Properties

Label 1280.2.j.d.447.1
Level $1280$
Weight $2$
Character 1280.447
Analytic conductor $10.221$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1280,2,Mod(63,1280)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1280.63"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1280, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1280 = 2^{8} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1280.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,0,0,-32,0,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2208514587\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 447.1
Character \(\chi\) \(=\) 1280.447
Dual form 1280.2.j.d.63.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.97565i q^{3} +(2.23290 - 0.119064i) q^{5} +(3.13319 + 3.13319i) q^{7} -5.85447 q^{9} +(2.21241 + 2.21241i) q^{11} +1.39508 q^{13} +(-0.354293 - 6.64431i) q^{15} +(-3.70925 - 3.70925i) q^{17} +(2.34851 + 2.34851i) q^{19} +(9.32327 - 9.32327i) q^{21} +(-0.674307 + 0.674307i) q^{23} +(4.97165 - 0.531716i) q^{25} +8.49391i q^{27} +(3.36055 - 3.36055i) q^{29} +5.35793i q^{31} +(6.58335 - 6.58335i) q^{33} +(7.36914 + 6.62304i) q^{35} -1.39898 q^{37} -4.15127i q^{39} -0.0613778i q^{41} +9.38196 q^{43} +(-13.0724 + 0.697059i) q^{45} +(7.45692 - 7.45692i) q^{47} +12.6338i q^{49} +(-11.0374 + 11.0374i) q^{51} -1.38273i q^{53} +(5.20350 + 4.67666i) q^{55} +(6.98833 - 6.98833i) q^{57} +(0.326364 - 0.326364i) q^{59} +(-3.51712 - 3.51712i) q^{61} +(-18.3432 - 18.3432i) q^{63} +(3.11507 - 0.166104i) q^{65} -10.4618 q^{67} +(2.00650 + 2.00650i) q^{69} -12.5032 q^{71} +(-10.9895 - 10.9895i) q^{73} +(-1.58220 - 14.7939i) q^{75} +13.8638i q^{77} -0.452069 q^{79} +7.71145 q^{81} -5.30840i q^{83} +(-8.72400 - 7.84072i) q^{85} +(-9.99982 - 9.99982i) q^{87} -11.1169 q^{89} +(4.37105 + 4.37105i) q^{91} +15.9433 q^{93} +(5.52359 + 4.96435i) q^{95} +(10.5598 + 10.5598i) q^{97} +(-12.9525 - 12.9525i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 32 q^{9} + 16 q^{13} + 8 q^{17} + 8 q^{21} + 16 q^{25} - 16 q^{29} + 56 q^{33} - 40 q^{45} - 8 q^{57} - 8 q^{61} - 72 q^{65} + 40 q^{69} + 8 q^{73} - 64 q^{81} - 24 q^{85} - 16 q^{89} + 224 q^{93}+ \cdots + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1280\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.97565i 1.71799i −0.511984 0.858995i \(-0.671089\pi\)
0.511984 0.858995i \(-0.328911\pi\)
\(4\) 0 0
\(5\) 2.23290 0.119064i 0.998581 0.0532472i
\(6\) 0 0
\(7\) 3.13319 + 3.13319i 1.18423 + 1.18423i 0.978636 + 0.205598i \(0.0659140\pi\)
0.205598 + 0.978636i \(0.434086\pi\)
\(8\) 0 0
\(9\) −5.85447 −1.95149
\(10\) 0 0
\(11\) 2.21241 + 2.21241i 0.667067 + 0.667067i 0.957036 0.289969i \(-0.0936450\pi\)
−0.289969 + 0.957036i \(0.593645\pi\)
\(12\) 0 0
\(13\) 1.39508 0.386926 0.193463 0.981108i \(-0.438028\pi\)
0.193463 + 0.981108i \(0.438028\pi\)
\(14\) 0 0
\(15\) −0.354293 6.64431i −0.0914781 1.71555i
\(16\) 0 0
\(17\) −3.70925 3.70925i −0.899624 0.899624i 0.0957783 0.995403i \(-0.469466\pi\)
−0.995403 + 0.0957783i \(0.969466\pi\)
\(18\) 0 0
\(19\) 2.34851 + 2.34851i 0.538784 + 0.538784i 0.923172 0.384387i \(-0.125587\pi\)
−0.384387 + 0.923172i \(0.625587\pi\)
\(20\) 0 0
\(21\) 9.32327 9.32327i 2.03450 2.03450i
\(22\) 0 0
\(23\) −0.674307 + 0.674307i −0.140603 + 0.140603i −0.773905 0.633302i \(-0.781699\pi\)
0.633302 + 0.773905i \(0.281699\pi\)
\(24\) 0 0
\(25\) 4.97165 0.531716i 0.994329 0.106343i
\(26\) 0 0
\(27\) 8.49391i 1.63465i
\(28\) 0 0
\(29\) 3.36055 3.36055i 0.624039 0.624039i −0.322523 0.946562i \(-0.604531\pi\)
0.946562 + 0.322523i \(0.104531\pi\)
\(30\) 0 0
\(31\) 5.35793i 0.962312i 0.876635 + 0.481156i \(0.159783\pi\)
−0.876635 + 0.481156i \(0.840217\pi\)
\(32\) 0 0
\(33\) 6.58335 6.58335i 1.14601 1.14601i
\(34\) 0 0
\(35\) 7.36914 + 6.62304i 1.24561 + 1.11950i
\(36\) 0 0
\(37\) −1.39898 −0.229991 −0.114995 0.993366i \(-0.536685\pi\)
−0.114995 + 0.993366i \(0.536685\pi\)
\(38\) 0 0
\(39\) 4.15127i 0.664735i
\(40\) 0 0
\(41\) 0.0613778i 0.00958560i −0.999989 0.00479280i \(-0.998474\pi\)
0.999989 0.00479280i \(-0.00152560\pi\)
\(42\) 0 0
\(43\) 9.38196 1.43074 0.715368 0.698748i \(-0.246259\pi\)
0.715368 + 0.698748i \(0.246259\pi\)
\(44\) 0 0
\(45\) −13.0724 + 0.697059i −1.94872 + 0.103911i
\(46\) 0 0
\(47\) 7.45692 7.45692i 1.08770 1.08770i 0.0919394 0.995765i \(-0.470693\pi\)
0.995765 0.0919394i \(-0.0293066\pi\)
\(48\) 0 0
\(49\) 12.6338i 1.80482i
\(50\) 0 0
\(51\) −11.0374 + 11.0374i −1.54555 + 1.54555i
\(52\) 0 0
\(53\) 1.38273i 0.189932i −0.995480 0.0949662i \(-0.969726\pi\)
0.995480 0.0949662i \(-0.0302743\pi\)
\(54\) 0 0
\(55\) 5.20350 + 4.67666i 0.701640 + 0.630601i
\(56\) 0 0
\(57\) 6.98833 6.98833i 0.925627 0.925627i
\(58\) 0 0
\(59\) 0.326364 0.326364i 0.0424889 0.0424889i −0.685543 0.728032i \(-0.740435\pi\)
0.728032 + 0.685543i \(0.240435\pi\)
\(60\) 0 0
\(61\) −3.51712 3.51712i −0.450321 0.450321i 0.445140 0.895461i \(-0.353154\pi\)
−0.895461 + 0.445140i \(0.853154\pi\)
\(62\) 0 0
\(63\) −18.3432 18.3432i −2.31102 2.31102i
\(64\) 0 0
\(65\) 3.11507 0.166104i 0.386377 0.0206027i
\(66\) 0 0
\(67\) −10.4618 −1.27811 −0.639056 0.769160i \(-0.720675\pi\)
−0.639056 + 0.769160i \(0.720675\pi\)
