Properties

Label 1275.2.d.i.424.4
Level $1275$
Weight $2$
Character 1275.424
Analytic conductor $10.181$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1275,2,Mod(424,1275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1275, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1275.424"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1275 = 3 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1275.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,-12,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1809262577\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 20x^{10} + 144x^{8} + 452x^{6} + 604x^{4} + 268x^{2} + 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 424.4
Root \(-1.54662i\) of defining polynomial
Character \(\chi\) \(=\) 1275.424
Dual form 1275.2.d.i.424.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.54662i q^{2} -1.00000 q^{3} -0.392039 q^{4} +1.54662i q^{6} -0.429930 q^{7} -2.48691i q^{8} +1.00000 q^{9} +0.976552i q^{11} +0.392039 q^{12} -5.16256i q^{13} +0.664939i q^{14} -4.63038 q^{16} +(4.00903 + 0.963160i) q^{17} -1.54662i q^{18} +3.67728 q^{19} +0.429930 q^{21} +1.51036 q^{22} -0.477303 q^{23} +2.48691i q^{24} -7.98453 q^{26} -1.00000 q^{27} +0.168549 q^{28} -6.61594i q^{29} +9.07940i q^{31} +2.18764i q^{32} -0.976552i q^{33} +(1.48964 - 6.20045i) q^{34} -0.392039 q^{36} -7.72152 q^{37} -5.68736i q^{38} +5.16256i q^{39} -8.75942i q^{41} -0.664939i q^{42} -6.80650i q^{43} -0.382846i q^{44} +0.738207i q^{46} -4.76254i q^{47} +4.63038 q^{48} -6.81516 q^{49} +(-4.00903 - 0.963160i) q^{51} +2.02392i q^{52} -7.93763i q^{53} +1.54662i q^{54} +1.06920i q^{56} -3.67728 q^{57} -10.2324 q^{58} +0.842970 q^{59} +4.24945i q^{61} +14.0424 q^{62} -0.429930 q^{63} -5.87732 q^{64} -1.51036 q^{66} +4.43839i q^{67} +(-1.57170 - 0.377596i) q^{68} +0.477303 q^{69} -8.61804i q^{71} -2.48691i q^{72} -7.06754 q^{73} +11.9423i q^{74} -1.44164 q^{76} -0.419849i q^{77} +7.98453 q^{78} -2.47389i q^{79} +1.00000 q^{81} -13.5475 q^{82} -6.29370i q^{83} -0.168549 q^{84} -10.5271 q^{86} +6.61594i q^{87} +2.42859 q^{88} -5.57341 q^{89} +2.21954i q^{91} +0.187121 q^{92} -9.07940i q^{93} -7.36585 q^{94} -2.18764i q^{96} -3.74952 q^{97} +10.5405i q^{98} +0.976552i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{3} - 16 q^{4} + 12 q^{9} + 16 q^{12} + 32 q^{16} - 6 q^{17} + 4 q^{19} + 12 q^{22} - 16 q^{23} - 36 q^{26} - 12 q^{27} - 36 q^{28} + 24 q^{34} - 16 q^{36} - 4 q^{37} - 32 q^{48} + 16 q^{49}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1275\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(751\) \(851\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.54662i 1.09363i −0.837255 0.546813i \(-0.815841\pi\)
0.837255 0.546813i \(-0.184159\pi\)
\(3\) −1.00000 −0.577350
\(4\) −0.392039 −0.196019
\(5\) 0 0
\(6\) 1.54662i 0.631406i
\(7\) −0.429930 −0.162498 −0.0812491 0.996694i \(-0.525891\pi\)
−0.0812491 + 0.996694i \(0.525891\pi\)
\(8\) 2.48691i 0.879255i
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0.976552i 0.294441i 0.989104 + 0.147221i \(0.0470328\pi\)
−0.989104 + 0.147221i \(0.952967\pi\)
\(12\) 0.392039 0.113172
\(13\) 5.16256i 1.43184i −0.698184 0.715919i \(-0.746008\pi\)
0.698184 0.715919i \(-0.253992\pi\)
\(14\) 0.664939i 0.177712i
\(15\) 0 0
\(16\) −4.63038 −1.15760
\(17\) 4.00903 + 0.963160i 0.972333 + 0.233601i
\(18\) 1.54662i 0.364542i
\(19\) 3.67728 0.843626 0.421813 0.906683i \(-0.361394\pi\)
0.421813 + 0.906683i \(0.361394\pi\)
\(20\) 0 0
\(21\) 0.429930 0.0938184
\(22\) 1.51036 0.322009
\(23\) −0.477303 −0.0995246 −0.0497623 0.998761i \(-0.515846\pi\)
−0.0497623 + 0.998761i \(0.515846\pi\)
\(24\) 2.48691i 0.507638i
\(25\) 0 0
\(26\) −7.98453 −1.56590
\(27\) −1.00000 −0.192450
\(28\) 0.168549 0.0318528
\(29\) 6.61594i 1.22855i −0.789092 0.614275i \(-0.789449\pi\)
0.789092 0.614275i \(-0.210551\pi\)
\(30\) 0 0
\(31\) 9.07940i 1.63071i 0.578962 + 0.815354i \(0.303458\pi\)
−0.578962 + 0.815354i \(0.696542\pi\)
\(32\) 2.18764i 0.386723i
\(33\) 0.976552i 0.169996i
\(34\) 1.48964 6.20045i 0.255472 1.06337i
\(35\) 0 0
\(36\) −0.392039 −0.0653398
\(37\) −7.72152 −1.26941 −0.634705 0.772754i \(-0.718879\pi\)
−0.634705 + 0.772754i \(0.718879\pi\)
\(38\) 5.68736i 0.922612i
\(39\) 5.16256i 0.826672i
\(40\) 0 0
\(41\) 8.75942i 1.36799i −0.729486 0.683995i \(-0.760241\pi\)
0.729486 0.683995i \(-0.239759\pi\)
\(42\) 0.664939i 0.102602i
\(43\) 6.80650i 1.03798i −0.854780 0.518991i \(-0.826308\pi\)
