Properties

Label 1280.2.j.d.63.10
Level $1280$
Weight $2$
Character 1280.63
Analytic conductor $10.221$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1280,2,Mod(63,1280)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1280.63"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1280, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1280 = 2^{8} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1280.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,0,0,-32,0,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2208514587\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 63.10
Character \(\chi\) \(=\) 1280.63
Dual form 1280.2.j.d.447.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.782176i q^{3} +(1.69250 + 1.46131i) q^{5} +(1.70686 - 1.70686i) q^{7} +2.38820 q^{9} +(-0.646047 + 0.646047i) q^{11} +0.260697 q^{13} +(-1.14301 + 1.32383i) q^{15} +(3.72262 - 3.72262i) q^{17} +(1.70356 - 1.70356i) q^{19} +(1.33507 + 1.33507i) q^{21} +(0.151537 + 0.151537i) q^{23} +(0.729119 + 4.94655i) q^{25} +4.21452i q^{27} +(-2.19762 - 2.19762i) q^{29} -9.53524i q^{31} +(-0.505323 - 0.505323i) q^{33} +(5.38312 - 0.394603i) q^{35} +6.34990 q^{37} +0.203911i q^{39} +7.94153i q^{41} -8.86040 q^{43} +(4.04203 + 3.48991i) q^{45} +(-7.80293 - 7.80293i) q^{47} +1.17325i q^{49} +(2.91174 + 2.91174i) q^{51} -0.114178i q^{53} +(-2.03751 + 0.149357i) q^{55} +(1.33248 + 1.33248i) q^{57} +(10.2731 + 10.2731i) q^{59} +(-4.14809 + 4.14809i) q^{61} +(4.07632 - 4.07632i) q^{63} +(0.441230 + 0.380961i) q^{65} +4.61532 q^{67} +(-0.118529 + 0.118529i) q^{69} -5.62379 q^{71} +(6.14095 - 6.14095i) q^{73} +(-3.86908 + 0.570299i) q^{75} +2.20542i q^{77} -11.2806 q^{79} +3.86810 q^{81} +9.37971i q^{83} +(11.7405 - 0.860618i) q^{85} +(1.71893 - 1.71893i) q^{87} -4.25350 q^{89} +(0.444974 - 0.444974i) q^{91} +7.45824 q^{93} +(5.37270 - 0.393839i) q^{95} +(1.49978 - 1.49978i) q^{97} +(-1.54289 + 1.54289i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 32 q^{9} + 16 q^{13} + 8 q^{17} + 8 q^{21} + 16 q^{25} - 16 q^{29} + 56 q^{33} - 40 q^{45} - 8 q^{57} - 8 q^{61} - 72 q^{65} + 40 q^{69} + 8 q^{73} - 64 q^{81} - 24 q^{85} - 16 q^{89} + 224 q^{93}+ \cdots + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1280\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.782176i 0.451590i 0.974175 + 0.225795i \(0.0724979\pi\)
−0.974175 + 0.225795i \(0.927502\pi\)
\(4\) 0 0
\(5\) 1.69250 + 1.46131i 0.756909 + 0.653520i
\(6\) 0 0
\(7\) 1.70686 1.70686i 0.645133 0.645133i −0.306680 0.951813i \(-0.599218\pi\)
0.951813 + 0.306680i \(0.0992181\pi\)
\(8\) 0 0
\(9\) 2.38820 0.796067
\(10\) 0 0
\(11\) −0.646047 + 0.646047i −0.194790 + 0.194790i −0.797762 0.602972i \(-0.793983\pi\)
0.602972 + 0.797762i \(0.293983\pi\)
\(12\) 0 0
\(13\) 0.260697 0.0723044 0.0361522 0.999346i \(-0.488490\pi\)
0.0361522 + 0.999346i \(0.488490\pi\)
\(14\) 0 0
\(15\) −1.14301 + 1.32383i −0.295123 + 0.341813i
\(16\) 0 0
\(17\) 3.72262 3.72262i 0.902868 0.902868i −0.0928157 0.995683i \(-0.529587\pi\)
0.995683 + 0.0928157i \(0.0295867\pi\)
\(18\) 0 0
\(19\) 1.70356 1.70356i 0.390822 0.390822i −0.484158 0.874981i \(-0.660874\pi\)
0.874981 + 0.484158i \(0.160874\pi\)
\(20\) 0 0
\(21\) 1.33507 + 1.33507i 0.291335 + 0.291335i
\(22\) 0 0
\(23\) 0.151537 + 0.151537i 0.0315976 + 0.0315976i 0.722729 0.691131i \(-0.242887\pi\)
−0.691131 + 0.722729i \(0.742887\pi\)
\(24\) 0 0
\(25\) 0.729119 + 4.94655i 0.145824 + 0.989311i
\(26\) 0 0
\(27\) 4.21452i 0.811085i
\(28\) 0 0
\(29\) −2.19762 2.19762i −0.408088 0.408088i 0.472983 0.881071i \(-0.343177\pi\)
−0.881071 + 0.472983i \(0.843177\pi\)
\(30\) 0 0
\(31\) 9.53524i 1.71258i −0.516496 0.856290i \(-0.672764\pi\)
0.516496 0.856290i \(-0.327236\pi\)
\(32\) 0 0
\(33\) −0.505323 0.505323i −0.0879654 0.0879654i
\(34\) 0 0
\(35\) 5.38312 0.394603i 0.909914 0.0667000i
\(36\) 0 0
\(37\) 6.34990 1.04392 0.521959 0.852971i \(-0.325201\pi\)
0.521959 + 0.852971i \(0.325201\pi\)
\(38\) 0 0
\(39\) 0.203911i 0.0326519i
\(40\) 0 0
\(41\) 7.94153i 1.24026i 0.784500 + 0.620129i \(0.212920\pi\)
−0.784500 + 0.620129i \(0.787080\pi\)
\(42\) 0 0
\(43\) −8.86040 −1.35120 −0.675599 0.737269i \(-0.736115\pi\)
−0.675599 + 0.737269i \(0.736115\pi\)
\(44\) 0 0
\(45\) 4.04203 + 3.48991i 0.602550 + 0.520245i
\(46\) 0 0
\(47\) −7.80293 7.80293i −1.13817 1.13817i −0.988777 0.149397i \(-0.952267\pi\)
−0.149397 0.988777i \(-0.547733\pi\)
\(48\) 0 0
\(49\) 1.17325i 0.167608i
\(50\) 0 0
\(51\) 2.91174 + 2.91174i 0.407726 + 0.407726i
\(52\) 0 0
\(53\) 0.114178i 0.0156835i −0.999969 0.00784176i \(-0.997504\pi\)
0.999969 0.00784176i \(-0.00249614\pi\)
\(54\) 0 0
\(55\) −2.03751 + 0.149357i −0.274738 + 0.0201393i
\(56\) 0 0
\(57\) 1.33248 + 1.33248i 0.176491 + 0.176491i
\(58\) 0 0
\(59\) 10.2731 + 10.2731i 1.33744 + 1.33744i 0.898532 + 0.438909i \(0.144635\pi\)
0.438909 + 0.898532i \(0.355365\pi\)
\(60\) 0 0
\(61\) −4.14809 + 4.14809i −0.531108 + 0.531108i −0.920902 0.389794i \(-0.872546\pi\)
0.389794 + 0.920902i \(0.372546\pi\)
\(62\) 0 0
\(63\) 4.07632 4.07632i 0.513569 0.513569i
\(64\) 0 0
\(65\) 0.441230 + 0.380961i 0.0547279 + 0.0472524i
\(66\) 0 0
\(67\) 4.61532 0.563851 0.281925 0.959436i \(-0.409027\pi\)
0.281925 + 0.959436i \(0.409027\pi\)