\(68\) 0 0
\(69\) 2.00650 + 2.00650i 0.241554 + 0.241554i
\(70\) 0 0
\(71\) −12.5032 −1.48386 −0.741930 0.670478i \(-0.766089\pi\)
−0.741930 + 0.670478i \(0.766089\pi\)
\(72\) 0 0
\(73\) −10.9895 10.9895i −1.28622 1.28622i −0.937066 0.349153i \(-0.886469\pi\)
−0.349153 0.937066i \(-0.613531\pi\)
\(74\) 0 0
\(75\) −1.58220 14.7939i −0.182697 1.70825i
\(76\) 0 0
\(77\) 13.8638i 1.57993i
\(78\) 0 0
\(79\) −0.452069 −0.0508618 −0.0254309 0.999677i \(-0.508096\pi\)
−0.0254309 + 0.999677i \(0.508096\pi\)
\(80\) 0 0
\(81\) 7.71145 0.856827
\(82\) 0 0
\(83\) 5.30840i 0.582673i −0.956621 0.291336i \(-0.905900\pi\)
0.956621 0.291336i \(-0.0940999\pi\)
\(84\) 0 0
\(85\) −8.72400 7.84072i −0.946251 0.850446i
\(86\) 0 0
\(87\) −9.99982 9.99982i −1.07209 1.07209i
\(88\) 0 0
\(89\) −11.1169 −1.17839 −0.589197 0.807990i \(-0.700556\pi\)
−0.589197 + 0.807990i \(0.700556\pi\)
\(90\) 0 0
\(91\) 4.37105 + 4.37105i 0.458211 + 0.458211i
\(92\) 0 0
\(93\) 15.9433 1.65324
\(94\) 0 0
\(95\) 5.52359 + 4.96435i 0.566709 + 0.509331i
\(96\) 0 0
\(97\) 10.5598 + 10.5598i 1.07219 + 1.07219i 0.997183 + 0.0750042i \(0.0238970\pi\)
0.0750042 + 0.997183i \(0.476103\pi\)
\(98\) 0 0
\(99\) −12.9525 12.9525i −1.30178 1.30178i
\(100\) 0 0
\(101\) −1.59553 + 1.59553i −0.158761 + 0.158761i −0.782018 0.623256i \(-0.785809\pi\)
0.623256 + 0.782018i \(0.285809\pi\)
\(102\) 0 0
\(103\) −0.461391 + 0.461391i −0.0454622 + 0.0454622i −0.729472 0.684010i \(-0.760234\pi\)
0.684010 + 0.729472i \(0.260234\pi\)
\(104\) 0 0
\(105\) 19.7078 21.9280i 1.92329 2.13995i
\(106\) 0 0
\(107\) 1.60137i 0.154810i 0.997000 + 0.0774051i \(0.0246635\pi\)
−0.997000 + 0.0774051i \(0.975337\pi\)
\(108\) 0 0
\(109\) 3.45952 3.45952i 0.331362 0.331362i −0.521742 0.853104i \(-0.674717\pi\)
0.853104 + 0.521742i \(0.174717\pi\)
\(110\) 0 0
\(111\) 4.16287i 0.395122i
\(112\) 0 0
\(113\) −6.08214 + 6.08214i −0.572159 + 0.572159i −0.932731 0.360572i \(-0.882582\pi\)
0.360572 + 0.932731i \(0.382582\pi\)
\(114\) 0 0
\(115\) −1.42537 + 1.58594i −0.132917 + 0.147890i
\(116\) 0 0
\(117\) −8.16746 −0.755082
\(118\) 0 0
\(119\) 23.2436i 2.13073i
\(120\) 0 0
\(121\) 1.21048i 0.110044i
\(122\) 0 0
\(123\) −0.182639 −0.0164680
\(124\) 0 0
\(125\) 11.0379 1.77921i 0.987256 0.159138i
\(126\) 0 0
\(127\) 0.227630 0.227630i 0.0201989 0.0201989i −0.696935 0.717134i \(-0.745453\pi\)
0.717134 + 0.696935i \(0.245453\pi\)
\(128\) 0 0
\(129\) 27.9174i 2.45799i
\(130\) 0 0
\(131\) −12.7235 + 12.7235i −1.11166 + 1.11166i −0.118732 + 0.992926i \(0.537883\pi\)
−0.992926 + 0.118732i \(0.962117\pi\)
\(132\) 0 0
\(133\) 14.7166i 1.27609i
\(134\) 0 0
\(135\) 1.01132 + 18.9660i 0.0870406 + 1.63233i
\(136\) 0 0
\(137\) −5.82981 + 5.82981i −0.498075 + 0.498075i −0.910838 0.412764i \(-0.864564\pi\)
0.412764 + 0.910838i \(0.364564\pi\)
\(138\) 0 0
\(139\) −4.03357 + 4.03357i −0.342123 + 0.342123i −0.857165 0.515042i \(-0.827776\pi\)
0.515042 + 0.857165i \(0.327776\pi\)
\(140\) 0 0
\(141\) −22.1892 22.1892i −1.86867 1.86867i
\(142\) 0 0
\(143\) 3.08649 + 3.08649i 0.258105 + 0.258105i
\(144\) 0 0
\(145\) 7.10364 7.90388i 0.589925 0.656382i
\(146\) 0 0
\(147\) 37.5936 3.10067
\(148\) 0 0
\(149\) −9.98681 9.98681i −0.818151 0.818151i 0.167689 0.985840i \(-0.446370\pi\)
−0.985840 + 0.167689i \(0.946370\pi\)
\(150\) 0 0
\(151\) 3.89073 0.316623 0.158312 0.987389i \(-0.449395\pi\)
0.158312 + 0.987389i \(0.449395\pi\)
\(152\) 0 0
\(153\) 21.7157 + 21.7157i 1.75561 + 1.75561i
\(154\) 0 0
\(155\) 0.637937 + 11.9637i 0.0512404 + 0.960947i
\(156\) 0 0
\(157\) 6.30365i 0.503086i 0.967846 + 0.251543i \(0.0809380\pi\)
−0.967846 + 0.251543i \(0.919062\pi\)
\(158\) 0 0
\(159\) −4.11451 −0.326302
\(160\) 0 0
\(161\) −4.22546 −0.333013
\(162\) 0 0
\(163\) 2.20424i 0.172650i −0.996267 0.0863248i \(-0.972488\pi\)
0.996267 0.0863248i \(-0.0275123\pi\)
\(164\) 0 0
\(165\) 13.9161 15.4838i 1.08337 1.20541i
\(166\) 0 0
\(167\) 0.246540 + 0.246540i 0.0190778 + 0.0190778i 0.716581 0.697504i \(-0.245706\pi\)
−0.697504 + 0.716581i \(0.745706\pi\)
\(168\) 0 0
\(169\) −11.0538 −0.850289
\(170\) 0 0
\(171\) −13.7493 13.7493i −1.05143 1.05143i
\(172\) 0 0
\(173\) 19.2382 1.46265 0.731326 0.682029i \(-0.238902\pi\)
0.731326 + 0.682029i \(0.238902\pi\)
\(174\) 0 0
\(175\) 17.2431 + 13.9112i 1.30345 + 1.05158i
\(176\) 0 0
\(177\) −0.971143 0.971143i −0.0729956 0.0729956i
\(178\) 0 0
\(179\) 1.50544 + 1.50544i 0.112522 + 0.112522i 0.761126 0.648604i \(-0.224647\pi\)
−0.648604 + 0.761126i \(0.724647\pi\)
\(180\) 0 0
\(181\) 12.1599 12.1599i 0.903837 0.903837i −0.0919290 0.995766i \(-0.529303\pi\)
0.995766 + 0.0919290i \(0.0293033\pi\)
\(182\) 0 0
\(183\) −10.4657 + 10.4657i −0.773646 + 0.773646i
\(184\) 0 0
\(185\) −3.12378 + 0.166568i −0.229665 + 0.0122464i
\(186\) 0 0
\(187\) 16.4128i 1.20022i
\(188\) 0 0
\(189\) −26.6130 + 26.6130i −1.93581 + 1.93581i
\(190\) 0 0
\(191\) 4.96940i 0.359573i 0.983706 + 0.179787i \(0.0575407\pi\)
−0.983706 + 0.179787i \(0.942459\pi\)
\(192\) 0 0
\(193\) −15.3547 + 15.3547i −1.10525 + 1.10525i −0.111486 + 0.993766i \(0.535561\pi\)
−0.993766 + 0.111486i \(0.964439\pi\)
\(194\) 0 0
\(195\) −0.494267 9.26934i −0.0353952 0.663792i
\(196\) 0 0