0.854780 0.518991i \(-0.173692\pi\)
\(44\) 0.382846i 0.0577162i
\(45\) 0 0
\(46\) 0.738207i 0.108843i
\(47\) 4.76254i 0.694688i −0.937738 0.347344i \(-0.887084\pi\)
0.937738 0.347344i \(-0.112916\pi\)
\(48\) 4.63038 0.668338
\(49\) −6.81516 −0.973594
\(50\) 0 0
\(51\) −4.00903 0.963160i −0.561377 0.134869i
\(52\) 2.02392i 0.280668i
\(53\) 7.93763i 1.09032i −0.838333 0.545159i \(-0.816469\pi\)
0.838333 0.545159i \(-0.183531\pi\)
\(54\) 1.54662i 0.210469i
\(55\) 0 0
\(56\) 1.06920i 0.142877i
\(57\) −3.67728 −0.487068
\(58\) −10.2324 −1.34357
\(59\) 0.842970 0.109745 0.0548727 0.998493i \(-0.482525\pi\)
0.0548727 + 0.998493i \(0.482525\pi\)
\(60\) 0 0
\(61\) 4.24945i 0.544087i 0.962285 + 0.272043i \(0.0876994\pi\)
−0.962285 + 0.272043i \(0.912301\pi\)
\(62\) 14.0424 1.78339
\(63\) −0.429930 −0.0541661
\(64\) −5.87732 −0.734665
\(65\) 0 0
\(66\) −1.51036 −0.185912
\(67\) 4.43839i 0.542235i 0.962546 + 0.271118i \(0.0873932\pi\)
−0.962546 + 0.271118i \(0.912607\pi\)
\(68\) −1.57170 0.377596i −0.190596 0.0457902i
\(69\) 0.477303 0.0574605
\(70\) 0 0
\(71\) 8.61804i 1.02277i −0.859351 0.511387i \(-0.829132\pi\)
0.859351 0.511387i \(-0.170868\pi\)
\(72\) 2.48691i 0.293085i
\(73\) −7.06754 −0.827192 −0.413596 0.910460i \(-0.635727\pi\)
−0.413596 + 0.910460i \(0.635727\pi\)
\(74\) 11.9423i 1.38826i
\(75\) 0 0
\(76\) −1.44164 −0.165367
\(77\) 0.419849i 0.0478462i
\(78\) 7.98453 0.904070
\(79\) 2.47389i 0.278334i −0.990269 0.139167i \(-0.955558\pi\)
0.990269 0.139167i \(-0.0444425\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −13.5475 −1.49607
\(83\) 6.29370i 0.690823i −0.938451 0.345411i \(-0.887739\pi\)
0.938451 0.345411i \(-0.112261\pi\)
\(84\) −0.168549 −0.0183902
\(85\) 0 0
\(86\) −10.5271 −1.13516
\(87\) 6.61594i 0.709303i
\(88\) 2.42859 0.258889
\(89\) −5.57341 −0.590780 −0.295390 0.955377i \(-0.595450\pi\)
−0.295390 + 0.955377i \(0.595450\pi\)
\(90\) 0 0
\(91\) 2.21954i 0.232671i
\(92\) 0.187121 0.0195087
\(93\) 9.07940i 0.941490i
\(94\) −7.36585 −0.759730
\(95\) 0 0
\(96\) 2.18764i 0.223275i
\(97\) −3.74952 −0.380706 −0.190353 0.981716i \(-0.560963\pi\)
−0.190353 + 0.981716i \(0.560963\pi\)
\(98\) 10.5405i 1.06475i
\(99\) 0.976552i 0.0981471i
\(100\) 0 0
\(101\) 7.69515 0.765696 0.382848 0.923811i \(-0.374943\pi\)
0.382848 + 0.923811i \(0.374943\pi\)
\(102\) −1.48964 + 6.20045i −0.147497 + 0.613936i
\(103\) 5.66786i 0.558471i 0.960223 + 0.279236i \(0.0900810\pi\)
−0.960223 + 0.279236i \(0.909919\pi\)
\(104\) −12.8388 −1.25895
\(105\) 0 0
\(106\) −12.2765 −1.19240
\(107\) 11.2117 1.08388 0.541940 0.840417i \(-0.317690\pi\)
0.541940 + 0.840417i \(0.317690\pi\)
\(108\) 0.392039 0.0377240
\(109\) 3.24392i 0.310711i 0.987859 + 0.155356i \(0.0496523\pi\)
−0.987859 + 0.155356i \(0.950348\pi\)
\(110\) 0 0
\(111\) 7.72152 0.732895
\(112\) 1.99074 0.188107
\(113\) −16.6770 −1.56884 −0.784421 0.620229i \(-0.787040\pi\)
−0.784421 + 0.620229i \(0.787040\pi\)
\(114\) 5.68736i 0.532670i
\(115\) 0 0
\(116\) 2.59371i 0.240820i
\(117\) 5.16256i 0.477279i
\(118\) 1.30376i 0.120020i
\(119\) −1.72360 0.414091i −0.158002 0.0379597i
\(120\) 0 0
\(121\) 10.0463 0.913304
\(122\) 6.57229 0.595028
\(123\) 8.75942i 0.789810i
\(124\) 3.55948i 0.319650i
\(125\) 0 0
\(126\) 0.664939i 0.0592375i
\(127\) 10.2257i 0.907385i 0.891158 + 0.453693i \(0.149894\pi\)
−0.891158 + 0.453693i \(0.850106\pi\)
\(128\) 13.4653i 1.19017i
\(129\) 6.80650i 0.599279i
\(130\) 0 0
\(131\) 9.04036i 0.789860i −0.918711 0.394930i \(-0.870769\pi\)
0.918711 0.394930i \(-0.129231\pi\)
\(132\) 0.382846i 0.0333225i
\(133\) −1.58097 −0.137088
\(134\) 6.86450 0.593003
\(135\) 0 0
\(136\) 2.39529 9.97009i 0.205394 0.854928i
\(137\) 14.8099i 1.26530i 0.774439 + 0.632649i \(0.218032\pi\)
−0.774439 + 0.632649i \(0.781968\pi\)
\(138\) 0.738207i 0.0628404i
\(139\) 12.1919i 1.03410i −0.855954 0.517052i \(-0.827029\pi\)
0.855954 0.517052i \(-0.172971\pi\)
\(140\) 0 0
\(141\) 4.76254i 0.401079i
\(142\) −13.3289 −1.11853
\(143\) 5.04151 0.421592
\(144\) −4.63038 −0.385865
\(145\) 0 0
\(146\) 10.9308i 0.904640i
\(147\) 6.81516 0.562105
\(148\) 3.02714 0.248829
\(149\) 2.53733 0.207866 0.103933 0.994584i \(-0.466857\pi\)
0.103933 + 0.994584i \(0.466857\pi\)
\(150\) 0 0
\(151\) 20.1805 1.64226 0.821131 0.570739i \(-0.193343\pi\)
0.821131 + 0.570739i \(0.193343\pi\)
\(152\) 9.14506i 0.741762i
\(153\) 4.00903 + 0.963160i 0.324111 + 0.0778669i
\(154\) −0.649347 −0.0523259