\(68\) 0 0
\(69\) −0.118529 + 0.118529i −0.0142692 + 0.0142692i
\(70\) 0 0
\(71\) −5.62379 −0.667421 −0.333710 0.942676i \(-0.608301\pi\)
−0.333710 + 0.942676i \(0.608301\pi\)
\(72\) 0 0
\(73\) 6.14095 6.14095i 0.718744 0.718744i −0.249604 0.968348i \(-0.580301\pi\)
0.968348 + 0.249604i \(0.0803005\pi\)
\(74\) 0 0
\(75\) −3.86908 + 0.570299i −0.446762 + 0.0658525i
\(76\) 0 0
\(77\) 2.20542i 0.251331i
\(78\) 0 0
\(79\) −11.2806 −1.26917 −0.634585 0.772853i \(-0.718829\pi\)
−0.634585 + 0.772853i \(0.718829\pi\)
\(80\) 0 0
\(81\) 3.86810 0.429789
\(82\) 0 0
\(83\) 9.37971i 1.02956i 0.857323 + 0.514779i \(0.172126\pi\)
−0.857323 + 0.514779i \(0.827874\pi\)
\(84\) 0 0
\(85\) 11.7405 0.860618i 1.27343 0.0933471i
\(86\) 0 0
\(87\) 1.71893 1.71893i 0.184288 0.184288i
\(88\) 0 0
\(89\) −4.25350 −0.450870 −0.225435 0.974258i \(-0.572380\pi\)
−0.225435 + 0.974258i \(0.572380\pi\)
\(90\) 0 0
\(91\) 0.444974 0.444974i 0.0466459 0.0466459i
\(92\) 0 0
\(93\) 7.45824 0.773383
\(94\) 0 0
\(95\) 5.37270 0.393839i 0.551227 0.0404070i
\(96\) 0 0
\(97\) 1.49978 1.49978i 0.152280 0.152280i −0.626856 0.779135i \(-0.715658\pi\)
0.779135 + 0.626856i \(0.215658\pi\)
\(98\) 0 0
\(99\) −1.54289 + 1.54289i −0.155066 + 0.155066i
\(100\) 0 0
\(101\) 8.79082 + 8.79082i 0.874719 + 0.874719i 0.992982 0.118263i \(-0.0377327\pi\)
−0.118263 + 0.992982i \(0.537733\pi\)
\(102\) 0 0
\(103\) 13.8635 + 13.8635i 1.36601 + 1.36601i 0.866043 + 0.499970i \(0.166655\pi\)
0.499970 + 0.866043i \(0.333345\pi\)
\(104\) 0 0
\(105\) 0.308649 + 4.21055i 0.0301210 + 0.410908i
\(106\) 0 0
\(107\) 10.6841i 1.03287i 0.856326 + 0.516436i \(0.172742\pi\)
−0.856326 + 0.516436i \(0.827258\pi\)
\(108\) 0 0
\(109\) −9.10545 9.10545i −0.872144 0.872144i 0.120562 0.992706i \(-0.461530\pi\)
−0.992706 + 0.120562i \(0.961530\pi\)
\(110\) 0 0
\(111\) 4.96675i 0.471423i
\(112\) 0 0
\(113\) 5.92583 + 5.92583i 0.557455 + 0.557455i 0.928582 0.371127i \(-0.121029\pi\)
−0.371127 + 0.928582i \(0.621029\pi\)
\(114\) 0 0
\(115\) 0.0350333 + 0.477920i 0.00326687 + 0.0445662i
\(116\) 0 0
\(117\) 0.622597 0.0575591
\(118\) 0 0
\(119\) 12.7080i 1.16494i
\(120\) 0 0
\(121\) 10.1652i 0.924113i
\(122\) 0 0
\(123\) −6.21168 −0.560088
\(124\) 0 0
\(125\) −5.99444 + 9.43752i −0.536159 + 0.844117i
\(126\) 0 0
\(127\) 1.44106 + 1.44106i 0.127873 + 0.127873i 0.768147 0.640274i \(-0.221179\pi\)
−0.640274 + 0.768147i \(0.721179\pi\)
\(128\) 0 0
\(129\) 6.93040i 0.610187i
\(130\) 0 0
\(131\) −8.31926 8.31926i −0.726857 0.726857i 0.243136 0.969992i \(-0.421824\pi\)
−0.969992 + 0.243136i \(0.921824\pi\)
\(132\) 0 0
\(133\) 5.81546i 0.504265i
\(134\) 0 0
\(135\) −6.15874 + 7.13308i −0.530060 + 0.613918i
\(136\) 0 0
\(137\) −7.09034 7.09034i −0.605768 0.605768i 0.336069 0.941837i \(-0.390902\pi\)
−0.941837 + 0.336069i \(0.890902\pi\)
\(138\) 0 0
\(139\) −5.53541 5.53541i −0.469507 0.469507i 0.432248 0.901755i \(-0.357721\pi\)
−0.901755 + 0.432248i \(0.857721\pi\)
\(140\) 0 0
\(141\) 6.10327 6.10327i 0.513988 0.513988i
\(142\) 0 0
\(143\) −0.168423 + 0.168423i −0.0140842 + 0.0140842i
\(144\) 0 0
\(145\) −0.508060 6.93089i −0.0421921 0.575579i
\(146\) 0 0
\(147\) −0.917691 −0.0756899
\(148\) 0 0
\(149\) −2.92249 + 2.92249i −0.239420 + 0.239420i −0.816610 0.577190i \(-0.804149\pi\)
0.577190 + 0.816610i \(0.304149\pi\)
\(150\) 0 0
\(151\) −2.33398 −0.189937 −0.0949683 0.995480i \(-0.530275\pi\)
−0.0949683 + 0.995480i \(0.530275\pi\)
\(152\) 0 0
\(153\) 8.89036 8.89036i 0.718743 0.718743i
\(154\) 0 0
\(155\) 13.9340 16.1384i 1.11920 1.29627i
\(156\) 0 0
\(157\) 13.5828i 1.08403i −0.840370 0.542014i \(-0.817662\pi\)
0.840370 0.542014i \(-0.182338\pi\)
\(158\) 0 0
\(159\) 0.0893072 0.00708252
\(160\) 0 0
\(161\) 0.517305 0.0407693
\(162\) 0 0
\(163\) 23.9271i 1.87411i −0.349175 0.937057i \(-0.613538\pi\)
0.349175 0.937057i \(-0.386462\pi\)
\(164\) 0 0
\(165\) −0.116824 1.59369i −0.00909471 0.124069i
\(166\) 0 0
\(167\) 6.53242 6.53242i 0.505493 0.505493i −0.407646 0.913140i \(-0.633650\pi\)
0.913140 + 0.407646i \(0.133650\pi\)
\(168\) 0 0
\(169\) −12.9320 −0.994772
\(170\) 0 0
\(171\) 4.06843 4.06843i 0.311121 0.311121i
\(172\) 0 0
\(173\) 10.5017 0.798430 0.399215 0.916857i \(-0.369283\pi\)
0.399215 + 0.916857i \(0.369283\pi\)
\(174\) 0 0
\(175\) 9.68758 + 7.19857i 0.732312 + 0.544161i
\(176\) 0 0
\(177\) −8.03536 + 8.03536i −0.603974 + 0.603974i
\(178\) 0 0
\(179\) −13.0235 + 13.0235i −0.973420 + 0.973420i −0.999656 0.0262359i \(-0.991648\pi\)
0.0262359 + 0.999656i \(0.491648\pi\)
\(180\) 0 0
\(181\) −10.5304 10.5304i −0.782719 0.782719i 0.197570 0.980289i \(-0.436695\pi\)
−0.980289 + 0.197570i \(0.936695\pi\)
\(182\) 0 0
\(183\) −3.24454 3.24454i −0.239843 0.239843i
\(184\) 0 0
\(185\) 10.7472 + 9.27921i 0.790151 + 0.682221i
\(186\) 0 0
\(187\) 4.80997i 0.351740i
\(188\) 0 0
\(189\) 7.19360 + 7.19360i 0.523258 + 0.523258i
\(190\) 0 0
\(191\) 9.96706i 0.721191i 0.932722 + 0.360596i \(0.117427\pi\)
−0.932722 + 0.360596i \(0.882573\pi\)
\(192\) 0 0
\(193\) −3.42094 3.42094i −0.246245 0.246245i 0.573183 0.819428i \(-0.305709\pi\)
−0.819428 + 0.573183i \(0.805709\pi\)
\(194\) 0 0
\(195\) −0.297978 + 0.345120i −0.0213387 + 0.0247146i
\(196\) 0 0