\(197\) 4.11449 0.293145 0.146572 0.989200i \(-0.453176\pi\)
0.146572 + 0.989200i \(0.453176\pi\)
\(198\) 0 0
\(199\) 25.7162i 1.82297i 0.411334 + 0.911485i \(0.365063\pi\)
−0.411334 + 0.911485i \(0.634937\pi\)
\(200\) 0 0
\(201\) 31.1306i 2.19579i
\(202\) 0 0
\(203\) 21.0585 1.47802
\(204\) 0 0
\(205\) −0.00730790 0.137050i −0.000510406 0.00957201i
\(206\) 0 0
\(207\) 3.94771 3.94771i 0.274385 0.274385i
\(208\) 0 0
\(209\) 10.3917i 0.718810i
\(210\) 0 0
\(211\) 9.76624 9.76624i 0.672336 0.672336i −0.285918 0.958254i \(-0.592299\pi\)
0.958254 + 0.285918i \(0.0922986\pi\)
\(212\) 0 0
\(213\) 37.2052i 2.54926i
\(214\) 0 0
\(215\) 20.9489 1.11706i 1.42871 0.0761826i
\(216\) 0 0
\(217\) −16.7874 + 16.7874i −1.13960 + 1.13960i
\(218\) 0 0
\(219\) −32.7007 + 32.7007i −2.20971 + 2.20971i
\(220\) 0 0
\(221\) −5.17470 5.17470i −0.348088 0.348088i
\(222\) 0 0
\(223\) −2.32868 2.32868i −0.155940 0.155940i 0.624825 0.780765i \(-0.285170\pi\)
−0.780765 + 0.624825i \(0.785170\pi\)
\(224\) 0 0
\(225\) −29.1064 + 3.11292i −1.94043 + 0.207528i
\(226\) 0 0
\(227\) 9.73288 0.645994 0.322997 0.946400i \(-0.395310\pi\)
0.322997 + 0.946400i \(0.395310\pi\)
\(228\) 0 0
\(229\) 7.39128 + 7.39128i 0.488429 + 0.488429i 0.907810 0.419381i \(-0.137753\pi\)
−0.419381 + 0.907810i \(0.637753\pi\)
\(230\) 0 0
\(231\) 41.2538 2.71430
\(232\) 0 0
\(233\) 8.55716 + 8.55716i 0.560598 + 0.560598i 0.929477 0.368879i \(-0.120258\pi\)
−0.368879 + 0.929477i \(0.620258\pi\)
\(234\) 0 0
\(235\) 15.7627 17.5384i 1.02824 1.14408i
\(236\) 0 0
\(237\) 1.34520i 0.0873801i
\(238\) 0 0
\(239\) 0.446382 0.0288741 0.0144370 0.999896i \(-0.495404\pi\)
0.0144370 + 0.999896i \(0.495404\pi\)
\(240\) 0 0
\(241\) −23.2902 −1.50025 −0.750127 0.661294i \(-0.770008\pi\)
−0.750127 + 0.661294i \(0.770008\pi\)
\(242\) 0 0
\(243\) 2.53518i 0.162632i
\(244\) 0 0
\(245\) 1.50423 + 28.2099i 0.0961017 + 1.80226i
\(246\) 0 0
\(247\) 3.27636 + 3.27636i 0.208469 + 0.208469i
\(248\) 0 0
\(249\) −15.7959 −1.00103
\(250\) 0 0
\(251\) −11.7889 11.7889i −0.744107 0.744107i 0.229259 0.973365i \(-0.426370\pi\)
−0.973365 + 0.229259i \(0.926370\pi\)
\(252\) 0 0
\(253\) −2.98369 −0.187583
\(254\) 0 0
\(255\) −23.3312 + 25.9595i −1.46106 + 1.62565i
\(256\) 0 0
\(257\) −2.36238 2.36238i −0.147361 0.147361i 0.629577 0.776938i \(-0.283228\pi\)
−0.776938 + 0.629577i \(0.783228\pi\)
\(258\) 0 0
\(259\) −4.38327 4.38327i −0.272363 0.272363i
\(260\) 0 0
\(261\) −19.6743 + 19.6743i −1.21781 + 1.21781i
\(262\) 0 0
\(263\) 6.30062 6.30062i 0.388513 0.388513i −0.485644 0.874157i \(-0.661415\pi\)
0.874157 + 0.485644i \(0.161415\pi\)
\(264\) 0 0
\(265\) −0.164634 3.08749i −0.0101134 0.189663i
\(266\) 0 0
\(267\) 33.0801i 2.02447i
\(268\) 0 0
\(269\) 10.2072 10.2072i 0.622342 0.622342i −0.323788 0.946130i \(-0.604956\pi\)
0.946130 + 0.323788i \(0.104956\pi\)
\(270\) 0 0
\(271\) 5.65243i 0.343361i 0.985153 + 0.171680i \(0.0549197\pi\)
−0.985153 + 0.171680i \(0.945080\pi\)
\(272\) 0 0
\(273\) 13.0067 13.0067i 0.787202 0.787202i
\(274\) 0 0
\(275\) 12.1757 + 9.82295i 0.734222 + 0.592346i
\(276\) 0 0
\(277\) 7.27360 0.437028 0.218514 0.975834i \(-0.429879\pi\)
0.218514 + 0.975834i \(0.429879\pi\)
\(278\) 0 0
\(279\) 31.3678i 1.87794i
\(280\) 0 0
\(281\) 22.2329i 1.32630i −0.748484 0.663152i \(-0.769218\pi\)
0.748484 0.663152i \(-0.230782\pi\)
\(282\) 0 0
\(283\) 16.2661 0.966918 0.483459 0.875367i \(-0.339380\pi\)
0.483459 + 0.875367i \(0.339380\pi\)
\(284\) 0 0
\(285\) 14.7721 16.4363i 0.875026 0.973600i
\(286\) 0 0
\(287\) 0.192308 0.192308i 0.0113516 0.0113516i
\(288\) 0 0
\(289\) 10.5170i 0.618648i
\(290\) 0 0
\(291\) 31.4223 31.4223i 1.84201 1.84201i
\(292\) 0 0
\(293\) 25.3926i 1.48345i −0.670703 0.741726i \(-0.734008\pi\)
0.670703 0.741726i \(-0.265992\pi\)
\(294\) 0 0
\(295\) 0.689878 0.767594i 0.0401662 0.0446911i
\(296\) 0 0
\(297\) −18.7920 + 18.7920i −1.09042 + 1.09042i
\(298\) 0 0
\(299\) −0.940712 + 0.940712i −0.0544028 + 0.0544028i
\(300\) 0 0
\(301\) 29.3955 + 29.3955i 1.69433 + 1.69433i
\(302\) 0 0
\(303\) 4.74773 + 4.74773i 0.272750 + 0.272750i
\(304\) 0 0
\(305\) −8.27212 7.43459i −0.473660 0.425703i
\(306\) 0 0
\(307\) −19.6772 −1.12304 −0.561520 0.827463i \(-0.689783\pi\)
−0.561520 + 0.827463i \(0.689783\pi\)
\(308\) 0 0
\(309\) 1.37294 + 1.37294i 0.0781037 + 0.0781037i
\(310\) 0 0
\(311\) −28.1914 −1.59859 −0.799294 0.600940i \(-0.794793\pi\)
−0.799294 + 0.600940i \(0.794793\pi\)
\(312\) 0 0
\(313\) 4.45325 + 4.45325i 0.251712 + 0.251712i 0.821672 0.569960i \(-0.193041\pi\)
−0.569960 + 0.821672i \(0.693041\pi\)
\(314\) 0 0
\(315\) −43.1424 38.7744i −2.43080 2.18469i
\(316\) 0 0
\(317\) 30.9996i 1.74111i −0.492071 0.870555i \(-0.663760\pi\)
0.492071 0.870555i \(-0.336240\pi\)
\(318\) 0 0
\(319\) 14.8698 0.832551
\(320\) 0 0
\(321\) 4.76511 0.265962
\(322\) 0 0
\(323\) 17.4224i 0.969407i
\(324\) 0 0
\(325\) 6.93585 0.741787i 0.384732 0.0411469i
\(326\) 0 0
\(327\) −10.2943 10.2943i −0.569277 0.569277i
\(328\) 0 0
\(329\) 46.7279 2.57619
\(330\) 0 0
\(331\) −21.3401 21.3401i −1.17296 1.17296i −0.981501 0.191456i \(-0.938679\pi\)
−0.191456 0.981501i \(-0.561321\pi\)
\(332\) 0 0
\(333\) 8.19029 0.448825
\(334\) 0 0