\(155\) 0 0
\(156\) 2.02392i 0.162044i
\(157\) 8.08452i 0.645215i 0.946533 + 0.322607i \(0.104559\pi\)
−0.946533 + 0.322607i \(0.895441\pi\)
\(158\) −3.82617 −0.304393
\(159\) 7.93763i 0.629495i
\(160\) 0 0
\(161\) 0.205207 0.0161726
\(162\) 1.54662i 0.121514i
\(163\) 14.8181 1.16064 0.580321 0.814388i \(-0.302927\pi\)
0.580321 + 0.814388i \(0.302927\pi\)
\(164\) 3.43403i 0.268153i
\(165\) 0 0
\(166\) −9.73397 −0.755502
\(167\) −1.83612 −0.142083 −0.0710417 0.997473i \(-0.522632\pi\)
−0.0710417 + 0.997473i \(0.522632\pi\)
\(168\) 1.06920i 0.0824903i
\(169\) −13.6520 −1.05016
\(170\) 0 0
\(171\) 3.67728 0.281209
\(172\) 2.66841i 0.203465i
\(173\) 16.5137 1.25551 0.627757 0.778409i \(-0.283973\pi\)
0.627757 + 0.778409i \(0.283973\pi\)
\(174\) 10.2324 0.775713
\(175\) 0 0
\(176\) 4.52181i 0.340844i
\(177\) −0.842970 −0.0633615
\(178\) 8.61995i 0.646093i
\(179\) −8.48016 −0.633837 −0.316919 0.948453i \(-0.602648\pi\)
−0.316919 + 0.948453i \(0.602648\pi\)
\(180\) 0 0
\(181\) 11.2829i 0.838649i 0.907836 + 0.419325i \(0.137733\pi\)
−0.907836 + 0.419325i \(0.862267\pi\)
\(182\) 3.43279 0.254455
\(183\) 4.24945i 0.314129i
\(184\) 1.18701i 0.0875074i
\(185\) 0 0
\(186\) −14.0424 −1.02964
\(187\) −0.940575 + 3.91503i −0.0687817 + 0.286295i
\(188\) 1.86710i 0.136172i
\(189\) 0.429930 0.0312728
\(190\) 0 0
\(191\) 3.03667 0.219726 0.109863 0.993947i \(-0.464959\pi\)
0.109863 + 0.993947i \(0.464959\pi\)
\(192\) 5.87732 0.424159
\(193\) −23.9780 −1.72598 −0.862988 0.505225i \(-0.831409\pi\)
−0.862988 + 0.505225i \(0.831409\pi\)
\(194\) 5.79909i 0.416351i
\(195\) 0 0
\(196\) 2.67181 0.190843
\(197\) 8.42347 0.600147 0.300074 0.953916i \(-0.402989\pi\)
0.300074 + 0.953916i \(0.402989\pi\)
\(198\) 1.51036 0.107336
\(199\) 26.2107i 1.85803i −0.370042 0.929015i \(-0.620657\pi\)
0.370042 0.929015i \(-0.379343\pi\)
\(200\) 0 0
\(201\) 4.43839i 0.313060i
\(202\) 11.9015i 0.837386i
\(203\) 2.84439i 0.199637i
\(204\) 1.57170 + 0.377596i 0.110041 + 0.0264370i
\(205\) 0 0
\(206\) 8.76604 0.610759
\(207\) −0.477303 −0.0331749
\(208\) 23.9046i 1.65749i
\(209\) 3.59105i 0.248398i
\(210\) 0 0
\(211\) 4.35210i 0.299611i 0.988716 + 0.149805i \(0.0478647\pi\)
−0.988716 + 0.149805i \(0.952135\pi\)
\(212\) 3.11186i 0.213723i
\(213\) 8.61804i 0.590499i
\(214\) 17.3403i 1.18536i
\(215\) 0 0
\(216\) 2.48691i 0.169213i
\(217\) 3.90351i 0.264987i
\(218\) 5.01712 0.339802
\(219\) 7.06754 0.477580
\(220\) 0 0
\(221\) 4.97237 20.6969i 0.334478 1.39222i
\(222\) 11.9423i 0.801513i
\(223\) 3.48378i 0.233291i 0.993174 + 0.116646i \(0.0372142\pi\)
−0.993174 + 0.116646i \(0.962786\pi\)
\(224\) 0.940530i 0.0628418i
\(225\) 0 0
\(226\) 25.7930i 1.71573i
\(227\) 1.89538 0.125801 0.0629004 0.998020i \(-0.479965\pi\)
0.0629004 + 0.998020i \(0.479965\pi\)
\(228\) 1.44164 0.0954747
\(229\) 8.85340 0.585049 0.292524 0.956258i \(-0.405505\pi\)
0.292524 + 0.956258i \(0.405505\pi\)
\(230\) 0 0
\(231\) 0.419849i 0.0276240i
\(232\) −16.4532 −1.08021
\(233\) 26.0340 1.70554 0.852771 0.522285i \(-0.174920\pi\)
0.852771 + 0.522285i \(0.174920\pi\)
\(234\) −7.98453 −0.521965
\(235\) 0 0
\(236\) −0.330477 −0.0215122
\(237\) 2.47389i 0.160696i
\(238\) −0.640443 + 2.66576i −0.0415137 + 0.172796i
\(239\) 24.0664 1.55673 0.778363 0.627815i \(-0.216050\pi\)
0.778363 + 0.627815i \(0.216050\pi\)
\(240\) 0 0
\(241\) 11.2091i 0.722042i −0.932558 0.361021i \(-0.882428\pi\)
0.932558 0.361021i \(-0.117572\pi\)
\(242\) 15.5379i 0.998814i
\(243\) −1.00000 −0.0641500
\(244\) 1.66595i 0.106652i
\(245\) 0 0
\(246\) 13.5475 0.863757
\(247\) 18.9842i 1.20793i
\(248\) 22.5796 1.43381
\(249\) 6.29370i 0.398847i
\(250\) 0 0
\(251\) 28.2730 1.78458 0.892289 0.451465i \(-0.149098\pi\)
0.892289 + 0.451465i \(0.149098\pi\)
\(252\) 0.168549 0.0106176
\(253\) 0.466111i 0.0293042i
\(254\) 15.8153 0.992341
\(255\) 0 0
\(256\) 9.07103 0.566939
\(257\) 5.51730i 0.344159i 0.985083 + 0.172080i \(0.0550487\pi\)
−0.985083 + 0.172080i \(0.944951\pi\)
\(258\) 10.5271 0.655387
\(259\) 3.31971 0.206277
\(260\) 0 0
\(261\) 6.61594i 0.409516i
\(262\) −13.9820 −0.863812
\(263\) 16.0439i 0.989310i 0.869089 + 0.494655i \(0.164706\pi\)
−0.869089 + 0.494655i \(0.835294\pi\)
\(264\) −2.42859 −0.149470
\(265\) 0 0
\(266\) 2.44517i 0.149923i
\(267\) 5.57341 0.341087
\(268\) 1.74002i 0.106289i
\(269\) 7.17003i 0.437165i −0.975819 0.218582i \(-0.929857\pi\)
0.975819 0.218582i \(-0.0701432\pi\)
\(270\) 0 0
\(271\) 7.17160 0.435643 0.217822 0.975989i \(-0.430105\pi\)