\(197\) −26.5699 −1.89303 −0.946514 0.322662i \(-0.895422\pi\)
−0.946514 + 0.322662i \(0.895422\pi\)
\(198\) 0 0
\(199\) 6.75067i 0.478542i 0.970953 + 0.239271i \(0.0769085\pi\)
−0.970953 + 0.239271i \(0.923092\pi\)
\(200\) 0 0
\(201\) 3.60999i 0.254629i
\(202\) 0 0
\(203\) −7.50207 −0.526542
\(204\) 0 0
\(205\) −11.6051 + 13.4410i −0.810533 + 0.938763i
\(206\) 0 0
\(207\) 0.361901 + 0.361901i 0.0251538 + 0.0251538i
\(208\) 0 0
\(209\) 2.20115i 0.152257i
\(210\) 0 0
\(211\) 2.63954 + 2.63954i 0.181714 + 0.181714i 0.792102 0.610388i \(-0.208987\pi\)
−0.610388 + 0.792102i \(0.708987\pi\)
\(212\) 0 0
\(213\) 4.39879i 0.301400i
\(214\) 0 0
\(215\) −14.9962 12.9478i −1.02274 0.883035i
\(216\) 0 0
\(217\) −16.2753 16.2753i −1.10484 1.10484i
\(218\) 0 0
\(219\) 4.80330 + 4.80330i 0.324577 + 0.324577i
\(220\) 0 0
\(221\) 0.970476 0.970476i 0.0652813 0.0652813i
\(222\) 0 0
\(223\) 12.2892 12.2892i 0.822943 0.822943i −0.163586 0.986529i \(-0.552306\pi\)
0.986529 + 0.163586i \(0.0523063\pi\)
\(224\) 0 0
\(225\) 1.74128 + 11.8134i 0.116085 + 0.787557i
\(226\) 0 0
\(227\) 9.10335 0.604211 0.302105 0.953275i \(-0.402311\pi\)
0.302105 + 0.953275i \(0.402311\pi\)
\(228\) 0 0
\(229\) −12.9591 + 12.9591i −0.856363 + 0.856363i −0.990908 0.134545i \(-0.957043\pi\)
0.134545 + 0.990908i \(0.457043\pi\)
\(230\) 0 0
\(231\) −1.72503 −0.113499
\(232\) 0 0
\(233\) 16.3322 16.3322i 1.06996 1.06996i 0.0725980 0.997361i \(-0.476871\pi\)
0.997361 0.0725980i \(-0.0231290\pi\)
\(234\) 0 0
\(235\) −1.80393 24.6090i −0.117675 1.60531i
\(236\) 0 0
\(237\) 8.82344i 0.573144i
\(238\) 0 0
\(239\) −8.38208 −0.542192 −0.271096 0.962552i \(-0.587386\pi\)
−0.271096 + 0.962552i \(0.587386\pi\)
\(240\) 0 0
\(241\) −21.8249 −1.40587 −0.702933 0.711257i \(-0.748126\pi\)
−0.702933 + 0.711257i \(0.748126\pi\)
\(242\) 0 0
\(243\) 15.6691i 1.00517i
\(244\) 0 0
\(245\) −1.71449 + 1.98573i −0.109535 + 0.126864i
\(246\) 0 0
\(247\) 0.444112 0.444112i 0.0282582 0.0282582i
\(248\) 0 0
\(249\) −7.33659 −0.464938
\(250\) 0 0
\(251\) 12.3616 12.3616i 0.780259 0.780259i −0.199615 0.979874i \(-0.563969\pi\)
0.979874 + 0.199615i \(0.0639692\pi\)
\(252\) 0 0
\(253\) −0.195800 −0.0123098
\(254\) 0 0
\(255\) 0.673155 + 9.18310i 0.0421546 + 0.575068i
\(256\) 0 0
\(257\) −11.3629 + 11.3629i −0.708800 + 0.708800i −0.966283 0.257483i \(-0.917107\pi\)
0.257483 + 0.966283i \(0.417107\pi\)
\(258\) 0 0
\(259\) 10.8384 10.8384i 0.673466 0.673466i
\(260\) 0 0
\(261\) −5.24836 5.24836i −0.324865 0.324865i
\(262\) 0 0
\(263\) 11.3800 + 11.3800i 0.701721 + 0.701721i 0.964780 0.263059i \(-0.0847313\pi\)
−0.263059 + 0.964780i \(0.584731\pi\)
\(264\) 0 0
\(265\) 0.166850 0.193246i 0.0102495 0.0118710i
\(266\) 0 0
\(267\) 3.32699i 0.203608i
\(268\) 0 0
\(269\) −5.55401 5.55401i −0.338634 0.338634i 0.517219 0.855853i \(-0.326967\pi\)
−0.855853 + 0.517219i \(0.826967\pi\)
\(270\) 0 0
\(271\) 27.5500i 1.67355i 0.547550 + 0.836773i \(0.315560\pi\)
−0.547550 + 0.836773i \(0.684440\pi\)
\(272\) 0 0
\(273\) 0.348048 + 0.348048i 0.0210648 + 0.0210648i
\(274\) 0 0
\(275\) −3.66675 2.72466i −0.221113 0.164303i
\(276\) 0 0
\(277\) −21.0677 −1.26583 −0.632917 0.774219i \(-0.718143\pi\)
−0.632917 + 0.774219i \(0.718143\pi\)
\(278\) 0 0
\(279\) 22.7721i 1.36333i
\(280\) 0 0
\(281\) 24.7592i 1.47701i −0.674249 0.738504i \(-0.735533\pi\)
0.674249 0.738504i \(-0.264467\pi\)
\(282\) 0 0
\(283\) −17.8897 −1.06343 −0.531717 0.846922i \(-0.678453\pi\)
−0.531717 + 0.846922i \(0.678453\pi\)
\(284\) 0 0
\(285\) 0.308051 + 4.20240i 0.0182474 + 0.248929i
\(286\) 0 0
\(287\) 13.5551 + 13.5551i 0.800131 + 0.800131i
\(288\) 0 0
\(289\) 10.7158i 0.630340i
\(290\) 0 0
\(291\) 1.17309 + 1.17309i 0.0687680 + 0.0687680i
\(292\) 0 0
\(293\) 27.7548i 1.62145i −0.585427 0.810725i \(-0.699073\pi\)
0.585427 0.810725i \(-0.300927\pi\)
\(294\) 0 0
\(295\) 2.37499 + 32.3994i 0.138277 + 1.88636i
\(296\) 0 0
\(297\) −2.72278 2.72278i −0.157992 0.157992i
\(298\) 0 0
\(299\) 0.0395053 + 0.0395053i 0.00228465 + 0.00228465i
\(300\) 0 0
\(301\) −15.1235 + 15.1235i −0.871702 + 0.871702i
\(302\) 0 0
\(303\) −6.87597 + 6.87597i −0.395014 + 0.395014i
\(304\) 0 0
\(305\) −13.0823 + 0.958981i −0.749091 + 0.0549111i
\(306\) 0 0
\(307\) −30.6805 −1.75103 −0.875513 0.483194i \(-0.839476\pi\)
−0.875513 + 0.483194i \(0.839476\pi\)
\(308\) 0 0
\(309\) −10.8437 + 10.8437i −0.616877 + 0.616877i
\(310\) 0 0
\(311\) −15.9382 −0.903774 −0.451887 0.892075i \(-0.649249\pi\)
−0.451887 + 0.892075i \(0.649249\pi\)
\(312\) 0 0
\(313\) 3.39796 3.39796i 0.192064 0.192064i −0.604523 0.796587i \(-0.706636\pi\)
0.796587 + 0.604523i \(0.206636\pi\)
\(314\) 0 0
\(315\) 12.8560 0.942390i 0.724352 0.0530977i
\(316\) 0 0
\(317\) 8.14299i 0.457356i −0.973502 0.228678i \(-0.926560\pi\)
0.973502 0.228678i \(-0.0734403\pi\)
\(318\) 0 0
\(319\) 2.83953 0.158983
\(320\) 0 0
\(321\) −8.35686 −0.466435
\(322\) 0 0
\(323\) 12.6834i 0.705722i
\(324\) 0 0
\(325\) 0.190079 + 1.28955i 0.0105437 + 0.0715315i
\(326\) 0 0
\(327\) 7.12207 7.12207i 0.393851 0.393851i
\(328\) 0 0
\(329\) −26.6370 −1.46855
\(330\) 0 0
\(331\) 10.3975 10.3975i 0.571497 0.571497i −0.361050 0.932547i \(-0.617582\pi\)
0.932547 + 0.361050i \(0.117582\pi\)
\(332\) 0 0
\(333\) 15.1648 0.831028
\(334\) 0 0