\(335\) −23.3601 + 1.24563i −1.27630 + 0.0680559i
\(336\) 0 0
\(337\) −8.55232 8.55232i −0.465874 0.465874i 0.434701 0.900575i \(-0.356854\pi\)
−0.900575 + 0.434701i \(0.856854\pi\)
\(338\) 0 0
\(339\) 18.0983 + 18.0983i 0.982964 + 0.982964i
\(340\) 0 0
\(341\) −11.8539 + 11.8539i −0.641926 + 0.641926i
\(342\) 0 0
\(343\) −17.6517 + 17.6517i −0.953100 + 0.953100i
\(344\) 0 0
\(345\) 4.71921 + 4.24140i 0.254074 + 0.228349i
\(346\) 0 0
\(347\) 8.06806i 0.433116i 0.976270 + 0.216558i \(0.0694830\pi\)
−0.976270 + 0.216558i \(0.930517\pi\)
\(348\) 0 0
\(349\) −24.4770 + 24.4770i −1.31022 + 1.31022i −0.388973 + 0.921249i \(0.627170\pi\)
−0.921249 + 0.388973i \(0.872830\pi\)
\(350\) 0 0
\(351\) 11.8497i 0.632489i
\(352\) 0 0
\(353\) 9.63289 9.63289i 0.512707 0.512707i −0.402648 0.915355i \(-0.631910\pi\)
0.915355 + 0.402648i \(0.131910\pi\)
\(354\) 0 0
\(355\) −27.9184 + 1.48869i −1.48175 + 0.0790113i
\(356\) 0 0
\(357\) −69.1646 −3.66058
\(358\) 0 0
\(359\) 6.93152i 0.365832i 0.983129 + 0.182916i \(0.0585536\pi\)
−0.983129 + 0.182916i \(0.941446\pi\)
\(360\) 0 0
\(361\) 7.96903i 0.419423i
\(362\) 0 0
\(363\) −3.60196 −0.189054
\(364\) 0 0
\(365\) −25.8468 23.2299i −1.35288 1.21591i
\(366\) 0 0
\(367\) 5.75329 5.75329i 0.300319 0.300319i −0.540820 0.841139i \(-0.681886\pi\)
0.841139 + 0.540820i \(0.181886\pi\)
\(368\) 0 0
\(369\) 0.359335i 0.0187062i
\(370\) 0 0
\(371\) 4.33235 4.33235i 0.224925 0.224925i
\(372\) 0 0
\(373\) 19.9960i 1.03536i 0.855576 + 0.517678i \(0.173203\pi\)
−0.855576 + 0.517678i \(0.826797\pi\)
\(374\) 0 0
\(375\) −5.29431 32.8448i −0.273397 1.69610i
\(376\) 0 0
\(377\) 4.68824 4.68824i 0.241457 0.241457i
\(378\) 0 0
\(379\) 12.8102 12.8102i 0.658018 0.658018i −0.296893 0.954911i \(-0.595950\pi\)
0.954911 + 0.296893i \(0.0959505\pi\)
\(380\) 0 0
\(381\) −0.677347 0.677347i −0.0347015 0.0347015i
\(382\) 0 0
\(383\) 22.4012 + 22.4012i 1.14465 + 1.14465i 0.987589 + 0.157059i \(0.0502011\pi\)
0.157059 + 0.987589i \(0.449799\pi\)
\(384\) 0 0
\(385\) 1.65068 + 30.9564i 0.0841266 + 1.57769i
\(386\) 0 0
\(387\) −54.9265 −2.79207
\(388\) 0 0
\(389\) −19.2181 19.2181i −0.974395 0.974395i 0.0252853 0.999680i \(-0.491951\pi\)
−0.999680 + 0.0252853i \(0.991951\pi\)
\(390\) 0 0
\(391\) 5.00234 0.252979
\(392\) 0 0
\(393\) 37.8607 + 37.8607i 1.90982 + 1.90982i
\(394\) 0 0
\(395\) −1.00942 + 0.0538253i −0.0507896 + 0.00270825i
\(396\) 0 0
\(397\) 39.2857i 1.97169i 0.167651 + 0.985846i \(0.446382\pi\)
−0.167651 + 0.985846i \(0.553618\pi\)
\(398\) 0 0
\(399\) 43.7915 2.19232
\(400\) 0 0
\(401\) 23.3346 1.16527 0.582637 0.812732i \(-0.302021\pi\)
0.582637 + 0.812732i \(0.302021\pi\)
\(402\) 0 0
\(403\) 7.47474i 0.372343i
\(404\) 0 0
\(405\) 17.2189 0.918158i 0.855612 0.0456236i
\(406\) 0 0
\(407\) −3.09512 3.09512i −0.153419 0.153419i
\(408\) 0 0
\(409\) −23.5949 −1.16669 −0.583346 0.812223i \(-0.698257\pi\)
−0.583346 + 0.812223i \(0.698257\pi\)
\(410\) 0 0
\(411\) 17.3475 + 17.3475i 0.855687 + 0.855687i
\(412\) 0 0
\(413\) 2.04512 0.100634
\(414\) 0 0
\(415\) −0.632041 11.8531i −0.0310257 0.581846i
\(416\) 0 0
\(417\) 12.0025 + 12.0025i 0.587764 + 0.587764i
\(418\) 0 0
\(419\) 18.7073 + 18.7073i 0.913911 + 0.913911i 0.996577 0.0826667i \(-0.0263437\pi\)
−0.0826667 + 0.996577i \(0.526344\pi\)
\(420\) 0 0
\(421\) 1.46082 1.46082i 0.0711962 0.0711962i −0.670612 0.741808i \(-0.733968\pi\)
0.741808 + 0.670612i \(0.233968\pi\)
\(422\) 0 0
\(423\) −43.6564 + 43.6564i −2.12265 + 2.12265i
\(424\) 0 0
\(425\) −20.4133 16.4688i −0.990192 0.798854i
\(426\) 0 0
\(427\) 22.0396i 1.06657i
\(428\) 0 0
\(429\) 9.18430 9.18430i 0.443422 0.443422i
\(430\) 0 0
\(431\) 21.2337i 1.02279i 0.859346 + 0.511395i \(0.170871\pi\)
−0.859346 + 0.511395i \(0.829129\pi\)
\(432\) 0 0
\(433\) 13.3918 13.3918i 0.643568 0.643568i −0.307863 0.951431i \(-0.599614\pi\)
0.951431 + 0.307863i \(0.0996138\pi\)
\(434\) 0 0
\(435\) −23.5192 21.1379i −1.12766 1.01349i
\(436\) 0 0
\(437\) −3.16723 −0.151509
\(438\) 0 0
\(439\) 19.6174i 0.936286i 0.883653 + 0.468143i \(0.155077\pi\)
−0.883653 + 0.468143i \(0.844923\pi\)
\(440\) 0 0
\(441\) 73.9641i 3.52210i
\(442\) 0 0
\(443\) −2.97052 −0.141134 −0.0705668 0.997507i \(-0.522481\pi\)
−0.0705668 + 0.997507i \(0.522481\pi\)
\(444\) 0 0
\(445\) −24.8230 + 1.32363i −1.17672 + 0.0627461i
\(446\) 0 0
\(447\) −29.7172 + 29.7172i −1.40558 + 1.40558i
\(448\) 0 0
\(449\) 20.1793i 0.952318i 0.879359 + 0.476159i \(0.157971\pi\)
−0.879359 + 0.476159i \(0.842029\pi\)
\(450\) 0 0
\(451\) 0.135793 0.135793i 0.00639424 0.00639424i
\(452\) 0 0
\(453\) 11.5774i 0.543955i
\(454\) 0 0
\(455\) 10.2805 + 9.23967i 0.481959 + 0.433162i
\(456\) 0 0
\(457\) −6.37301 + 6.37301i −0.298117 + 0.298117i −0.840276 0.542159i \(-0.817607\pi\)
0.542159 + 0.840276i \(0.317607\pi\)
\(458\) 0 0
\(459\) 31.5060 31.5060i 1.47057 1.47057i
\(460\) 0 0
\(461\) 27.4972 + 27.4972i 1.28067 + 1.28067i 0.940286 + 0.340385i \(0.110557\pi\)
0.340385 + 0.940286i \(0.389443\pi\)
\(462\) 0 0
\(463\) 7.98877 + 7.98877i 0.371269 + 0.371269i 0.867939 0.496670i \(-0.165444\pi\)
−0.496670 + 0.867939i \(0.665444\pi\)
\(464\) 0 0
\(465\) 35.5997 1.89828i 1.65090 0.0880305i
\(466\) 0 0
\(467\) −0.761551 −0.0352404 −0.0176202 0.999845i \(-0.505609\pi\)