0.217822 + 0.975989i \(0.430105\pi\)
\(272\) −18.5633 4.45980i −1.12557 0.270415i
\(273\) 2.21954i 0.134333i
\(274\) 22.9054 1.38376
\(275\) 0 0
\(276\) −0.187121 −0.0112634
\(277\) 24.1787 1.45275 0.726377 0.687296i \(-0.241203\pi\)
0.726377 + 0.687296i \(0.241203\pi\)
\(278\) −18.8563 −1.13092
\(279\) 9.07940i 0.543569i
\(280\) 0 0
\(281\) −28.2491 −1.68520 −0.842601 0.538539i \(-0.818976\pi\)
−0.842601 + 0.538539i \(0.818976\pi\)
\(282\) 7.36585 0.438630
\(283\) −32.2601 −1.91766 −0.958832 0.283973i \(-0.908347\pi\)
−0.958832 + 0.283973i \(0.908347\pi\)
\(284\) 3.37861i 0.200483i
\(285\) 0 0
\(286\) 7.79731i 0.461064i
\(287\) 3.76594i 0.222296i
\(288\) 2.18764i 0.128908i
\(289\) 15.1446 + 7.72267i 0.890862 + 0.454275i
\(290\) 0 0
\(291\) 3.74952 0.219801
\(292\) 2.77075 0.162146
\(293\) 26.0057i 1.51927i −0.650349 0.759636i \(-0.725377\pi\)
0.650349 0.759636i \(-0.274623\pi\)
\(294\) 10.5405i 0.614733i
\(295\) 0 0
\(296\) 19.2027i 1.11614i
\(297\) 0.976552i 0.0566653i
\(298\) 3.92428i 0.227328i
\(299\) 2.46411i 0.142503i
\(300\) 0 0
\(301\) 2.92632i 0.168670i
\(302\) 31.2115i 1.79602i
\(303\) −7.69515 −0.442075
\(304\) −17.0272 −0.976578
\(305\) 0 0
\(306\) 1.48964 6.20045i 0.0851573 0.354456i
\(307\) 5.76186i 0.328847i −0.986390 0.164423i \(-0.947424\pi\)
0.986390 0.164423i \(-0.0525763\pi\)
\(308\) 0.164597i 0.00937879i
\(309\) 5.66786i 0.322433i
\(310\) 0 0
\(311\) 24.9984i 1.41753i 0.705444 + 0.708766i \(0.250748\pi\)
−0.705444 + 0.708766i \(0.749252\pi\)
\(312\) 12.8388 0.726855
\(313\) 3.42518 0.193602 0.0968012 0.995304i \(-0.469139\pi\)
0.0968012 + 0.995304i \(0.469139\pi\)
\(314\) 12.5037 0.705624
\(315\) 0 0
\(316\) 0.969859i 0.0545588i
\(317\) −23.7739 −1.33527 −0.667637 0.744487i \(-0.732694\pi\)
−0.667637 + 0.744487i \(0.732694\pi\)
\(318\) 12.2765 0.688433
\(319\) 6.46081 0.361736
\(320\) 0 0
\(321\) −11.2117 −0.625779
\(322\) 0.317377i 0.0176868i
\(323\) 14.7423 + 3.54181i 0.820285 + 0.197071i
\(324\) −0.392039 −0.0217799
\(325\) 0 0
\(326\) 22.9180i 1.26931i
\(327\) 3.24392i 0.179389i
\(328\) −21.7839 −1.20281
\(329\) 2.04756i 0.112886i
\(330\) 0 0
\(331\) 9.57377 0.526222 0.263111 0.964766i \(-0.415251\pi\)
0.263111 + 0.964766i \(0.415251\pi\)
\(332\) 2.46737i 0.135415i
\(333\) −7.72152 −0.423137
\(334\) 2.83979i 0.155386i
\(335\) 0 0
\(336\) −1.99074 −0.108604
\(337\) 18.1726 0.989927 0.494963 0.868914i \(-0.335181\pi\)
0.494963 + 0.868914i \(0.335181\pi\)
\(338\) 21.1146i 1.14848i
\(339\) 16.6770 0.905771
\(340\) 0 0
\(341\) −8.86650 −0.480148
\(342\) 5.68736i 0.307537i
\(343\) 5.93955 0.320706
\(344\) −16.9271 −0.912650
\(345\) 0 0
\(346\) 25.5405i 1.37306i
\(347\) −23.2530 −1.24828 −0.624142 0.781311i \(-0.714551\pi\)
−0.624142 + 0.781311i \(0.714551\pi\)
\(348\) 2.59371i 0.139037i
\(349\) 32.9277 1.76258 0.881290 0.472575i \(-0.156676\pi\)
0.881290 + 0.472575i \(0.156676\pi\)
\(350\) 0 0
\(351\) 5.16256i 0.275557i
\(352\) −2.13634 −0.113867
\(353\) 6.76112i 0.359858i 0.983680 + 0.179929i \(0.0575868\pi\)
−0.983680 + 0.179929i \(0.942413\pi\)
\(354\) 1.30376i 0.0692939i
\(355\) 0 0
\(356\) 2.18499 0.115804
\(357\) 1.72360 + 0.414091i 0.0912227 + 0.0219160i
\(358\) 13.1156i 0.693181i
\(359\) 25.2197 1.33104 0.665521 0.746379i \(-0.268209\pi\)
0.665521 + 0.746379i \(0.268209\pi\)
\(360\) 0 0
\(361\) −5.47761 −0.288295
\(362\) 17.4503 0.917169
\(363\) −10.0463 −0.527296
\(364\) 0.870146i 0.0456080i
\(365\) 0 0
\(366\) −6.57229 −0.343539
\(367\) −8.08168 −0.421860 −0.210930 0.977501i \(-0.567649\pi\)
−0.210930 + 0.977501i \(0.567649\pi\)
\(368\) 2.21010 0.115209
\(369\) 8.75942i 0.455997i
\(370\) 0 0
\(371\) 3.41263i 0.177175i
\(372\) 3.55948i 0.184550i
\(373\) 17.1991i 0.890537i 0.895397 + 0.445268i \(0.146892\pi\)
−0.895397 + 0.445268i \(0.853108\pi\)
\(374\) 6.05506 + 1.45471i 0.313100 + 0.0752215i
\(375\) 0 0
\(376\) −11.8440 −0.610808
\(377\) −34.1552 −1.75908
\(378\) 0.664939i 0.0342008i
\(379\) 0.531420i 0.0272972i −0.999907 0.0136486i \(-0.995655\pi\)
0.999907 0.0136486i \(-0.00434462\pi\)
\(380\) 0 0
\(381\) 10.2257i 0.523879i
\(382\) 4.69658i 0.240298i
\(383\) 0.874772i 0.0446988i 0.999750 + 0.0223494i \(0.00711462\pi\)
−0.999750 + 0.0223494i \(0.992885\pi\)
\(384\) 13.4653i 0.687146i
\(385\) 0 0
\(386\) 37.0849i 1.88757i
\(387\) 6.80650i 0.345994i
\(388\) 1.46996 0.0746258
\(389\) 24.9537 1.26520 0.632602 0.774477i \(-0.281987\pi\)
0.632602 + 0.774477i \(0.281987\pi\)