\(335\) 7.81143 + 6.74443i 0.426784 + 0.368488i
\(336\) 0 0
\(337\) 16.4138 16.4138i 0.894116 0.894116i −0.100792 0.994908i \(-0.532138\pi\)
0.994908 + 0.100792i \(0.0321377\pi\)
\(338\) 0 0
\(339\) −4.63504 + 4.63504i −0.251741 + 0.251741i
\(340\) 0 0
\(341\) 6.16021 + 6.16021i 0.333594 + 0.333594i
\(342\) 0 0
\(343\) 13.9506 + 13.9506i 0.753262 + 0.753262i
\(344\) 0 0
\(345\) −0.373818 + 0.0274022i −0.0201257 + 0.00147528i
\(346\) 0 0
\(347\) 6.70343i 0.359859i −0.983680 0.179929i \(-0.942413\pi\)
0.983680 0.179929i \(-0.0575869\pi\)
\(348\) 0 0
\(349\) −16.5083 16.5083i −0.883668 0.883668i 0.110237 0.993905i \(-0.464839\pi\)
−0.993905 + 0.110237i \(0.964839\pi\)
\(350\) 0 0
\(351\) 1.09871i 0.0586450i
\(352\) 0 0
\(353\) 10.6294 + 10.6294i 0.565748 + 0.565748i 0.930935 0.365186i \(-0.118995\pi\)
−0.365186 + 0.930935i \(0.618995\pi\)
\(354\) 0 0
\(355\) −9.51827 8.21813i −0.505177 0.436173i
\(356\) 0 0
\(357\) 9.93988 0.526074
\(358\) 0 0
\(359\) 4.96557i 0.262073i −0.991378 0.131036i \(-0.958170\pi\)
0.991378 0.131036i \(-0.0418305\pi\)
\(360\) 0 0
\(361\) 13.1958i 0.694516i
\(362\) 0 0
\(363\) −7.95102 −0.417320
\(364\) 0 0
\(365\) 19.3674 1.41970i 1.01374 0.0743106i
\(366\) 0 0
\(367\) −1.99352 1.99352i −0.104061 0.104061i 0.653160 0.757220i \(-0.273443\pi\)
−0.757220 + 0.653160i \(0.773443\pi\)
\(368\) 0 0
\(369\) 18.9660i 0.987328i
\(370\) 0 0
\(371\) −0.194886 0.194886i −0.0101180 0.0101180i
\(372\) 0 0
\(373\) 8.86266i 0.458891i −0.973322 0.229446i \(-0.926309\pi\)
0.973322 0.229446i \(-0.0736913\pi\)
\(374\) 0 0
\(375\) −7.38180 4.68871i −0.381195 0.242124i
\(376\) 0 0
\(377\) −0.572914 0.572914i −0.0295066 0.0295066i
\(378\) 0 0
\(379\) 17.0332 + 17.0332i 0.874937 + 0.874937i 0.993005 0.118068i \(-0.0376702\pi\)
−0.118068 + 0.993005i \(0.537670\pi\)
\(380\) 0 0
\(381\) −1.12716 + 1.12716i −0.0577463 + 0.0577463i
\(382\) 0 0
\(383\) 19.0504 19.0504i 0.973432 0.973432i −0.0262243 0.999656i \(-0.508348\pi\)
0.999656 + 0.0262243i \(0.00834842\pi\)
\(384\) 0 0
\(385\) −3.22282 + 3.73268i −0.164250 + 0.190235i
\(386\) 0 0
\(387\) −21.1604 −1.07564
\(388\) 0 0
\(389\) 4.66848 4.66848i 0.236701 0.236701i −0.578781 0.815483i \(-0.696472\pi\)
0.815483 + 0.578781i \(0.196472\pi\)
\(390\) 0 0
\(391\) 1.12823 0.0570570
\(392\) 0 0
\(393\) 6.50713 6.50713i 0.328241 0.328241i
\(394\) 0 0
\(395\) −19.0925 16.4845i −0.960646 0.829427i
\(396\) 0 0
\(397\) 6.29671i 0.316023i −0.987437 0.158012i \(-0.949492\pi\)
0.987437 0.158012i \(-0.0505083\pi\)
\(398\) 0 0
\(399\) 4.54872 0.227721
\(400\) 0 0
\(401\) 18.0541 0.901580 0.450790 0.892630i \(-0.351142\pi\)
0.450790 + 0.892630i \(0.351142\pi\)
\(402\) 0 0
\(403\) 2.48581i 0.123827i
\(404\) 0 0
\(405\) 6.54676 + 5.65251i 0.325311 + 0.280876i
\(406\) 0 0
\(407\) −4.10234 + 4.10234i −0.203345 + 0.203345i
\(408\) 0 0
\(409\) −21.6420 −1.07013 −0.535064 0.844812i \(-0.679712\pi\)
−0.535064 + 0.844812i \(0.679712\pi\)
\(410\) 0 0
\(411\) 5.54589 5.54589i 0.273559 0.273559i
\(412\) 0 0
\(413\) 35.0694 1.72565
\(414\) 0 0
\(415\) −13.7067 + 15.8752i −0.672836 + 0.779282i
\(416\) 0 0
\(417\) 4.32966 4.32966i 0.212025 0.212025i
\(418\) 0 0
\(419\) −7.23877 + 7.23877i −0.353637 + 0.353637i −0.861461 0.507824i \(-0.830450\pi\)
0.507824 + 0.861461i \(0.330450\pi\)
\(420\) 0 0
\(421\) −0.595174 0.595174i −0.0290070 0.0290070i 0.692455 0.721462i \(-0.256529\pi\)
−0.721462 + 0.692455i \(0.756529\pi\)
\(422\) 0 0
\(423\) −18.6350 18.6350i −0.906063 0.906063i
\(424\) 0 0
\(425\) 21.1284 + 15.6999i 1.02488 + 0.761557i
\(426\) 0 0
\(427\) 14.1604i 0.685271i
\(428\) 0 0
\(429\) −0.131736 0.131736i −0.00636028 0.00636028i
\(430\) 0 0
\(431\) 4.38072i 0.211012i 0.994419 + 0.105506i \(0.0336462\pi\)
−0.994419 + 0.105506i \(0.966354\pi\)
\(432\) 0 0
\(433\) −25.7387 25.7387i −1.23692 1.23692i −0.961251 0.275673i \(-0.911099\pi\)
−0.275673 0.961251i \(-0.588901\pi\)
\(434\) 0 0
\(435\) 5.42118 0.397392i 0.259926 0.0190535i
\(436\) 0 0
\(437\) 0.516303 0.0246981
\(438\) 0 0
\(439\) 3.34072i 0.159444i 0.996817 + 0.0797219i \(0.0254032\pi\)
−0.996817 + 0.0797219i \(0.974597\pi\)
\(440\) 0 0
\(441\) 2.80197i 0.133427i
\(442\) 0 0
\(443\) −2.79018 −0.132566 −0.0662828 0.997801i \(-0.521114\pi\)
−0.0662828 + 0.997801i \(0.521114\pi\)
\(444\) 0 0
\(445\) −7.19906 6.21571i −0.341268 0.294653i
\(446\) 0 0
\(447\) −2.28590 2.28590i −0.108119 0.108119i
\(448\) 0 0
\(449\) 17.5342i 0.827490i 0.910393 + 0.413745i \(0.135780\pi\)
−0.910393 + 0.413745i \(0.864220\pi\)
\(450\) 0 0
\(451\) −5.13060 5.13060i −0.241591 0.241591i
\(452\) 0 0
\(453\) 1.82558i 0.0857734i
\(454\) 0 0
\(455\) 1.40337 0.102872i 0.0657908 0.00482271i
\(456\) 0 0
\(457\) −11.8607 11.8607i −0.554821 0.554821i 0.373007 0.927828i \(-0.378327\pi\)
−0.927828 + 0.373007i \(0.878327\pi\)
\(458\) 0 0
\(459\) 15.6891 + 15.6891i 0.732303 + 0.732303i
\(460\) 0 0
\(461\) −10.7534 + 10.7534i −0.500836 + 0.500836i −0.911698 0.410862i \(-0.865228\pi\)
0.410862 + 0.911698i \(0.365228\pi\)
\(462\) 0 0
\(463\) −4.13024 + 4.13024i −0.191949 + 0.191949i −0.796538 0.604589i \(-0.793337\pi\)
0.604589 + 0.796538i \(0.293337\pi\)
\(464\) 0 0
\(465\) 12.6231 + 10.8988i 0.585381 + 0.505421i
\(466\) 0 0
\(467\) −1.03647 −0.0479620 −0.0239810 0.999712i \(-0.507634\pi\)