−0.0176202 + 0.999845i \(0.505609\pi\)
\(468\) 0 0
\(469\) −32.7788 32.7788i −1.51359 1.51359i
\(470\) 0 0
\(471\) 18.7574 0.864297
\(472\) 0 0
\(473\) 20.7568 + 20.7568i 0.954397 + 0.954397i
\(474\) 0 0
\(475\) 12.9247 + 10.4272i 0.593025 + 0.478433i
\(476\) 0 0
\(477\) 8.09515i 0.370652i
\(478\) 0 0
\(479\) −19.3307 −0.883241 −0.441621 0.897202i \(-0.645596\pi\)
−0.441621 + 0.897202i \(0.645596\pi\)
\(480\) 0 0
\(481\) −1.95169 −0.0889893
\(482\) 0 0
\(483\) 12.5735i 0.572114i
\(484\) 0 0
\(485\) 24.8363 + 22.3217i 1.12776 + 1.01358i
\(486\) 0 0
\(487\) −30.4781 30.4781i −1.38109 1.38109i −0.842681 0.538413i \(-0.819024\pi\)
−0.538413 0.842681i \(-0.680976\pi\)
\(488\) 0 0
\(489\) −6.55905 −0.296610
\(490\) 0 0
\(491\) −9.36598 9.36598i −0.422681 0.422681i 0.463445 0.886126i \(-0.346613\pi\)
−0.886126 + 0.463445i \(0.846613\pi\)
\(492\) 0 0
\(493\) −24.9302 −1.12280
\(494\) 0 0
\(495\) −30.4638 27.3794i −1.36924 1.23061i
\(496\) 0 0
\(497\) −39.1750 39.1750i −1.75724 1.75724i
\(498\) 0 0
\(499\) −6.42506 6.42506i −0.287625 0.287625i 0.548515 0.836141i \(-0.315193\pi\)
−0.836141 + 0.548515i \(0.815193\pi\)
\(500\) 0 0
\(501\) 0.733615 0.733615i 0.0327755 0.0327755i
\(502\) 0 0
\(503\) 22.5218 22.5218i 1.00420 1.00420i 0.00420549 0.999991i \(-0.498661\pi\)
0.999991 0.00420549i \(-0.00133865\pi\)
\(504\) 0 0
\(505\) −3.37268 + 3.75262i −0.150082 + 0.166989i
\(506\) 0 0
\(507\) 32.8921i 1.46079i
\(508\) 0 0
\(509\) 5.10973 5.10973i 0.226485 0.226485i −0.584738 0.811222i \(-0.698803\pi\)
0.811222 + 0.584738i \(0.198803\pi\)
\(510\) 0 0
\(511\) 68.8641i 3.04637i
\(512\) 0 0
\(513\) −19.9480 + 19.9480i −0.880726 + 0.880726i
\(514\) 0 0
\(515\) −0.975303 + 1.08517i −0.0429770 + 0.0478185i
\(516\) 0 0
\(517\) 32.9955 1.45114
\(518\) 0 0
\(519\) 57.2460i 2.51282i
\(520\) 0 0
\(521\) 32.2312i 1.41208i −0.708174 0.706038i \(-0.750481\pi\)
0.708174 0.706038i \(-0.249519\pi\)
\(522\) 0 0
\(523\) −19.3381 −0.845598 −0.422799 0.906223i \(-0.638952\pi\)
−0.422799 + 0.906223i \(0.638952\pi\)
\(524\) 0 0
\(525\) 41.3947 51.3093i 1.80661 2.23932i
\(526\) 0 0
\(527\) 19.8739 19.8739i 0.865719 0.865719i
\(528\) 0 0
\(529\) 22.0906i 0.960462i
\(530\) 0 0
\(531\) −1.91069 + 1.91069i −0.0829168 + 0.0829168i
\(532\) 0 0
\(533\) 0.0856270i 0.00370892i
\(534\) 0 0
\(535\) 0.190666 + 3.57569i 0.00824320 + 0.154591i
\(536\) 0 0
\(537\) 4.47964 4.47964i 0.193311 0.193311i
\(538\) 0 0
\(539\) −27.9511 + 27.9511i −1.20394 + 1.20394i
\(540\) 0 0
\(541\) −9.31865 9.31865i −0.400640 0.400640i 0.477818 0.878459i \(-0.341428\pi\)
−0.878459 + 0.477818i \(0.841428\pi\)
\(542\) 0 0
\(543\) −36.1835 36.1835i −1.55278 1.55278i
\(544\) 0 0
\(545\) 7.31284 8.13665i 0.313248 0.348536i
\(546\) 0 0
\(547\) 10.8270 0.462928 0.231464 0.972843i \(-0.425648\pi\)
0.231464 + 0.972843i \(0.425648\pi\)
\(548\) 0 0
\(549\) 20.5909 + 20.5909i 0.878797 + 0.878797i
\(550\) 0 0
\(551\) 15.7846 0.672445
\(552\) 0 0
\(553\) −1.41642 1.41642i −0.0602323 0.0602323i
\(554\) 0 0
\(555\) 0.495649 + 9.29525i 0.0210391 + 0.394561i
\(556\) 0 0
\(557\) 21.8505i 0.925837i −0.886401 0.462919i \(-0.846802\pi\)
0.886401 0.462919i \(-0.153198\pi\)
\(558\) 0 0
\(559\) 13.0886 0.553588
\(560\) 0 0
\(561\) −48.8386 −2.06197
\(562\) 0 0
\(563\) 43.7789i 1.84506i 0.385922 + 0.922531i \(0.373883\pi\)
−0.385922 + 0.922531i \(0.626117\pi\)
\(564\) 0 0
\(565\) −12.8566 + 14.3049i −0.540882 + 0.601814i
\(566\) 0 0
\(567\) 24.1614 + 24.1614i 1.01468 + 1.01468i
\(568\) 0 0
\(569\) −22.7808 −0.955021 −0.477511 0.878626i \(-0.658461\pi\)
−0.477511 + 0.878626i \(0.658461\pi\)
\(570\) 0 0
\(571\) 14.2769 + 14.2769i 0.597472 + 0.597472i 0.939639 0.342167i \(-0.111161\pi\)
−0.342167 + 0.939639i \(0.611161\pi\)
\(572\) 0 0
\(573\) 14.7872 0.617743
\(574\) 0 0
\(575\) −2.99388 + 3.71096i −0.124853 + 0.154758i
\(576\) 0 0
\(577\) 8.57087 + 8.57087i 0.356810 + 0.356810i 0.862636 0.505826i \(-0.168812\pi\)
−0.505826 + 0.862636i \(0.668812\pi\)
\(578\) 0 0
\(579\) 45.6900 + 45.6900i 1.89881 + 1.89881i
\(580\) 0 0
\(581\) 16.6322 16.6322i 0.690022 0.690022i
\(582\) 0 0
\(583\) 3.05916 3.05916i 0.126698 0.126698i
\(584\) 0 0
\(585\) −18.2371 + 0.972453i −0.754011 + 0.0402060i
\(586\) 0 0
\(587\) 5.32689i 0.219864i 0.993939 + 0.109932i \(0.0350634\pi\)
−0.993939 + 0.109932i \(0.964937\pi\)
\(588\) 0 0
\(589\) −12.5831 + 12.5831i −0.518479 + 0.518479i
\(590\) 0 0
\(591\) 12.2433i 0.503620i
\(592\) 0 0
\(593\) 14.1909 14.1909i 0.582750 0.582750i −0.352908 0.935658i \(-0.614807\pi\)
0.935658 + 0.352908i \(0.114807\pi\)
\(594\) 0 0
\(595\) −2.76748 51.9004i −0.113455 2.12771i
\(596\) 0 0
\(597\) 76.5222 3.13184
\(598\) 0 0
\(599\) 19.3816i 0.791912i 0.918269 + 0.395956i \(0.129587\pi\)
−0.918269 + 0.395956i \(0.870413\pi\)
\(600\) 0 0
\(601\) 38.9996i 1.59083i 0.606068 + 0.795413i \(0.292746\pi\)
−0.606068 + 0.795413i \(0.707254\pi\)
\(602\) 0 0
\(603\) 61.2484 2.49423
\(604\) 0 0
\(605\) −0.144125 2.70287i −0.00585951 0.109887i
\(606\) 0 0
\(607\) −18.5409 + 18.5409i −0.752553 + 0.752553i −0.974955 0.222402i \(-0.928610\pi\)
0.222402 + 0.974955i \(0.428610\pi\)
\(608\) 0 0
\(609\) 62.6627i 2.53922i
\(610\) 0 0