\(390\) 0 0
\(391\) −1.91352 0.459719i −0.0967710 0.0232490i
\(392\) 16.9487i 0.856037i
\(393\) 9.04036i 0.456026i
\(394\) 13.0279i 0.656337i
\(395\) 0 0
\(396\) 0.382846i 0.0192387i
\(397\) 15.7628 0.791111 0.395555 0.918442i \(-0.370552\pi\)
0.395555 + 0.918442i \(0.370552\pi\)
\(398\) −40.5381 −2.03199
\(399\) 1.58097 0.0791476
\(400\) 0 0
\(401\) 10.7657i 0.537615i −0.963194 0.268807i \(-0.913370\pi\)
0.963194 0.268807i \(-0.0866295\pi\)
\(402\) −6.86450 −0.342370
\(403\) 46.8730 2.33491
\(404\) −3.01680 −0.150091
\(405\) 0 0
\(406\) 4.39920 0.218328
\(407\) 7.54047i 0.373767i
\(408\) −2.39529 + 9.97009i −0.118585 + 0.493593i
\(409\) −10.2591 −0.507282 −0.253641 0.967298i \(-0.581628\pi\)
−0.253641 + 0.967298i \(0.581628\pi\)
\(410\) 0 0
\(411\) 14.8099i 0.730520i
\(412\) 2.22202i 0.109471i
\(413\) −0.362418 −0.0178334
\(414\) 0.738207i 0.0362809i
\(415\) 0 0
\(416\) 11.2938 0.553724
\(417\) 12.1919i 0.597041i
\(418\) 5.55400 0.271655
\(419\) 32.3428i 1.58005i 0.613074 + 0.790026i \(0.289933\pi\)
−0.613074 + 0.790026i \(0.710067\pi\)
\(420\) 0 0
\(421\) −26.4919 −1.29114 −0.645568 0.763703i \(-0.723379\pi\)
−0.645568 + 0.763703i \(0.723379\pi\)
\(422\) 6.73104 0.327662
\(423\) 4.76254i 0.231563i
\(424\) −19.7402 −0.958667
\(425\) 0 0
\(426\) 13.3289 0.645785
\(427\) 1.82697i 0.0884131i
\(428\) −4.39544 −0.212462
\(429\) −5.04151 −0.243406
\(430\) 0 0
\(431\) 15.5752i 0.750233i −0.926978 0.375116i \(-0.877603\pi\)
0.926978 0.375116i \(-0.122397\pi\)
\(432\) 4.63038 0.222779
\(433\) 36.6438i 1.76099i −0.474057 0.880494i \(-0.657211\pi\)
0.474057 0.880494i \(-0.342789\pi\)
\(434\) −6.03725 −0.289797
\(435\) 0 0
\(436\) 1.27174i 0.0609054i
\(437\) −1.75518 −0.0839615
\(438\) 10.9308i 0.522294i
\(439\) 35.7519i 1.70634i −0.521630 0.853172i \(-0.674676\pi\)
0.521630 0.853172i \(-0.325324\pi\)
\(440\) 0 0
\(441\) −6.81516 −0.324531
\(442\) −32.0102 7.69038i −1.52257 0.365794i
\(443\) 16.8118i 0.798753i −0.916787 0.399377i \(-0.869227\pi\)
0.916787 0.399377i \(-0.130773\pi\)
\(444\) −3.02714 −0.143662
\(445\) 0 0
\(446\) 5.38809 0.255133
\(447\) −2.53733 −0.120011
\(448\) 2.52684 0.119382
\(449\) 18.0607i 0.852337i 0.904644 + 0.426169i \(0.140137\pi\)
−0.904644 + 0.426169i \(0.859863\pi\)
\(450\) 0 0
\(451\) 8.55402 0.402793
\(452\) 6.53804 0.307523
\(453\) −20.1805 −0.948161
\(454\) 2.93144i 0.137579i
\(455\) 0 0
\(456\) 9.14506i 0.428256i
\(457\) 28.9103i 1.35237i 0.736733 + 0.676184i \(0.236368\pi\)
−0.736733 + 0.676184i \(0.763632\pi\)
\(458\) 13.6929i 0.639825i
\(459\) −4.00903 0.963160i −0.187126 0.0449565i
\(460\) 0 0
\(461\) 15.8971 0.740401 0.370201 0.928952i \(-0.379289\pi\)
0.370201 + 0.928952i \(0.379289\pi\)
\(462\) 0.649347 0.0302104
\(463\) 29.7924i 1.38457i 0.721624 + 0.692285i \(0.243396\pi\)
−0.721624 + 0.692285i \(0.756604\pi\)
\(464\) 30.6343i 1.42216i
\(465\) 0 0
\(466\) 40.2647i 1.86523i
\(467\) 2.48308i 0.114903i −0.998348 0.0574516i \(-0.981703\pi\)
0.998348 0.0574516i \(-0.0182975\pi\)
\(468\) 2.02392i 0.0935560i
\(469\) 1.90819i 0.0881122i
\(470\) 0 0
\(471\) 8.08452i 0.372515i
\(472\) 2.09639i 0.0964941i
\(473\) 6.64690 0.305625
\(474\) 3.82617 0.175742
\(475\) 0 0
\(476\) 0.675719 + 0.162340i 0.0309715 + 0.00744083i
\(477\) 7.93763i 0.363439i
\(478\) 37.2216i 1.70248i
\(479\) 21.3380i 0.974960i −0.873134 0.487480i \(-0.837916\pi\)
0.873134 0.487480i \(-0.162084\pi\)
\(480\) 0 0
\(481\) 39.8629i 1.81759i
\(482\) −17.3363 −0.789645
\(483\) −0.205207 −0.00933724
\(484\) −3.93856 −0.179025
\(485\) 0 0
\(486\) 1.54662i 0.0701562i
\(487\) 41.3883 1.87548 0.937742 0.347333i \(-0.112913\pi\)
0.937742 + 0.347333i \(0.112913\pi\)
\(488\) 10.5680 0.478391
\(489\) −14.8181 −0.670097
\(490\) 0 0
\(491\) −15.5703 −0.702677 −0.351338 0.936249i \(-0.614273\pi\)
−0.351338 + 0.936249i \(0.614273\pi\)
\(492\) 3.43403i 0.154818i
\(493\) 6.37221 26.5235i 0.286990 1.19456i
\(494\) −29.3614 −1.32103
\(495\) 0 0
\(496\) 42.0411i 1.88770i
\(497\) 3.70515i 0.166199i
\(498\) 9.73397 0.436190
\(499\) 28.3452i 1.26891i 0.772961 + 0.634453i \(0.218775\pi\)
−0.772961 + 0.634453i \(0.781225\pi\)
\(500\) 0 0
\(501\) 1.83612 0.0820319
\(502\) 43.7277i 1.95166i
\(503\) 28.3949 1.26606 0.633032 0.774125i \(-0.281810\pi\)
0.633032 + 0.774125i \(0.281810\pi\)
\(504\) 1.06920i 0.0476258i
\(505\) 0 0
\(506\) −0.720898 −0.0320478
\(507\) 13.6520 0.606309
\(508\) 4.00888i 0.177865i
\(509\) −15.6779 −0.694909 −0.347454 0.937697i \(-0.612954\pi\)
