −20.0860 + 27.0850i −0.671402 + 0.905351i
\(896\) 0 0
\(897\) −17.8829 + 17.8829i −0.597091 + 0.597091i
\(898\) 0 0
\(899\) 27.2981 27.2981i 0.910444 0.910444i
\(900\) 0 0
\(901\) 36.8115 + 36.8115i 1.22637 + 1.22637i
\(902\) 0 0
\(903\) −4.15779 4.15779i −0.138363 0.138363i
\(904\) 0 0
\(905\) 33.2799 + 24.6801i 1.10626 + 0.820395i
\(906\) 0 0
\(907\) 36.6800i 1.21794i 0.793193 + 0.608970i \(0.208417\pi\)
−0.793193 + 0.608970i \(0.791583\pi\)
\(908\) 0 0
\(909\) −36.6034 36.6034i −1.21406 1.21406i
\(910\) 0 0
\(911\) 53.8902i 1.78546i 0.450590 + 0.892731i \(0.351214\pi\)
−0.450590 + 0.892731i \(0.648786\pi\)
\(912\) 0 0
\(913\) −38.0906 38.0906i −1.26062 1.26062i
\(914\) 0 0
\(915\) −48.5293 35.9890i −1.60433 1.18976i
\(916\) 0 0
\(917\) 4.90531 0.161988
\(918\) 0 0
\(919\) 19.3084i 0.636925i −0.947935 0.318463i \(-0.896833\pi\)
0.947935 0.318463i \(-0.103167\pi\)
\(920\) 0 0
\(921\) 14.1094i 0.464920i
\(922\) 0 0
\(923\) −4.29758 −0.141457
\(924\) 0 0
\(925\) −1.90938 + 0.579359i −0.0627799 + 0.0190492i
\(926\) 0 0
\(927\) 34.9182 + 34.9182i 1.14686 + 1.14686i
\(928\) 0 0
\(929\) 33.9731i 1.11462i 0.830304 + 0.557310i \(0.188167\pi\)
−0.830304 + 0.557310i \(0.811833\pi\)
\(930\) 0 0
\(931\) 1.97915 + 1.97915i 0.0648640 + 0.0648640i
\(932\) 0 0
\(933\) 36.4676i 1.19390i
\(934\) 0 0
\(935\) 13.9368 + 93.9298i 0.455781 + 3.07183i
\(936\) 0 0
\(937\) 1.43767 + 1.43767i 0.0469665 + 0.0469665i 0.730200 0.683233i \(-0.239427\pi\)
−0.683233 + 0.730200i \(0.739427\pi\)
\(938\) 0 0
\(939\) −13.8498 13.8498i −0.451970 0.451970i
\(940\) 0 0
\(941\) −0.637265 + 0.637265i −0.0207742 + 0.0207742i −0.717418 0.696643i \(-0.754676\pi\)
0.696643 + 0.717418i \(0.254676\pi\)
\(942\) 0 0
\(943\) −10.3673 + 10.3673i −0.337606 + 0.337606i
\(944\) 0 0
\(945\) −0.888937 0.659229i −0.0289171 0.0214447i
\(946\) 0 0
\(947\) −59.0025 −1.91732 −0.958662 0.284548i \(-0.908156\pi\)
−0.958662 + 0.284548i \(0.908156\pi\)
\(948\) 0 0
\(949\) 9.13938 9.13938i 0.296677 0.296677i
\(950\) 0 0
\(951\) 42.6413 1.38274
\(952\) 0 0
\(953\) 28.7408 28.7408i 0.931007 0.931007i −0.0667618 0.997769i \(-0.521267\pi\)
0.997769 + 0.0667618i \(0.0212668\pi\)
\(954\) 0 0
\(955\) 3.69451 + 24.9000i 0.119552 + 0.805744i
\(956\) 0 0
\(957\) 78.6105i 2.54112i
\(958\) 0 0
\(959\) 28.8252 0.930815
\(960\) 0 0
\(961\) −10.4096 −0.335795
\(962\) 0 0
\(963\) 29.5689i 0.952846i
\(964\) 0 0
\(965\) −20.6042 15.2799i −0.663273 0.491878i
\(966\) 0 0
\(967\) −30.8042 + 30.8042i −0.990595 + 0.990595i −0.999956 0.00936123i \(-0.997020\pi\)