\(611\) 10.4030 10.4030i 0.420861 0.420861i
\(612\) 0 0
\(613\) 16.1206i 0.651104i −0.945524 0.325552i \(-0.894450\pi\)
0.945524 0.325552i \(-0.105550\pi\)
\(614\) 0 0
\(615\) −0.407813 + 0.0217457i −0.0164446 + 0.000876873i
\(616\) 0 0
\(617\) 3.27211 3.27211i 0.131730 0.131730i −0.638167 0.769898i \(-0.720307\pi\)
0.769898 + 0.638167i \(0.220307\pi\)
\(618\) 0 0
\(619\) −20.6549 + 20.6549i −0.830192 + 0.830192i −0.987543 0.157351i \(-0.949705\pi\)
0.157351 + 0.987543i \(0.449705\pi\)
\(620\) 0 0
\(621\) −5.72750 5.72750i −0.229837 0.229837i
\(622\) 0 0
\(623\) −34.8315 34.8315i −1.39549 1.39549i
\(624\) 0 0
\(625\) 24.4346 5.28701i 0.977382 0.211480i
\(626\) 0 0
\(627\) 30.9221 1.23491
\(628\) 0 0
\(629\) 5.18916 + 5.18916i 0.206905 + 0.206905i
\(630\) 0 0
\(631\) 42.2426 1.68165 0.840826 0.541305i \(-0.182070\pi\)
0.840826 + 0.541305i \(0.182070\pi\)
\(632\) 0 0
\(633\) −29.0609 29.0609i −1.15507 1.15507i
\(634\) 0 0
\(635\) 0.481172 0.535377i 0.0190947 0.0212458i
\(636\) 0 0
\(637\) 17.6251i 0.698333i
\(638\) 0 0
\(639\) 73.1998 2.89574
\(640\) 0 0
\(641\) 15.6661 0.618774 0.309387 0.950936i \(-0.399876\pi\)
0.309387 + 0.950936i \(0.399876\pi\)
\(642\) 0 0
\(643\) 12.8099i 0.505174i −0.967574 0.252587i \(-0.918719\pi\)
0.967574 0.252587i \(-0.0812814\pi\)
\(644\) 0 0
\(645\) −3.32397 62.3367i −0.130881 2.45450i
\(646\) 0 0
\(647\) 4.86503 + 4.86503i 0.191264 + 0.191264i 0.796242 0.604978i \(-0.206818\pi\)
−0.604978 + 0.796242i \(0.706818\pi\)
\(648\) 0 0
\(649\) 1.44410 0.0566859
\(650\) 0 0
\(651\) 49.9534 + 49.9534i 1.95783 + 1.95783i
\(652\) 0 0
\(653\) −40.5285 −1.58600 −0.793002 0.609219i \(-0.791483\pi\)
−0.793002 + 0.609219i \(0.791483\pi\)
\(654\) 0 0
\(655\) −26.8954 + 29.9252i −1.05089 + 1.16927i
\(656\) 0 0
\(657\) 64.3375 + 64.3375i 2.51004 + 2.51004i
\(658\) 0 0
\(659\) −26.6285 26.6285i −1.03730 1.03730i −0.999277 0.0380210i \(-0.987895\pi\)
−0.0380210 0.999277i \(-0.512105\pi\)
\(660\) 0 0
\(661\) −7.11926 + 7.11926i −0.276907 + 0.276907i −0.831873 0.554966i \(-0.812731\pi\)
0.554966 + 0.831873i \(0.312731\pi\)
\(662\) 0 0
\(663\) −15.3981 + 15.3981i −0.598011 + 0.598011i
\(664\) 0 0
\(665\) 1.75223 + 32.8607i 0.0679484 + 1.27428i
\(666\) 0 0
\(667\) 4.53209i 0.175483i
\(668\) 0 0
\(669\) −6.92934 + 6.92934i −0.267904 + 0.267904i
\(670\) 0 0
\(671\) 15.5626i 0.600788i
\(672\) 0 0
\(673\) 1.30978 1.30978i 0.0504884 0.0504884i −0.681412 0.731900i \(-0.738634\pi\)
0.731900 + 0.681412i \(0.238634\pi\)
\(674\) 0 0
\(675\) 4.51635 + 42.2287i 0.173834 + 1.62538i
\(676\) 0 0
\(677\) 35.4587 1.36279 0.681394 0.731916i \(-0.261374\pi\)
0.681394 + 0.731916i \(0.261374\pi\)
\(678\) 0 0
\(679\) 66.1719i 2.53944i
\(680\) 0 0
\(681\) 28.9616i 1.10981i
\(682\) 0 0
\(683\) 12.9149 0.494174 0.247087 0.968993i \(-0.420527\pi\)
0.247087 + 0.968993i \(0.420527\pi\)
\(684\) 0 0
\(685\) −12.3232 + 13.7115i −0.470847 + 0.523889i
\(686\) 0 0
\(687\) 21.9938 21.9938i 0.839117 0.839117i
\(688\) 0 0
\(689\) 1.92902i 0.0734897i
\(690\) 0 0
\(691\) −19.5974 + 19.5974i −0.745519 + 0.745519i −0.973634 0.228115i \(-0.926744\pi\)
0.228115 + 0.973634i \(0.426744\pi\)
\(692\) 0 0
\(693\) 81.1653i 3.08322i
\(694\) 0 0
\(695\) −8.52629 + 9.48680i −0.323421 + 0.359855i
\(696\) 0 0
\(697\) −0.227665 + 0.227665i −0.00862344 + 0.00862344i
\(698\) 0 0
\(699\) 25.4631 25.4631i 0.963103 0.963103i
\(700\) 0 0
\(701\) 1.46152 + 1.46152i 0.0552009 + 0.0552009i 0.734168 0.678967i \(-0.237572\pi\)
−0.678967 + 0.734168i \(0.737572\pi\)
\(702\) 0 0
\(703\) −3.28551 3.28551i −0.123915 0.123915i
\(704\) 0 0
\(705\) −52.1880 46.9042i −1.96552 1.76651i
\(706\) 0 0
\(707\) −9.99819 −0.376021
\(708\) 0 0
\(709\) 13.1164 + 13.1164i 0.492595 + 0.492595i 0.909123 0.416528i \(-0.136753\pi\)
−0.416528 + 0.909123i \(0.636753\pi\)
\(710\) 0 0
\(711\) 2.64663 0.0992563
\(712\) 0 0
\(713\) −3.61289 3.61289i −0.135304 0.135304i
\(714\) 0 0
\(715\) 7.25930 + 6.52432i 0.271482 + 0.243996i
\(716\) 0 0
\(717\) 1.32828i 0.0496054i
\(718\) 0 0
\(719\) −34.5952 −1.29018 −0.645091 0.764106i \(-0.723181\pi\)
−0.645091 + 0.764106i \(0.723181\pi\)
\(720\) 0 0
\(721\) −2.89125 −0.107676
\(722\) 0 0
\(723\) 69.3034i 2.57742i
\(724\) 0 0
\(725\) 14.9206 18.4943i 0.554138 0.686863i
\(726\) 0 0
\(727\) 5.08106 + 5.08106i 0.188446 + 0.188446i 0.795024 0.606578i \(-0.207458\pi\)
−0.606578 + 0.795024i \(0.707458\pi\)
\(728\) 0 0
\(729\) 30.6781 1.13623
\(730\) 0 0
\(731\) −34.8000 34.8000i −1.28713 1.28713i
\(732\) 0 0
\(733\) −1.11460 −0.0411688 −0.0205844 0.999788i \(-0.506553\pi\)
−0.0205844 + 0.999788i \(0.506553\pi\)
\(734\) 0 0
\(735\) 83.9427 4.47606i 3.09627 0.165102i
\(736\) 0 0
\(737\) −23.1458 23.1458i −0.852587 0.852587i
\(738\) 0 0
\(739\) −24.9950 24.9950i −0.919454 0.919454i 0.0775354 0.996990i \(-0.475295\pi\)
−0.996990 + 0.0775354i \(0.975295\pi\)
\(740\) 0 0
\(741\) 9.74928 9.74928i 0.358149 0.358149i
\(742\) 0 0
\(743\) 4.45168 4.45168i 0.163316 0.163316i −0.620718 0.784034i \(-0.713159\pi\)
0.784034 + 0.620718i \(0.213159\pi\)
\(744\) 0 0
\(745\) −23.4886 21.1104i −0.860555 0.773426i
\(746\) 0 0
\(747\) 31.0779i 1.13708i
\(748\) 0 0
\(749\) −5.01739 + 5.01739i −0.183332 + 0.183332i
\(750\) 0 0