−0.0239810 + 0.999712i \(0.507634\pi\)
\(468\) 0 0
\(469\) 7.87770 7.87770i 0.363758 0.363758i
\(470\) 0 0
\(471\) 10.6242 0.489536
\(472\) 0 0
\(473\) 5.72424 5.72424i 0.263201 0.263201i
\(474\) 0 0
\(475\) 9.66882 + 7.18463i 0.443636 + 0.329654i
\(476\) 0 0
\(477\) 0.272679i 0.0124851i
\(478\) 0 0
\(479\) 4.45599 0.203599 0.101800 0.994805i \(-0.467540\pi\)
0.101800 + 0.994805i \(0.467540\pi\)
\(480\) 0 0
\(481\) 1.65540 0.0754799
\(482\) 0 0
\(483\) 0.404624i 0.0184110i
\(484\) 0 0
\(485\) 4.73004 0.346729i 0.214780 0.0157442i
\(486\) 0 0
\(487\) 4.32429 4.32429i 0.195952 0.195952i −0.602310 0.798262i \(-0.705753\pi\)
0.798262 + 0.602310i \(0.205753\pi\)
\(488\) 0 0
\(489\) 18.7152 0.846331
\(490\) 0 0
\(491\) −4.08628 + 4.08628i −0.184411 + 0.184411i −0.793275 0.608864i \(-0.791626\pi\)
0.608864 + 0.793275i \(0.291626\pi\)
\(492\) 0 0
\(493\) −16.3618 −0.736899
\(494\) 0 0
\(495\) −4.86599 + 0.356695i −0.218710 + 0.0160322i
\(496\) 0 0
\(497\) −9.59902 + 9.59902i −0.430575 + 0.430575i
\(498\) 0 0
\(499\) 23.2943 23.2943i 1.04280 1.04280i 0.0437532 0.999042i \(-0.486068\pi\)
0.999042 0.0437532i \(-0.0139315\pi\)
\(500\) 0 0
\(501\) 5.10950 + 5.10950i 0.228276 + 0.228276i
\(502\) 0 0
\(503\) 16.0272 + 16.0272i 0.714615 + 0.714615i 0.967497 0.252882i \(-0.0813784\pi\)
−0.252882 + 0.967497i \(0.581378\pi\)
\(504\) 0 0
\(505\) 2.03232 + 27.7246i 0.0904369 + 1.23373i
\(506\) 0 0
\(507\) 10.1151i 0.449229i
\(508\) 0 0
\(509\) 7.47749 + 7.47749i 0.331434 + 0.331434i 0.853131 0.521697i \(-0.174701\pi\)
−0.521697 + 0.853131i \(0.674701\pi\)
\(510\) 0 0
\(511\) 20.9635i 0.927370i
\(512\) 0 0
\(513\) 7.17967 + 7.17967i 0.316990 + 0.316990i
\(514\) 0 0
\(515\) 3.20505 + 43.7230i 0.141232 + 1.92666i
\(516\) 0 0
\(517\) 10.0821 0.443411
\(518\) 0 0
\(519\) 8.21419i 0.360563i
\(520\) 0 0
\(521\) 13.0578i 0.572071i −0.958219 0.286035i \(-0.907663\pi\)
0.958219 0.286035i \(-0.0923374\pi\)
\(522\) 0 0
\(523\) −25.1919 −1.10157 −0.550783 0.834649i \(-0.685671\pi\)
−0.550783 + 0.834649i \(0.685671\pi\)
\(524\) 0 0
\(525\) −5.63055 + 7.57740i −0.245737 + 0.330705i
\(526\) 0 0
\(527\) −35.4961 35.4961i −1.54623 1.54623i
\(528\) 0 0
\(529\) 22.9541i 0.998003i
\(530\) 0 0
\(531\) 24.5342 + 24.5342i 1.06469 + 1.06469i
\(532\) 0 0
\(533\) 2.07033i 0.0896761i
\(534\) 0 0
\(535\) −15.6129 + 18.0829i −0.675003 + 0.781791i
\(536\) 0 0
\(537\) −10.1867 10.1867i −0.439586 0.439586i
\(538\) 0 0
\(539\) −0.757977 0.757977i −0.0326484 0.0326484i
\(540\) 0 0
\(541\) −8.89675 + 8.89675i −0.382501 + 0.382501i −0.872002 0.489501i \(-0.837179\pi\)
0.489501 + 0.872002i \(0.337179\pi\)
\(542\) 0 0
\(543\) 8.23664 8.23664i 0.353468 0.353468i
\(544\) 0 0
\(545\) −2.10505 28.7169i −0.0901706 1.23010i
\(546\) 0 0
\(547\) 45.1122 1.92886 0.964430 0.264339i \(-0.0851538\pi\)
0.964430 + 0.264339i \(0.0851538\pi\)
\(548\) 0 0
\(549\) −9.90647 + 9.90647i −0.422798 + 0.422798i
\(550\) 0 0
\(551\) −7.48754 −0.318980
\(552\) 0 0
\(553\) −19.2545 + 19.2545i −0.818783 + 0.818783i
\(554\) 0 0
\(555\) −7.25798 + 8.40622i −0.308084 + 0.356824i
\(556\) 0 0
\(557\) 11.9924i 0.508135i 0.967186 + 0.254068i \(0.0817686\pi\)
−0.967186 + 0.254068i \(0.918231\pi\)
\(558\) 0 0
\(559\) −2.30988 −0.0976976
\(560\) 0 0
\(561\) −3.76225 −0.158842
\(562\) 0 0
\(563\) 3.82112i 0.161041i 0.996753 + 0.0805204i \(0.0256582\pi\)
−0.996753 + 0.0805204i \(0.974342\pi\)
\(564\) 0 0
\(565\) 1.36997 + 18.6890i 0.0576351 + 0.786251i
\(566\) 0 0
\(567\) 6.60231 6.60231i 0.277271 0.277271i
\(568\) 0 0
\(569\) 36.6832 1.53784 0.768921 0.639344i \(-0.220794\pi\)
0.768921 + 0.639344i \(0.220794\pi\)
\(570\) 0 0
\(571\) −22.1407 + 22.1407i −0.926559 + 0.926559i −0.997482 0.0709228i \(-0.977406\pi\)
0.0709228 + 0.997482i \(0.477406\pi\)
\(572\) 0 0
\(573\) −7.79600 −0.325683
\(574\) 0 0
\(575\) −0.639097 + 0.860074i −0.0266522 + 0.0358676i
\(576\) 0 0
\(577\) 9.94802 9.94802i 0.414142 0.414142i −0.469037 0.883179i \(-0.655399\pi\)
0.883179 + 0.469037i \(0.155399\pi\)
\(578\) 0 0
\(579\) 2.67578 2.67578i 0.111202 0.111202i
\(580\) 0 0
\(581\) 16.0099 + 16.0099i 0.664201 + 0.664201i
\(582\) 0 0
\(583\) 0.0737642 + 0.0737642i 0.00305500 + 0.00305500i
\(584\) 0 0
\(585\) 1.05375 + 0.909810i 0.0435671 + 0.0376160i
\(586\) 0 0
\(587\) 38.3121i 1.58131i 0.612263 + 0.790654i \(0.290259\pi\)
−0.612263 + 0.790654i \(0.709741\pi\)
\(588\) 0 0
\(589\) −16.2438 16.2438i −0.669314 0.669314i
\(590\) 0 0
\(591\) 20.7824i 0.854872i
\(592\) 0 0
\(593\) 20.1383 + 20.1383i 0.826979 + 0.826979i 0.987098 0.160119i \(-0.0511878\pi\)
−0.160119 + 0.987098i \(0.551188\pi\)
\(594\) 0 0
\(595\) 18.5704 21.5083i 0.761311 0.881753i
\(596\) 0 0
\(597\) −5.28021 −0.216105
\(598\) 0 0
\(599\) 21.4746i 0.877428i −0.898627 0.438714i \(-0.855434\pi\)
0.898627 0.438714i \(-0.144566\pi\)
\(600\) 0 0
\(601\) 13.0407i 0.531942i 0.963981 + 0.265971i \(0.0856925\pi\)
−0.963981 + 0.265971i \(0.914308\pi\)
\(602\) 0 0
\(603\) 11.0223 0.448863
\(604\) 0 0
\(605\) −14.8546 + 17.2047i −0.603926 + 0.699470i
\(606\) 0 0
\(607\) −10.5677 10.5677i −0.428928 0.428928i 0.459335 0.888263i \(-0.348088\pi\)
−0.888263 + 0.459335i \(0.848088\pi\)
\(608\) 0 0
\(609\) 5.86794i 0.237781i
\(610\) 0 0