−0.347454 + 0.937697i \(0.612954\pi\)
\(510\) 0 0
\(511\) 3.03854 0.134417
\(512\) 12.9011i 0.570153i
\(513\) −3.67728 −0.162356
\(514\) 8.53317 0.376382
\(515\) 0 0
\(516\) 2.66841i 0.117470i
\(517\) 4.65087 0.204545
\(518\) 5.13434i 0.225590i
\(519\) −16.5137 −0.724872
\(520\) 0 0
\(521\) 22.7228i 0.995504i 0.867319 + 0.497752i \(0.165841\pi\)
−0.867319 + 0.497752i \(0.834159\pi\)
\(522\) −10.2324 −0.447858
\(523\) 22.3505i 0.977319i 0.872475 + 0.488660i \(0.162514\pi\)
−0.872475 + 0.488660i \(0.837486\pi\)
\(524\) 3.54417i 0.154828i
\(525\) 0 0
\(526\) 24.8139 1.08194
\(527\) −8.74491 + 36.3996i −0.380934 + 1.58559i
\(528\) 4.52181i 0.196786i
\(529\) −22.7722 −0.990095
\(530\) 0 0
\(531\) 0.842970 0.0365818
\(532\) 0.619803 0.0268719
\(533\) −45.2210 −1.95874
\(534\) 8.61995i 0.373022i
\(535\) 0 0
\(536\) 11.0379 0.476763
\(537\) 8.48016 0.365946
\(538\) −11.0893 −0.478095
\(539\) 6.65536i 0.286666i
\(540\) 0 0
\(541\) 1.49693i 0.0643580i 0.999482 + 0.0321790i \(0.0102447\pi\)
−0.999482 + 0.0321790i \(0.989755\pi\)
\(542\) 11.0917i 0.476431i
\(543\) 11.2829i 0.484194i
\(544\) −2.10704 + 8.77030i −0.0903387 + 0.376023i
\(545\) 0 0
\(546\) −3.43279 −0.146910
\(547\) −23.1972 −0.991843 −0.495921 0.868367i \(-0.665170\pi\)
−0.495921 + 0.868367i \(0.665170\pi\)
\(548\) 5.80607i 0.248023i
\(549\) 4.24945i 0.181362i
\(550\) 0 0
\(551\) 24.3287i 1.03644i
\(552\) 1.18701i 0.0505224i
\(553\) 1.06360i 0.0452288i
\(554\) 37.3952i 1.58877i
\(555\) 0 0
\(556\) 4.77970i 0.202705i
\(557\) 44.8334i 1.89965i 0.312777 + 0.949827i \(0.398741\pi\)
−0.312777 + 0.949827i \(0.601259\pi\)
\(558\) 14.0424 0.594462
\(559\) −35.1390 −1.48622
\(560\) 0 0
\(561\) 0.940575 3.91503i 0.0397111 0.165292i
\(562\) 43.6907i 1.84298i
\(563\) 43.5968i 1.83739i 0.394970 + 0.918694i \(0.370755\pi\)
−0.394970 + 0.918694i \(0.629245\pi\)
\(564\) 1.86710i 0.0786192i
\(565\) 0 0
\(566\) 49.8942i 2.09721i
\(567\) −0.429930 −0.0180554
\(568\) −21.4323 −0.899278
\(569\) −16.0087 −0.671118 −0.335559 0.942019i \(-0.608925\pi\)
−0.335559 + 0.942019i \(0.608925\pi\)
\(570\) 0 0
\(571\) 46.0825i 1.92849i 0.265007 + 0.964246i \(0.414626\pi\)
−0.265007 + 0.964246i \(0.585374\pi\)
\(572\) −1.97647 −0.0826402
\(573\) −3.03667 −0.126859
\(574\) 5.82448 0.243109
\(575\) 0 0
\(576\) −5.87732 −0.244888
\(577\) 7.87973i 0.328037i 0.986457 + 0.164019i \(0.0524457\pi\)
−0.986457 + 0.164019i \(0.947554\pi\)
\(578\) 11.9441 23.4230i 0.496807 0.974270i
\(579\) 23.9780 0.996492
\(580\) 0 0
\(581\) 2.70585i 0.112258i
\(582\) 5.79909i 0.240380i
\(583\) 7.75151 0.321035
\(584\) 17.5763i 0.727313i
\(585\) 0 0
\(586\) −40.2210 −1.66152
\(587\) 10.6361i 0.439000i 0.975613 + 0.219500i \(0.0704425\pi\)
−0.975613 + 0.219500i \(0.929557\pi\)
\(588\) −2.67181 −0.110183
\(589\) 33.3875i 1.37571i
\(590\) 0 0
\(591\) −8.42347 −0.346495
\(592\) 35.7536 1.46946
\(593\) 7.79634i 0.320157i −0.987104 0.160079i \(-0.948825\pi\)
0.987104 0.160079i \(-0.0511748\pi\)
\(594\) −1.51036 −0.0619707
\(595\) 0 0
\(596\) −0.994731 −0.0407458
\(597\) 26.2107i 1.07273i
\(598\) 3.81104 0.155845
\(599\) 2.26066 0.0923679 0.0461840 0.998933i \(-0.485294\pi\)
0.0461840 + 0.998933i \(0.485294\pi\)
\(600\) 0 0
\(601\) 4.72766i 0.192845i −0.995340 0.0964226i \(-0.969260\pi\)
0.995340 0.0964226i \(-0.0307400\pi\)
\(602\) 4.52591 0.184462
\(603\) 4.43839i 0.180745i
\(604\) −7.91153 −0.321915
\(605\) 0 0
\(606\) 11.9015i 0.483465i
\(607\) 26.7457 1.08557 0.542786 0.839871i \(-0.317369\pi\)
0.542786 + 0.839871i \(0.317369\pi\)
\(608\) 8.04455i 0.326250i
\(609\) 2.84439i 0.115261i
\(610\) 0 0
\(611\) −24.5869 −0.994681
\(612\) −1.57170 0.377596i −0.0635320 0.0152634i
\(613\) 2.83165i 0.114369i 0.998364 + 0.0571847i \(0.0182124\pi\)
−0.998364 + 0.0571847i \(0.981788\pi\)
\(614\) −8.91142 −0.359636
\(615\) 0 0
\(616\) −1.04413 −0.0420690
\(617\) 8.05591 0.324319 0.162159 0.986765i \(-0.448154\pi\)
0.162159 + 0.986765i \(0.448154\pi\)
\(618\) −8.76604 −0.352622
\(619\) 20.4157i 0.820576i 0.911956 + 0.410288i \(0.134572\pi\)
−0.911956 + 0.410288i \(0.865428\pi\)
\(620\) 0 0
\(621\) 0.477303 0.0191535
\(622\) 38.6631 1.55025
\(623\) 2.39617 0.0960007
\(624\) 23.9046i 0.956952i
\(625\) 0 0
\(626\) 5.29745i 0.211729i
\(627\) 3.59105i 0.143413i
\(628\) 3.16945i 0.126475i
\(629\) −30.9558 7.43706i −1.23429 0.296535i
\(630\) 0 0
\(631\) −20.6328 −0.821378 −0.410689 0.911775i \(-0.634712\pi\)
−0.410689 + 0.911775i \(0.634712\pi\)