\(751\) 7.28572i 0.265860i −0.991125 0.132930i \(-0.957562\pi\)
0.991125 0.132930i \(-0.0424385\pi\)
\(752\) 0 0
\(753\) −35.0795 + 35.0795i −1.27837 + 1.27837i
\(754\) 0 0
\(755\) 8.68759 0.463247i 0.316174 0.0168593i
\(756\) 0 0
\(757\) −6.32260 −0.229799 −0.114899 0.993377i \(-0.536655\pi\)
−0.114899 + 0.993377i \(0.536655\pi\)
\(758\) 0 0
\(759\) 8.87840i 0.322266i
\(760\) 0 0
\(761\) 21.1584i 0.766990i 0.923543 + 0.383495i \(0.125280\pi\)
−0.923543 + 0.383495i \(0.874720\pi\)
\(762\) 0 0
\(763\) 21.6787 0.784821
\(764\) 0 0
\(765\) 51.0744 + 45.9033i 1.84660 + 1.65964i
\(766\) 0 0
\(767\) 0.455303 0.455303i 0.0164401 0.0164401i
\(768\) 0 0
\(769\) 8.67496i 0.312827i 0.987692 + 0.156414i \(0.0499933\pi\)
−0.987692 + 0.156414i \(0.950007\pi\)
\(770\) 0 0
\(771\) −7.02960 + 7.02960i −0.253165 + 0.253165i
\(772\) 0 0
\(773\) 30.4072i 1.09367i 0.837241 + 0.546835i \(0.184167\pi\)
−0.837241 + 0.546835i \(0.815833\pi\)
\(774\) 0 0
\(775\) 2.84890 + 26.6377i 0.102335 + 0.956855i
\(776\) 0 0
\(777\) −13.0431 + 13.0431i −0.467917 + 0.467917i
\(778\) 0 0
\(779\) 0.144146 0.144146i 0.00516457 0.00516457i
\(780\) 0 0
\(781\) −27.6623 27.6623i −0.989833 0.989833i
\(782\) 0 0
\(783\) 28.5442 + 28.5442i 1.02009 + 1.02009i
\(784\) 0 0
\(785\) 0.750540 + 14.0754i 0.0267879 + 0.502373i
\(786\) 0 0
\(787\) 5.43338 0.193679 0.0968395 0.995300i \(-0.469127\pi\)
0.0968395 + 0.995300i \(0.469127\pi\)
\(788\) 0 0
\(789\) −18.7484 18.7484i −0.667461 0.667461i
\(790\) 0 0
\(791\) −38.1130 −1.35514
\(792\) 0 0
\(793\) −4.90666 4.90666i −0.174241 0.174241i
\(794\) 0 0
\(795\) −9.18728 + 0.489892i −0.325839 + 0.0173747i
\(796\) 0 0
\(797\) 21.9799i 0.778569i −0.921118 0.389285i \(-0.872722\pi\)
0.921118 0.389285i \(-0.127278\pi\)
\(798\) 0 0
\(799\) −55.3191 −1.95705
\(800\) 0 0
\(801\) 65.0838 2.29962
\(802\) 0 0
\(803\) 48.6264i 1.71599i
\(804\) 0 0
\(805\) −9.43502 + 0.503102i −0.332541 + 0.0177320i
\(806\) 0 0
\(807\) −30.3729 30.3729i −1.06918 1.06918i
\(808\) 0 0
\(809\) 37.4350 1.31614 0.658072 0.752955i \(-0.271372\pi\)
0.658072 + 0.752955i \(0.271372\pi\)
\(810\) 0 0
\(811\) −5.92150 5.92150i −0.207932 0.207932i 0.595456 0.803388i \(-0.296971\pi\)
−0.803388 + 0.595456i \(0.796971\pi\)
\(812\) 0 0
\(813\) 16.8196 0.589891
\(814\) 0 0
\(815\) −0.262446 4.92184i −0.00919310 0.172405i
\(816\) 0 0
\(817\) 22.0336 + 22.0336i 0.770858 + 0.770858i
\(818\) 0 0
\(819\) −25.5902 25.5902i −0.894194 0.894194i
\(820\) 0 0
\(821\) 17.5498 17.5498i 0.612494 0.612494i −0.331101 0.943595i \(-0.607420\pi\)
0.943595 + 0.331101i \(0.107420\pi\)
\(822\) 0 0
\(823\) −3.62807 + 3.62807i −0.126467 + 0.126467i −0.767507 0.641041i \(-0.778503\pi\)
0.641041 + 0.767507i \(0.278503\pi\)
\(824\) 0 0
\(825\) 29.2296 36.2306i 1.01765 1.26139i
\(826\) 0 0
\(827\) 35.1888i 1.22364i −0.790999 0.611818i \(-0.790439\pi\)
0.790999 0.611818i \(-0.209561\pi\)
\(828\) 0 0
\(829\) 26.6936 26.6936i 0.927108 0.927108i −0.0704101 0.997518i \(-0.522431\pi\)
0.997518 + 0.0704101i \(0.0224308\pi\)
\(830\) 0 0
\(831\) 21.6437i 0.750810i
\(832\) 0 0
\(833\) 46.8618 46.8618i 1.62366 1.62366i
\(834\) 0 0
\(835\) 0.579851 + 0.521143i 0.0200666 + 0.0180349i
\(836\) 0 0
\(837\) −45.5097 −1.57305
\(838\) 0 0
\(839\) 43.8632i 1.51433i −0.653226 0.757163i \(-0.726585\pi\)
0.653226 0.757163i \(-0.273415\pi\)
\(840\) 0 0
\(841\) 6.41338i 0.221151i
\(842\) 0 0
\(843\) −66.1573 −2.27858
\(844\) 0 0
\(845\) −24.6819 + 1.31611i −0.849082 + 0.0452754i
\(846\) 0 0
\(847\) 3.79266 3.79266i 0.130317 0.130317i
\(848\) 0 0
\(849\) 48.4021i 1.66116i
\(850\) 0 0
\(851\) 0.943342 0.943342i 0.0323373 0.0323373i
\(852\) 0 0
\(853\) 32.1850i 1.10199i 0.834508 + 0.550996i \(0.185752\pi\)
−0.834508 + 0.550996i \(0.814248\pi\)
\(854\) 0 0
\(855\) −32.3377 29.0636i −1.10593 0.993956i
\(856\) 0 0
\(857\) 16.2444 16.2444i 0.554899 0.554899i −0.372952 0.927851i \(-0.621654\pi\)
0.927851 + 0.372952i \(0.121654\pi\)
\(858\) 0 0
\(859\) −5.95585 + 5.95585i −0.203211 + 0.203211i −0.801374 0.598163i \(-0.795897\pi\)
0.598163 + 0.801374i \(0.295897\pi\)
\(860\) 0 0
\(861\) −0.572242 0.572242i −0.0195019 0.0195019i
\(862\) 0 0
\(863\) 16.9034 + 16.9034i 0.575399 + 0.575399i 0.933632 0.358233i \(-0.116621\pi\)
−0.358233 + 0.933632i \(0.616621\pi\)
\(864\) 0 0
\(865\) 42.9568 2.29058i 1.46058 0.0778820i
\(866\) 0 0
\(867\) 31.2949 1.06283
\(868\) 0 0
\(869\) −1.00016 1.00016i −0.0339282 0.0339282i
\(870\) 0 0
\(871\) −14.5951 −0.494535
\(872\) 0 0
\(873\) −61.8222 61.8222i −2.09236 2.09236i
\(874\) 0 0
\(875\) 40.1583 + 29.0091i 1.35760 + 0.980687i
\(876\) 0 0
\(877\) 7.01598i 0.236913i −0.992959 0.118456i \(-0.962205\pi\)
0.992959 0.118456i \(-0.0377946\pi\)
\(878\) 0 0
\(879\) −75.5594 −2.54856
\(880\) 0 0
\(881\) −11.3834 −0.383517 −0.191759 0.981442i \(-0.561419\pi\)
−0.191759 + 0.981442i \(0.561419\pi\)
\(882\) 0 0
\(883\) 32.7727i 1.10289i −0.834211 0.551445i \(-0.814077\pi\)
0.834211 0.551445i \(-0.185923\pi\)
\(884\) 0 0
\(885\) −2.28409 2.05283i −0.0767788 0.0690052i
\(886\) 0 0
\(887\) −13.4104 13.4104i −0.450279 0.450279i 0.445168 0.895447i \(-0.353144\pi\)
−0.895447 + 0.445168i \(0.853144\pi\)
\(888\) 0 0
\(889\) 1.42642 0.0478405
\(890\) 0 0