\(611\) −2.03420 2.03420i −0.0822950 0.0822950i
\(612\) 0 0
\(613\) 11.0469i 0.446180i 0.974798 + 0.223090i \(0.0716143\pi\)
−0.974798 + 0.223090i \(0.928386\pi\)
\(614\) 0 0
\(615\) −10.5133 9.07721i −0.423936 0.366029i
\(616\) 0 0
\(617\) 29.4944 + 29.4944i 1.18740 + 1.18740i 0.977783 + 0.209618i \(0.0672220\pi\)
0.209618 + 0.977783i \(0.432778\pi\)
\(618\) 0 0
\(619\) −21.0249 21.0249i −0.845061 0.845061i 0.144451 0.989512i \(-0.453858\pi\)
−0.989512 + 0.144451i \(0.953858\pi\)
\(620\) 0 0
\(621\) −0.638656 + 0.638656i −0.0256284 + 0.0256284i
\(622\) 0 0
\(623\) −7.26013 + 7.26013i −0.290871 + 0.290871i
\(624\) 0 0
\(625\) −23.9368 + 7.21325i −0.957471 + 0.288530i
\(626\) 0 0
\(627\) −1.72169 −0.0687577
\(628\) 0 0
\(629\) 23.6383 23.6383i 0.942520 0.942520i
\(630\) 0 0
\(631\) 29.7066 1.18260 0.591301 0.806451i \(-0.298614\pi\)
0.591301 + 0.806451i \(0.298614\pi\)
\(632\) 0 0
\(633\) −2.06459 + 2.06459i −0.0820600 + 0.0820600i
\(634\) 0 0
\(635\) 0.333153 + 4.54484i 0.0132208 + 0.180356i
\(636\) 0 0
\(637\) 0.305864i 0.0121188i
\(638\) 0 0
\(639\) −13.4307 −0.531312
\(640\) 0 0
\(641\) 16.9395 0.669070 0.334535 0.942383i \(-0.391421\pi\)
0.334535 + 0.942383i \(0.391421\pi\)
\(642\) 0 0
\(643\) 3.35063i 0.132136i 0.997815 + 0.0660680i \(0.0210454\pi\)
−0.997815 + 0.0660680i \(0.978955\pi\)
\(644\) 0 0
\(645\) 10.1275 11.7297i 0.398770 0.461857i
\(646\) 0 0
\(647\) 12.6002 12.6002i 0.495365 0.495365i −0.414627 0.909992i \(-0.636088\pi\)
0.909992 + 0.414627i \(0.136088\pi\)
\(648\) 0 0
\(649\) −13.2738 −0.521041
\(650\) 0 0
\(651\) 12.7302 12.7302i 0.498935 0.498935i
\(652\) 0 0
\(653\) 40.7862 1.59609 0.798044 0.602599i \(-0.205868\pi\)
0.798044 + 0.602599i \(0.205868\pi\)
\(654\) 0 0
\(655\) −1.92330 26.2374i −0.0751494 1.02518i
\(656\) 0 0
\(657\) 14.6658 14.6658i 0.572168 0.572168i
\(658\) 0 0
\(659\) 4.80982 4.80982i 0.187364 0.187364i −0.607192 0.794555i \(-0.707704\pi\)
0.794555 + 0.607192i \(0.207704\pi\)
\(660\) 0 0
\(661\) 16.0067 + 16.0067i 0.622587 + 0.622587i 0.946192 0.323605i \(-0.104895\pi\)
−0.323605 + 0.946192i \(0.604895\pi\)
\(662\) 0 0
\(663\) 0.759084 + 0.759084i 0.0294804 + 0.0294804i
\(664\) 0 0
\(665\) 8.49822 9.84268i 0.329547 0.381683i
\(666\) 0 0
\(667\) 0.666042i 0.0257892i
\(668\) 0 0
\(669\) 9.61229 + 9.61229i 0.371632 + 0.371632i
\(670\) 0 0
\(671\) 5.35972i 0.206910i
\(672\) 0 0
\(673\) −11.5424 11.5424i −0.444928 0.444928i 0.448736 0.893664i \(-0.351874\pi\)
−0.893664 + 0.448736i \(0.851874\pi\)
\(674\) 0 0
\(675\) −20.8474 + 3.07289i −0.802415 + 0.118275i
\(676\) 0 0
\(677\) −8.31435 −0.319547 −0.159773 0.987154i \(-0.551076\pi\)
−0.159773 + 0.987154i \(0.551076\pi\)
\(678\) 0 0
\(679\) 5.11984i 0.196481i
\(680\) 0 0
\(681\) 7.12042i 0.272855i
\(682\) 0 0
\(683\) 24.3673 0.932388 0.466194 0.884682i \(-0.345625\pi\)
0.466194 + 0.884682i \(0.345625\pi\)
\(684\) 0 0
\(685\) −1.63919 22.3616i −0.0626301 0.854393i
\(686\) 0 0
\(687\) −10.1363 10.1363i −0.386725 0.386725i
\(688\) 0 0
\(689\) 0.0297658i 0.00113399i
\(690\) 0 0
\(691\) 5.77907 + 5.77907i 0.219846 + 0.219846i 0.808434 0.588587i \(-0.200316\pi\)
−0.588587 + 0.808434i \(0.700316\pi\)
\(692\) 0 0
\(693\) 5.26699i 0.200077i
\(694\) 0 0
\(695\) −1.27971 17.4576i −0.0485421 0.662206i
\(696\) 0 0
\(697\) 29.5633 + 29.5633i 1.11979 + 1.11979i
\(698\) 0 0
\(699\) 12.7747 + 12.7747i 0.483183 + 0.483183i
\(700\) 0 0
\(701\) 21.5039 21.5039i 0.812190 0.812190i −0.172772 0.984962i \(-0.555272\pi\)
0.984962 + 0.172772i \(0.0552725\pi\)
\(702\) 0 0
\(703\) 10.8174 10.8174i 0.407987 0.407987i
\(704\) 0 0
\(705\) 19.2486 1.41099i 0.724943 0.0531410i
\(706\) 0 0
\(707\) 30.0094 1.12862
\(708\) 0 0
\(709\) 5.60093 5.60093i 0.210347 0.210347i −0.594068 0.804415i \(-0.702479\pi\)
0.804415 + 0.594068i \(0.202479\pi\)
\(710\) 0 0
\(711\) −26.9404 −1.01034
\(712\) 0 0
\(713\) 1.44494 1.44494i 0.0541135 0.0541135i
\(714\) 0 0
\(715\) −0.531174 + 0.0389370i −0.0198648 + 0.00145616i
\(716\) 0 0
\(717\) 6.55626i 0.244848i
\(718\) 0 0
\(719\) 20.8520 0.777649 0.388824 0.921312i \(-0.372881\pi\)
0.388824 + 0.921312i \(0.372881\pi\)
\(720\) 0 0
\(721\) 47.3262 1.76252
\(722\) 0 0
\(723\) 17.0709i 0.634874i
\(724\) 0 0
\(725\) 9.26832 12.4730i 0.344217 0.463235i
\(726\) 0 0
\(727\) −23.1549 + 23.1549i −0.858769 + 0.858769i −0.991193 0.132424i \(-0.957724\pi\)
0.132424 + 0.991193i \(0.457724\pi\)
\(728\) 0 0
\(729\) −0.651701 −0.0241371
\(730\) 0 0
\(731\) −32.9839 + 32.9839i −1.21995 + 1.21995i
\(732\) 0 0
\(733\) −28.9140 −1.06796 −0.533981 0.845496i \(-0.679305\pi\)
−0.533981 + 0.845496i \(0.679305\pi\)
\(734\) 0 0
\(735\) −1.55319 1.34104i −0.0572904 0.0494649i
\(736\) 0 0
\(737\) −2.98171 + 2.98171i −0.109833 + 0.109833i
\(738\) 0 0
\(739\) −11.5603 + 11.5603i −0.425251 + 0.425251i −0.887007 0.461756i \(-0.847220\pi\)
0.461756 + 0.887007i \(0.347220\pi\)
\(740\) 0 0
\(741\) 0.347374 + 0.347374i 0.0127611 + 0.0127611i
\(742\) 0 0
\(743\) −12.8732 12.8732i −0.472271 0.472271i 0.430378 0.902649i \(-0.358380\pi\)
−0.902649 + 0.430378i \(0.858380\pi\)
\(744\) 0 0
\(745\) −9.21699 + 0.675639i −0.337685 + 0.0247535i
\(746\) 0 0
\(747\) 22.4006i 0.819596i
\(748\) 0 0
\(749\) 18.2363 + 18.2363i 0.666340 + 0.666340i