\(632\) −6.15232 −0.244726
\(633\) 4.35210i 0.172980i
\(634\) 36.7692i 1.46029i
\(635\) 0 0
\(636\) 3.11186i 0.123393i
\(637\) 35.1837i 1.39403i
\(638\) 9.99243i 0.395604i
\(639\) 8.61804i 0.340924i
\(640\) 0 0
\(641\) 17.5622i 0.693667i −0.937927 0.346833i \(-0.887257\pi\)
0.937927 0.346833i \(-0.112743\pi\)
\(642\) 17.3403i 0.684368i
\(643\) −2.24211 −0.0884201 −0.0442100 0.999022i \(-0.514077\pi\)
−0.0442100 + 0.999022i \(0.514077\pi\)
\(644\) −0.0804491 −0.00317014
\(645\) 0 0
\(646\) 5.47784 22.8008i 0.215523 0.897086i
\(647\) 35.5856i 1.39902i −0.714625 0.699508i \(-0.753403\pi\)
0.714625 0.699508i \(-0.246597\pi\)
\(648\) 2.48691i 0.0976950i
\(649\) 0.823204i 0.0323136i
\(650\) 0 0
\(651\) 3.90351i 0.152990i
\(652\) −5.80926 −0.227508
\(653\) −17.6154 −0.689345 −0.344672 0.938723i \(-0.612010\pi\)
−0.344672 + 0.938723i \(0.612010\pi\)
\(654\) −5.01712 −0.196185
\(655\) 0 0
\(656\) 40.5595i 1.58358i
\(657\) −7.06754 −0.275731
\(658\) 3.16680 0.123455
\(659\) −8.61882 −0.335742 −0.167871 0.985809i \(-0.553689\pi\)
−0.167871 + 0.985809i \(0.553689\pi\)
\(660\) 0 0
\(661\) −11.7014 −0.455132 −0.227566 0.973763i \(-0.573077\pi\)
−0.227566 + 0.973763i \(0.573077\pi\)
\(662\) 14.8070i 0.575491i
\(663\) −4.97237 + 20.6969i −0.193111 + 0.803800i
\(664\) −15.6518 −0.607409
\(665\) 0 0
\(666\) 11.9423i 0.462754i
\(667\) 3.15781i 0.122271i
\(668\) 0.719831 0.0278511
\(669\) 3.48378i 0.134691i
\(670\) 0 0
\(671\) −4.14981 −0.160202
\(672\) 0.940530i 0.0362817i
\(673\) 44.9610 1.73312 0.866560 0.499073i \(-0.166326\pi\)
0.866560 + 0.499073i \(0.166326\pi\)
\(674\) 28.1062i 1.08261i
\(675\) 0 0
\(676\) 5.35213 0.205851
\(677\) −2.79937 −0.107589 −0.0537943 0.998552i \(-0.517132\pi\)
−0.0537943 + 0.998552i \(0.517132\pi\)
\(678\) 25.7930i 0.990575i
\(679\) 1.61203 0.0618641
\(680\) 0 0
\(681\) −1.89538 −0.0726312
\(682\) 13.7131i 0.525103i
\(683\) 22.2621 0.851835 0.425917 0.904762i \(-0.359951\pi\)
0.425917 + 0.904762i \(0.359951\pi\)
\(684\) −1.44164 −0.0551223
\(685\) 0 0
\(686\) 9.18624i 0.350732i
\(687\) −8.85340 −0.337778
\(688\) 31.5167i 1.20156i
\(689\) −40.9785 −1.56116
\(690\) 0 0
\(691\) 16.1547i 0.614554i 0.951620 + 0.307277i \(0.0994177\pi\)
−0.951620 + 0.307277i \(0.900582\pi\)
\(692\) −6.47402 −0.246105
\(693\) 0.419849i 0.0159487i
\(694\) 35.9635i 1.36516i
\(695\) 0 0
\(696\) 16.4532 0.623658
\(697\) 8.43672 35.1168i 0.319563 1.33014i
\(698\) 50.9267i 1.92761i
\(699\) −26.0340 −0.984695
\(700\) 0 0
\(701\) −29.6175 −1.11864 −0.559319 0.828952i \(-0.688937\pi\)
−0.559319 + 0.828952i \(0.688937\pi\)
\(702\) 7.98453 0.301357
\(703\) −28.3942 −1.07091
\(704\) 5.73951i 0.216316i
\(705\) 0 0
\(706\) 10.4569 0.393551
\(707\) −3.30838 −0.124424
\(708\) 0.330477 0.0124201
\(709\) 4.66171i 0.175074i 0.996161 + 0.0875371i \(0.0278996\pi\)
−0.996161 + 0.0875371i \(0.972100\pi\)
\(710\) 0 0
\(711\) 2.47389i 0.0927780i
\(712\) 13.8605i 0.519446i
\(713\) 4.33363i 0.162296i
\(714\) 0.640443 2.66576i 0.0239680 0.0997636i
\(715\) 0 0
\(716\) 3.32455 0.124244
\(717\) −24.0664 −0.898776
\(718\) 39.0053i 1.45566i
\(719\) 0.691404i 0.0257850i −0.999917 0.0128925i \(-0.995896\pi\)
0.999917 0.0128925i \(-0.00410393\pi\)
\(720\) 0 0
\(721\) 2.43678i 0.0907506i
\(722\) 8.47180i 0.315288i
\(723\) 11.2091i 0.416871i
\(724\) 4.42332i 0.164392i
\(725\) 0 0
\(726\) 15.5379i 0.576665i
\(727\) 26.9835i 1.00076i −0.865806 0.500380i \(-0.833193\pi\)
0.865806 0.500380i \(-0.166807\pi\)
\(728\) 5.51979 0.204577
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 6.55575 27.2875i 0.242473 1.00926i
\(732\) 1.66595i 0.0615753i
\(733\) 38.6190i 1.42643i −0.700948 0.713213i \(-0.747239\pi\)
0.700948 0.713213i \(-0.252761\pi\)
\(734\) 12.4993i 0.461358i
\(735\) 0 0
\(736\) 1.04417i 0.0384884i
\(737\) −4.33431 −0.159656
\(738\) −13.5475 −0.498690
\(739\) 12.7144 0.467705 0.233853 0.972272i \(-0.424867\pi\)
0.233853 + 0.972272i \(0.424867\pi\)
\(740\) 0 0
\(741\) 18.9842i 0.697401i
\(742\) 5.27804 0.193763
\(743\) −4.75526 −0.174454 −0.0872268 0.996188i \(-0.527800\pi\)
−0.0872268 + 0.996188i \(0.527800\pi\)
\(744\) −22.5796 −0.827809
\(745\) 0 0
\(746\) 26.6005 0.973915
\(747\) 6.29370i 0.230274i
\(748\) 0.368742 1.53484i 0.0134825 0.0561194i
\(749\) −4.82027 −0.176129
\(750\) 0 0
\(751\) 16.7360i 0.610705i 0.952239 + 0.305352i \(0.0987742\pi\)
−0.952239 + 0.305352i \(0.901226\pi\)
\(752\) 22.0524i 0.804168i
\(753\) −28.2730 −1.03033
\(754\) 52.8252i 1.92378i