0.00936123 + 0.999956i \(0.497020\pi\)
\(968\) 0 0
\(969\) 10.5252 0.338118
\(970\) 0 0
\(971\) 34.8214 34.8214i 1.11747 1.11747i 0.125362 0.992111i \(-0.459991\pi\)
0.992111 0.125362i \(-0.0400092\pi\)
\(972\) 0 0
\(973\) −2.41494 −0.0774193
\(974\) 0 0
\(975\) −6.05630 19.9596i −0.193957 0.639218i
\(976\) 0 0
\(977\) −15.4205 + 15.4205i −0.493344 + 0.493344i −0.909358 0.416014i \(-0.863427\pi\)
0.416014 + 0.909358i \(0.363427\pi\)
\(978\) 0 0
\(979\) 33.2844 33.2844i 1.06377 1.06377i
\(980\) 0 0
\(981\) 30.4882 + 30.4882i 0.973413 + 0.973413i
\(982\) 0 0
\(983\) −24.3982 24.3982i −0.778183 0.778183i 0.201339 0.979522i \(-0.435471\pi\)
−0.979522 + 0.201339i \(0.935471\pi\)
\(984\) 0 0
\(985\) −21.1655 + 3.14042i −0.674389 + 0.100062i
\(986\) 0 0
\(987\) 11.3086i 0.359956i
\(988\) 0 0
\(989\) 7.45100 + 7.45100i 0.236928 + 0.236928i
\(990\) 0 0
\(991\) 10.3612i 0.329136i −0.986366 0.164568i \(-0.947377\pi\)
0.986366 0.164568i \(-0.0526229\pi\)
\(992\) 0 0
\(993\) −32.8482 32.8482i −1.04241 1.04241i
\(994\) 0 0
\(995\) 1.07852 + 7.26890i 0.0341913 + 0.230440i
\(996\) 0 0
\(997\) −47.1143 −1.49212 −0.746062 0.665876i \(-0.768058\pi\)
−0.746062 + 0.665876i \(0.768058\pi\)
\(998\) 0 0
\(999\) 0.141258i 0.00446921i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1280.2.j.d.63.14 yes 32
4.3 odd 2 inner 1280.2.j.d.63.3 yes 32
5.2 odd 4 1280.2.s.c.1087.14 yes 32
8.3 odd 2 1280.2.j.c.63.14 yes 32
8.5 even 2 1280.2.j.c.63.3 32
16.3 odd 4 1280.2.s.c.703.14 yes 32
16.5 even 4 1280.2.s.d.703.14 yes 32
16.11 odd 4 1280.2.s.d.703.3 yes 32
16.13 even 4 1280.2.s.c.703.3 yes 32
20.7 even 4 1280.2.s.c.1087.3 yes 32
40.27 even 4 1280.2.s.d.1087.14 yes 32
40.37 odd 4 1280.2.s.d.1087.3 yes 32
80.27 even 4 1280.2.j.c.447.14 yes 32
80.37 odd 4 1280.2.j.c.447.3 yes 32
80.67 even 4 inner 1280.2.j.d.447.3 yes 32
80.77 odd 4 inner 1280.2.j.d.447.14 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1280.2.j.c.63.3 32 8.5 even 2
1280.2.j.c.63.14 yes 32 8.3 odd 2
1280.2.j.c.447.3 yes 32 80.37 odd 4
1280.2.j.c.447.14 yes 32 80.27 even 4
1280.2.j.d.63.3 yes 32 4.3 odd 2 inner
1280.2.j.d.63.14 yes 32 1.1 even 1 trivial
1280.2.j.d.447.3 yes 32 80.67 even 4 inner
1280.2.j.d.447.14 yes 32 80.77 odd 4 inner
1280.2.s.c.703.3 yes 32 16.13 even 4
1280.2.s.c.703.14 yes 32 16.3 odd 4
1280.2.s.c.1087.3 yes 32 20.7 even 4
1280.2.s.c.1087.14 yes 32 5.2 odd 4
1280.2.s.d.703.3 yes 32 16.11 odd 4
1280.2.s.d.703.14 yes 32 16.5 even 4
1280.2.s.d.1087.3 yes 32 40.37 odd 4
1280.2.s.d.1087.14 yes 32 40.27 even 4