\(750\) 0 0
\(751\) 23.1857i 0.846059i 0.906116 + 0.423030i \(0.139033\pi\)
−0.906116 + 0.423030i \(0.860967\pi\)
\(752\) 0 0
\(753\) 9.66898 + 9.66898i 0.352357 + 0.352357i
\(754\) 0 0
\(755\) −3.95026 3.41068i −0.143765 0.124127i
\(756\) 0 0
\(757\) 43.6722 1.58729 0.793646 0.608379i \(-0.208180\pi\)
0.793646 + 0.608379i \(0.208180\pi\)
\(758\) 0 0
\(759\) 0.153150i 0.00555900i
\(760\) 0 0
\(761\) 48.4215i 1.75528i 0.479322 + 0.877639i \(0.340882\pi\)
−0.479322 + 0.877639i \(0.659118\pi\)
\(762\) 0 0
\(763\) −31.0835 −1.12530
\(764\) 0 0
\(765\) 28.0386 2.05533i 1.01374 0.0743106i
\(766\) 0 0
\(767\) 2.67816 + 2.67816i 0.0967028 + 0.0967028i
\(768\) 0 0
\(769\) 20.2823i 0.731400i −0.930733 0.365700i \(-0.880830\pi\)
0.930733 0.365700i \(-0.119170\pi\)
\(770\) 0 0
\(771\) −8.88782 8.88782i −0.320087 0.320087i
\(772\) 0 0
\(773\) 48.5903i 1.74767i 0.486220 + 0.873836i \(0.338375\pi\)
−0.486220 + 0.873836i \(0.661625\pi\)
\(774\) 0 0
\(775\) 47.1666 6.95232i 1.69427 0.249735i
\(776\) 0 0
\(777\) 8.47754 + 8.47754i 0.304130 + 0.304130i
\(778\) 0 0
\(779\) 13.5288 + 13.5288i 0.484721 + 0.484721i
\(780\) 0 0
\(781\) 3.63323 3.63323i 0.130007 0.130007i
\(782\) 0 0
\(783\) 9.26193 9.26193i 0.330994 0.330994i
\(784\) 0 0
\(785\) 19.8488 22.9889i 0.708433 0.820511i
\(786\) 0 0
\(787\) −27.2293 −0.970620 −0.485310 0.874342i \(-0.661293\pi\)
−0.485310 + 0.874342i \(0.661293\pi\)
\(788\) 0 0
\(789\) −8.90117 + 8.90117i −0.316890 + 0.316890i
\(790\) 0 0
\(791\) 20.2291 0.719265
\(792\) 0 0
\(793\) −1.08140 + 1.08140i −0.0384015 + 0.0384015i
\(794\) 0 0
\(795\) 0.151152 + 0.130506i 0.00536083 + 0.00462857i
\(796\) 0 0
\(797\) 17.9989i 0.637554i 0.947830 + 0.318777i \(0.103272\pi\)
−0.947830 + 0.318777i \(0.896728\pi\)
\(798\) 0 0
\(799\) −58.0947 −2.05524
\(800\) 0 0
\(801\) −10.1582 −0.358923
\(802\) 0 0
\(803\) 7.93468i 0.280009i
\(804\) 0 0
\(805\) 0.875539 + 0.755945i 0.0308587 + 0.0266436i
\(806\) 0 0
\(807\) 4.34421 4.34421i 0.152923 0.152923i
\(808\) 0 0
\(809\) −9.27856 −0.326217 −0.163108 0.986608i \(-0.552152\pi\)
−0.163108 + 0.986608i \(0.552152\pi\)
\(810\) 0 0
\(811\) 9.68248 9.68248i 0.339998 0.339998i −0.516369 0.856366i \(-0.672717\pi\)
0.856366 + 0.516369i \(0.172717\pi\)
\(812\) 0 0
\(813\) −21.5490 −0.755756
\(814\) 0 0
\(815\) 34.9650 40.4966i 1.22477 1.41854i
\(816\) 0 0
\(817\) −15.0942 + 15.0942i −0.528079 + 0.528079i
\(818\) 0 0
\(819\) 1.06269 1.06269i 0.0371333 0.0371333i
\(820\) 0 0
\(821\) 8.15143 + 8.15143i 0.284487 + 0.284487i 0.834895 0.550409i \(-0.185528\pi\)
−0.550409 + 0.834895i \(0.685528\pi\)
\(822\) 0 0
\(823\) 9.84275 + 9.84275i 0.343097 + 0.343097i 0.857530 0.514434i \(-0.171998\pi\)
−0.514434 + 0.857530i \(0.671998\pi\)
\(824\) 0 0
\(825\) 2.13116 2.86805i 0.0741976 0.0998525i
\(826\) 0 0
\(827\) 27.9185i 0.970821i −0.874286 0.485410i \(-0.838670\pi\)
0.874286 0.485410i \(-0.161330\pi\)
\(828\) 0 0
\(829\) −13.4622 13.4622i −0.467560 0.467560i 0.433563 0.901123i \(-0.357256\pi\)
−0.901123 + 0.433563i \(0.857256\pi\)
\(830\) 0 0
\(831\) 16.4786i 0.571638i
\(832\) 0 0
\(833\) 4.36758 + 4.36758i 0.151328 + 0.151328i
\(834\) 0 0
\(835\) 20.6020 1.51020i 0.712963 0.0522628i
\(836\) 0 0
\(837\) 40.1865 1.38905
\(838\) 0 0
\(839\) 3.34964i 0.115642i 0.998327 + 0.0578211i \(0.0184153\pi\)
−0.998327 + 0.0578211i \(0.981585\pi\)
\(840\) 0 0
\(841\) 19.3409i 0.666928i
\(842\) 0 0
\(843\) 19.3660 0.667002
\(844\) 0 0
\(845\) −21.8875 18.8978i −0.752952 0.650103i
\(846\) 0 0
\(847\) 17.3507 + 17.3507i 0.596176 + 0.596176i
\(848\) 0 0
\(849\) 13.9929i 0.480236i
\(850\) 0 0
\(851\) 0.962245 + 0.962245i 0.0329853 + 0.0329853i
\(852\) 0 0
\(853\) 36.5317i 1.25082i −0.780295 0.625411i \(-0.784931\pi\)
0.780295 0.625411i \(-0.215069\pi\)
\(854\) 0 0
\(855\) 12.8311 0.940565i 0.438814 0.0321667i
\(856\) 0 0
\(857\) −23.0064 23.0064i −0.785883 0.785883i 0.194933 0.980817i \(-0.437551\pi\)
−0.980817 + 0.194933i \(0.937551\pi\)
\(858\) 0 0
\(859\) −24.2440 24.2440i −0.827194 0.827194i 0.159934 0.987128i \(-0.448872\pi\)
−0.987128 + 0.159934i \(0.948872\pi\)
\(860\) 0 0
\(861\) −10.6025 + 10.6025i −0.361331 + 0.361331i
\(862\) 0 0
\(863\) −32.5729 + 32.5729i −1.10879 + 1.10879i −0.115483 + 0.993309i \(0.536842\pi\)
−0.993309 + 0.115483i \(0.963158\pi\)
\(864\) 0 0
\(865\) 17.7741 + 15.3463i 0.604339 + 0.521790i
\(866\) 0 0
\(867\) 8.38163 0.284655
\(868\) 0 0
\(869\) 7.28781 7.28781i 0.247222 0.247222i
\(870\) 0 0
\(871\) 1.20320 0.0407689
\(872\) 0 0
\(873\) 3.58178 3.58178i 0.121225 0.121225i
\(874\) 0 0
\(875\) 5.87686 + 26.3402i 0.198674 + 0.890461i
\(876\) 0 0
\(877\) 10.2642i 0.346596i −0.984869 0.173298i \(-0.944558\pi\)
0.984869 0.173298i \(-0.0554424\pi\)
\(878\) 0 0
\(879\) 21.7091 0.732230
\(880\) 0 0
\(881\) −27.6098 −0.930198 −0.465099 0.885259i \(-0.653981\pi\)
−0.465099 + 0.885259i \(0.653981\pi\)
\(882\) 0 0
\(883\) 4.66123i 0.156863i −0.996920 0.0784315i \(-0.975009\pi\)
0.996920 0.0784315i \(-0.0249912\pi\)
\(884\) 0 0
\(885\) −25.3420 + 1.85766i −0.851863 + 0.0624447i
\(886\) 0 0
\(887\) −38.1939 + 38.1939i −1.28242 + 1.28242i −0.343141 + 0.939284i \(0.611491\pi\)
−0.939284 + 0.343141i \(0.888509\pi\)
\(888\) 0 0
\(889\) 4.91938 0.164991
\(890\) 0 0