\(891\) 17.0609 + 17.0609i 0.571561 + 0.571561i
\(892\) 0 0
\(893\) 35.0253 1.17208
\(894\) 0 0
\(895\) 3.54072 + 3.18224i 0.118353 + 0.106370i
\(896\) 0 0
\(897\) 2.79923 + 2.79923i 0.0934635 + 0.0934635i
\(898\) 0 0
\(899\) 18.0056 + 18.0056i 0.600520 + 0.600520i
\(900\) 0 0
\(901\) −5.12888 + 5.12888i −0.170868 + 0.170868i
\(902\) 0 0
\(903\) 87.4706 87.4706i 2.91084 2.91084i
\(904\) 0 0
\(905\) 25.7039 28.5995i 0.854428 0.950681i
\(906\) 0 0
\(907\) 7.75207i 0.257403i −0.991683 0.128702i \(-0.958919\pi\)
0.991683 0.128702i \(-0.0410810\pi\)
\(908\) 0 0
\(909\) 9.34098 9.34098i 0.309821 0.309821i
\(910\) 0 0
\(911\) 32.1640i 1.06564i −0.846228 0.532820i \(-0.821132\pi\)
0.846228 0.532820i \(-0.178868\pi\)
\(912\) 0 0
\(913\) 11.7444 11.7444i 0.388682 0.388682i
\(914\) 0 0
\(915\) −22.1227 + 24.6149i −0.731354 + 0.813743i
\(916\) 0 0
\(917\) −79.7304 −2.63293
\(918\) 0 0
\(919\) 9.75137i 0.321668i 0.986981 + 0.160834i \(0.0514184\pi\)
−0.986981 + 0.160834i \(0.948582\pi\)
\(920\) 0 0
\(921\) 58.5525i 1.92937i
\(922\) 0 0
\(923\) −17.4430 −0.574143
\(924\) 0 0
\(925\) −6.95523 + 0.743860i −0.228687 + 0.0244580i
\(926\) 0 0
\(927\) 2.70120 2.70120i 0.0887191 0.0887191i
\(928\) 0 0
\(929\) 43.6287i 1.43141i 0.698402 + 0.715705i \(0.253895\pi\)
−0.698402 + 0.715705i \(0.746105\pi\)
\(930\) 0 0
\(931\) −29.6705 + 29.6705i −0.972411 + 0.972411i
\(932\) 0 0
\(933\) 83.8877i 2.74636i
\(934\) 0 0
\(935\) −1.95417 36.6480i −0.0639083 1.19852i
\(936\) 0 0
\(937\) 31.5549 31.5549i 1.03085 1.03085i 0.0313438 0.999509i \(-0.490021\pi\)
0.999509 0.0313438i \(-0.00997868\pi\)
\(938\) 0 0
\(939\) 13.2513 13.2513i 0.432439 0.432439i
\(940\) 0 0
\(941\) 14.9543 + 14.9543i 0.487497 + 0.487497i 0.907516 0.420018i \(-0.137976\pi\)
−0.420018 + 0.907516i \(0.637976\pi\)
\(942\) 0 0
\(943\) 0.0413875 + 0.0413875i 0.00134776 + 0.00134776i
\(944\) 0 0
\(945\) −56.2555 + 62.5928i −1.82999 + 2.03614i
\(946\) 0 0
\(947\) −31.6676 −1.02906 −0.514530 0.857472i \(-0.672034\pi\)
−0.514530 + 0.857472i \(0.672034\pi\)
\(948\) 0 0
\(949\) −15.3312 15.3312i −0.497671 0.497671i
\(950\) 0 0
\(951\) −92.2438 −2.99121
\(952\) 0 0
\(953\) −0.671313 0.671313i −0.0217460 0.0217460i 0.696150 0.717896i \(-0.254895\pi\)
−0.717896 + 0.696150i \(0.754895\pi\)
\(954\) 0 0
\(955\) 0.591678 + 11.0962i 0.0191462 + 0.359063i
\(956\) 0 0
\(957\) 44.2474i 1.43032i
\(958\) 0 0
\(959\) −36.5318 −1.17967
\(960\) 0 0
\(961\) 2.29263 0.0739559
\(962\) 0 0
\(963\) 9.37517i 0.302111i
\(964\) 0 0
\(965\) −32.4572 + 36.1135i −1.04483 + 1.16254i
\(966\) 0 0
\(967\) 22.7926 + 22.7926i 0.732959 + 0.732959i 0.971205 0.238246i \(-0.0765723\pi\)
−0.238246 + 0.971205i \(0.576572\pi\)
\(968\) 0 0
\(969\) −51.8429 −1.66543
\(970\) 0 0
\(971\) −22.9086 22.9086i −0.735173 0.735173i 0.236467 0.971640i \(-0.424011\pi\)
−0.971640 + 0.236467i \(0.924011\pi\)
\(972\) 0 0
\(973\) −25.2759 −0.810308
\(974\) 0 0
\(975\) −2.20730 20.6386i −0.0706900 0.660965i
\(976\) 0 0
\(977\) −33.5811 33.5811i −1.07435 1.07435i −0.997004 0.0773506i \(-0.975354\pi\)
−0.0773506 0.997004i \(-0.524646\pi\)
\(978\) 0 0
\(979\) −24.5952 24.5952i −0.786067 0.786067i
\(980\) 0 0
\(981\) −20.2537 + 20.2537i −0.646650 + 0.646650i
\(982\) 0 0
\(983\) −8.88025 + 8.88025i −0.283236 + 0.283236i −0.834398 0.551162i \(-0.814185\pi\)
0.551162 + 0.834398i \(0.314185\pi\)
\(984\) 0 0
\(985\) 9.18722 0.489888i 0.292729 0.0156091i
\(986\) 0 0
\(987\) 139.046i 4.42588i
\(988\) 0 0
\(989\) −6.32632 + 6.32632i −0.201165 + 0.201165i
\(990\) 0 0
\(991\) 45.7111i 1.45206i 0.687663 + 0.726030i \(0.258637\pi\)
−0.687663 + 0.726030i \(0.741363\pi\)
\(992\) 0 0
\(993\) −63.5006 + 63.5006i −2.01513 + 2.01513i
\(994\) 0 0
\(995\) 3.06187 + 57.4215i 0.0970679 + 1.82038i
\(996\) 0 0
\(997\) −9.18540 −0.290904 −0.145452 0.989365i \(-0.546464\pi\)
−0.145452 + 0.989365i \(0.546464\pi\)
\(998\) 0 0
\(999\) 11.8828i 0.375955i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1280.2.j.d.447.1 yes 32
4.3 odd 2 inner 1280.2.j.d.447.16 yes 32
5.3 odd 4 1280.2.s.c.703.16 yes 32
8.3 odd 2 1280.2.j.c.447.1 yes 32
8.5 even 2 1280.2.j.c.447.16 yes 32
16.3 odd 4 1280.2.s.d.1087.1 yes 32
16.5 even 4 1280.2.s.c.1087.1 yes 32
16.11 odd 4 1280.2.s.c.1087.16 yes 32
16.13 even 4 1280.2.s.d.1087.16 yes 32
20.3 even 4 1280.2.s.c.703.1 yes 32
40.3 even 4 1280.2.s.d.703.16 yes 32
40.13 odd 4 1280.2.s.d.703.1 yes 32
80.3 even 4 1280.2.j.c.63.1 32
80.13 odd 4 1280.2.j.c.63.16 yes 32
80.43 even 4 inner 1280.2.j.d.63.16 yes 32
80.53 odd 4 inner 1280.2.j.d.63.1 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1280.2.j.c.63.1 32 80.3 even 4
1280.2.j.c.63.16 yes 32 80.13 odd 4
1280.2.j.c.447.1 yes 32 8.3 odd 2
1280.2.j.c.447.16 yes 32 8.5 even 2
1280.2.j.d.63.1 yes 32 80.53 odd 4 inner
1280.2.j.d.63.16 yes 32 80.43 even 4 inner
1280.2.j.d.447.1 yes 32 1.1 even 1 trivial
1280.2.j.d.447.16 yes 32 4.3 odd 2 inner
1280.2.s.c.703.1 yes 32 20.3 even 4
1280.2.s.c.703.16 yes 32 5.3 odd 4
1280.2.s.c.1087.1 yes 32 16.5 even 4
1280.2.s.c.1087.16 yes 32 16.11 odd 4
1280.2.s.d.703.1 yes 32 40.13 odd 4
1280.2.s.d.703.16 yes 32 40.3 even 4
1280.2.s.d.1087.1 yes 32 16.3 odd 4
1280.2.s.d.1087.16 yes 32 16.13 even 4