\(891\) −2.49897 + 2.49897i −0.0837188 + 0.0837188i
\(892\) 0 0
\(893\) −26.5854 −0.889648
\(894\) 0 0
\(895\) −41.0736 + 3.01085i −1.37294 + 0.100642i
\(896\) 0 0
\(897\) −0.0309001 + 0.0309001i −0.00103172 + 0.00103172i
\(898\) 0 0
\(899\) −20.9548 + 20.9548i −0.698883 + 0.698883i
\(900\) 0 0
\(901\) −0.425040 0.425040i −0.0141601 0.0141601i
\(902\) 0 0
\(903\) −11.8292 11.8292i −0.393652 0.393652i
\(904\) 0 0
\(905\) −2.43449 33.2110i −0.0809250 1.10397i
\(906\) 0 0
\(907\) 0.648260i 0.0215251i 0.999942 + 0.0107626i \(0.00342589\pi\)
−0.999942 + 0.0107626i \(0.996574\pi\)
\(908\) 0 0
\(909\) 20.9942 + 20.9942i 0.696335 + 0.696335i
\(910\) 0 0
\(911\) 14.1895i 0.470119i 0.971981 + 0.235059i \(0.0755285\pi\)
−0.971981 + 0.235059i \(0.924472\pi\)
\(912\) 0 0
\(913\) −6.05974 6.05974i −0.200548 0.200548i
\(914\) 0 0
\(915\) −0.750092 10.2327i −0.0247973 0.338282i
\(916\) 0 0
\(917\) −28.3996 −0.937838
\(918\) 0 0
\(919\) 35.3001i 1.16444i 0.813031 + 0.582221i \(0.197816\pi\)
−0.813031 + 0.582221i \(0.802184\pi\)
\(920\) 0 0
\(921\) 23.9975i 0.790745i
\(922\) 0 0
\(923\) −1.46611 −0.0482575
\(924\) 0 0
\(925\) 4.62983 + 31.4101i 0.152228 + 1.03276i
\(926\) 0 0
\(927\) 33.1088 + 33.1088i 1.08744 + 1.08744i
\(928\) 0 0
\(929\) 3.23832i 0.106246i 0.998588 + 0.0531229i \(0.0169175\pi\)
−0.998588 + 0.0531229i \(0.983082\pi\)
\(930\) 0 0
\(931\) 1.99870 + 1.99870i 0.0655049 + 0.0655049i
\(932\) 0 0
\(933\) 12.4665i 0.408135i
\(934\) 0 0
\(935\) −7.02888 + 8.14088i −0.229869 + 0.266235i
\(936\) 0 0
\(937\) 6.27461 + 6.27461i 0.204983 + 0.204983i 0.802131 0.597148i \(-0.203700\pi\)
−0.597148 + 0.802131i \(0.703700\pi\)
\(938\) 0 0
\(939\) 2.65781 + 2.65781i 0.0867342 + 0.0867342i
\(940\) 0 0
\(941\) 14.5002 14.5002i 0.472692 0.472692i −0.430093 0.902785i \(-0.641519\pi\)
0.902785 + 0.430093i \(0.141519\pi\)
\(942\) 0 0
\(943\) −1.20344 + 1.20344i −0.0391892 + 0.0391892i
\(944\) 0 0
\(945\) 1.66306 + 22.6873i 0.0540994 + 0.738018i
\(946\) 0 0
\(947\) 18.0520 0.586612 0.293306 0.956019i \(-0.405245\pi\)
0.293306 + 0.956019i \(0.405245\pi\)
\(948\) 0 0
\(949\) 1.60093 1.60093i 0.0519683 0.0519683i
\(950\) 0 0
\(951\) 6.36926 0.206537
\(952\) 0 0
\(953\) −19.7572 + 19.7572i −0.639998 + 0.639998i −0.950555 0.310557i \(-0.899485\pi\)
0.310557 + 0.950555i \(0.399485\pi\)
\(954\) 0 0
\(955\) −14.5650 + 16.8693i −0.471313 + 0.545876i
\(956\) 0 0
\(957\) 2.22102i 0.0717952i
\(958\) 0 0
\(959\) −24.2044 −0.781602
\(960\) 0 0
\(961\) −59.9208 −1.93293
\(962\) 0 0
\(963\) 25.5158i 0.822235i
\(964\) 0 0
\(965\) −0.790875 10.7890i −0.0254592 0.347311i
\(966\) 0 0
\(967\) 19.5896 19.5896i 0.629959 0.629959i −0.318099 0.948058i \(-0.603044\pi\)
0.948058 + 0.318099i \(0.103044\pi\)
\(968\) 0 0
\(969\) 9.92064 0.318697
\(970\) 0 0
\(971\) 12.7228 12.7228i 0.408293 0.408293i −0.472850 0.881143i \(-0.656775\pi\)
0.881143 + 0.472850i \(0.156775\pi\)
\(972\) 0 0
\(973\) −18.8963 −0.605789
\(974\) 0 0
\(975\) −1.00866 + 0.148675i −0.0323029 + 0.00476143i
\(976\) 0 0
\(977\) −0.180025 + 0.180025i −0.00575950 + 0.00575950i −0.709981 0.704221i \(-0.751296\pi\)
0.704221 + 0.709981i \(0.251296\pi\)
\(978\) 0 0
\(979\) 2.74796 2.74796i 0.0878252 0.0878252i
\(980\) 0 0
\(981\) −21.7456 21.7456i −0.694285 0.694285i
\(982\) 0 0
\(983\) −1.16197 1.16197i −0.0370610 0.0370610i 0.688333 0.725394i \(-0.258343\pi\)
−0.725394 + 0.688333i \(0.758343\pi\)
\(984\) 0 0
\(985\) −44.9696 38.8270i −1.43285 1.23713i
\(986\) 0 0
\(987\) 20.8349i 0.663181i
\(988\) 0 0
\(989\) −1.34268 1.34268i −0.0426947 0.0426947i
\(990\) 0 0
\(991\) 32.3198i 1.02667i −0.858188 0.513335i \(-0.828410\pi\)
0.858188 0.513335i \(-0.171590\pi\)
\(992\) 0 0
\(993\) 8.13266 + 8.13266i 0.258082 + 0.258082i
\(994\) 0 0
\(995\) −9.86485 + 11.4255i −0.312737 + 0.362213i
\(996\) 0 0
\(997\) −15.5529 −0.492565 −0.246282 0.969198i \(-0.579209\pi\)
−0.246282 + 0.969198i \(0.579209\pi\)
\(998\) 0 0
\(999\) 26.7618i 0.846706i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1280.2.j.d.63.10 yes 32
4.3 odd 2 inner 1280.2.j.d.63.7 yes 32
5.2 odd 4 1280.2.s.c.1087.10 yes 32
8.3 odd 2 1280.2.j.c.63.10 yes 32
8.5 even 2 1280.2.j.c.63.7 32
16.3 odd 4 1280.2.s.c.703.10 yes 32
16.5 even 4 1280.2.s.d.703.10 yes 32
16.11 odd 4 1280.2.s.d.703.7 yes 32
16.13 even 4 1280.2.s.c.703.7 yes 32
20.7 even 4 1280.2.s.c.1087.7 yes 32
40.27 even 4 1280.2.s.d.1087.10 yes 32
40.37 odd 4 1280.2.s.d.1087.7 yes 32
80.27 even 4 1280.2.j.c.447.10 yes 32
80.37 odd 4 1280.2.j.c.447.7 yes 32
80.67 even 4 inner 1280.2.j.d.447.7 yes 32
80.77 odd 4 inner 1280.2.j.d.447.10 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1280.2.j.c.63.7 32 8.5 even 2
1280.2.j.c.63.10 yes 32 8.3 odd 2
1280.2.j.c.447.7 yes 32 80.37 odd 4
1280.2.j.c.447.10 yes 32 80.27 even 4
1280.2.j.d.63.7 yes 32 4.3 odd 2 inner
1280.2.j.d.63.10 yes 32 1.1 even 1 trivial
1280.2.j.d.447.7 yes 32 80.67 even 4 inner
1280.2.j.d.447.10 yes 32 80.77 odd 4 inner
1280.2.s.c.703.7 yes 32 16.13 even 4
1280.2.s.c.703.10 yes 32 16.3 odd 4
1280.2.s.c.1087.7 yes 32 20.7 even 4
1280.2.s.c.1087.10 yes 32 5.2 odd 4
1280.2.s.d.703.7 yes 32 16.11 odd 4
1280.2.s.d.703.10 yes 32 16.5 even 4
1280.2.s.d.1087.7 yes 32 40.37 odd 4
1280.2.s.d.1087.10 yes 32 40.27 even 4