\(755\) 0 0
\(756\) −0.168549 −0.00613008
\(757\) 1.54235i 0.0560578i 0.999607 + 0.0280289i \(0.00892304\pi\)
−0.999607 + 0.0280289i \(0.991077\pi\)
\(758\) −0.821906 −0.0298530
\(759\) 0.466111i 0.0169188i
\(760\) 0 0
\(761\) −30.8203 −1.11723 −0.558617 0.829426i \(-0.688668\pi\)
−0.558617 + 0.829426i \(0.688668\pi\)
\(762\) −15.8153 −0.572928
\(763\) 1.39466i 0.0504900i
\(764\) −1.19049 −0.0430705
\(765\) 0 0
\(766\) 1.35294 0.0488838
\(767\) 4.35189i 0.157138i
\(768\) −9.07103 −0.327323
\(769\) −30.7066 −1.10731 −0.553654 0.832747i \(-0.686767\pi\)
−0.553654 + 0.832747i \(0.686767\pi\)
\(770\) 0 0
\(771\) 5.51730i 0.198701i
\(772\) 9.40031 0.338325
\(773\) 7.40148i 0.266213i −0.991102 0.133106i \(-0.957505\pi\)
0.991102 0.133106i \(-0.0424952\pi\)
\(774\) −10.5271 −0.378388
\(775\) 0 0
\(776\) 9.32471i 0.334738i
\(777\) −3.31971 −0.119094
\(778\) 38.5940i 1.38366i
\(779\) 32.2108i 1.15407i
\(780\) 0 0
\(781\) 8.41596 0.301147
\(782\) −0.711012 + 2.95950i −0.0254257 + 0.105831i
\(783\) 6.61594i 0.236434i
\(784\) 31.5568 1.12703
\(785\) 0 0
\(786\) 13.9820 0.498722
\(787\) 3.70140 0.131941 0.0659703 0.997822i \(-0.478986\pi\)
0.0659703 + 0.997822i \(0.478986\pi\)
\(788\) −3.30233 −0.117640
\(789\) 16.0439i 0.571178i
\(790\) 0 0
\(791\) 7.16995 0.254934
\(792\) 2.42859 0.0862963
\(793\) 21.9381 0.779043
\(794\) 24.3790i 0.865180i
\(795\) 0 0
\(796\) 10.2756i 0.364210i
\(797\) 34.7651i 1.23144i −0.787963 0.615722i \(-0.788864\pi\)
0.787963 0.615722i \(-0.211136\pi\)
\(798\) 2.44517i 0.0865580i
\(799\) 4.58709 19.0932i 0.162280 0.675468i
\(800\) 0 0
\(801\) −5.57341 −0.196927
\(802\) −16.6505 −0.587950
\(803\) 6.90181i 0.243560i
\(804\) 1.74002i 0.0613658i
\(805\) 0 0
\(806\) 72.4947i 2.55352i
\(807\) 7.17003i 0.252397i
\(808\) 19.1371i 0.673242i
\(809\) 42.0271i 1.47760i −0.673927 0.738798i \(-0.735394\pi\)
0.673927 0.738798i \(-0.264606\pi\)
\(810\) 0 0
\(811\) 35.1420i 1.23400i −0.786962 0.617001i \(-0.788347\pi\)
0.786962 0.617001i \(-0.211653\pi\)
\(812\) 1.11511i 0.0391327i
\(813\) −7.17160 −0.251519
\(814\) −11.6623 −0.408762
\(815\) 0 0
\(816\) 18.5633 + 4.45980i 0.649847 + 0.156124i
\(817\) 25.0294i 0.875668i
\(818\) 15.8670i 0.554777i
\(819\) 2.21954i 0.0775570i
\(820\) 0 0
\(821\) 17.8719i 0.623734i 0.950126 + 0.311867i \(0.100954\pi\)
−0.950126 + 0.311867i \(0.899046\pi\)
\(822\) −22.9054 −0.798916
\(823\) −33.3852 −1.16373 −0.581867 0.813284i \(-0.697678\pi\)
−0.581867 + 0.813284i \(0.697678\pi\)
\(824\) 14.0955 0.491038
\(825\) 0 0
\(826\) 0.560524i 0.0195031i
\(827\) 42.7442 1.48636 0.743180 0.669091i \(-0.233317\pi\)
0.743180 + 0.669091i \(0.233317\pi\)
\(828\) 0.187121 0.00650292
\(829\) 17.0407 0.591848 0.295924 0.955212i \(-0.404373\pi\)
0.295924 + 0.955212i \(0.404373\pi\)
\(830\) 0 0
\(831\) −24.1787 −0.838748
\(832\) 30.3420i 1.05192i
\(833\) −27.3222 6.56409i −0.946658 0.227432i
\(834\) 18.8563 0.652940
\(835\) 0 0
\(836\) 1.40783i 0.0486909i
\(837\) 9.07940i 0.313830i
\(838\) 50.0221 1.72799
\(839\) 5.38898i 0.186048i −0.995664 0.0930242i \(-0.970347\pi\)
0.995664 0.0930242i \(-0.0296534\pi\)
\(840\) 0 0
\(841\) −14.7707 −0.509333
\(842\) 40.9729i 1.41202i
\(843\) 28.2491 0.972951
\(844\) 1.70619i 0.0587295i
\(845\) 0 0
\(846\) −7.36585 −0.253243
\(847\) −4.31923 −0.148410
\(848\) 36.7543i 1.26215i
\(849\) 32.2601 1.10716
\(850\) 0 0
\(851\) 3.68551 0.126338
\(852\) 3.37861i 0.115749i
\(853\) 44.3831 1.51965 0.759824 0.650129i \(-0.225285\pi\)
0.759824 + 0.650129i \(0.225285\pi\)
\(854\) −2.82563 −0.0966909
\(855\) 0 0
\(856\) 27.8826i 0.953007i
\(857\) 21.4348 0.732199 0.366100 0.930576i \(-0.380693\pi\)
0.366100 + 0.930576i \(0.380693\pi\)
\(858\) 7.79731i 0.266196i
\(859\) 41.7437 1.42428 0.712138 0.702039i \(-0.247727\pi\)
0.712138 + 0.702039i \(0.247727\pi\)
\(860\) 0 0
\(861\) 3.76594i 0.128343i
\(862\) −24.0890 −0.820475
\(863\) 13.7962i 0.469627i 0.972040 + 0.234813i \(0.0754479\pi\)
−0.972040 + 0.234813i \(0.924552\pi\)
\(864\) 2.18764i 0.0744249i
\(865\) 0 0
\(866\) −56.6741 −1.92586
\(867\) −15.1446 7.72267i −0.514339 0.262276i
\(868\) 1.53033i 0.0519426i
\(869\) 2.41588 0.0819530
\(870\) 0 0
\(871\) 22.9134 0.776392
\(872\) 8.06733 0.273194
\(873\) −3.74952 −0.126902
\(874\) 2.71459i 0.0918225i
\(875\) 0 0
\(876\) −2.77075 −0.0936149
\(877\) 29.2334 0.987141 0.493571 0.869706i \(-0.335691\pi\)
0.493571 + 0.869706i \(0.335691\pi\)
\(878\) −55.2946 −1.86610
\(879\) 26.0057i 0.877152i
\(880\) 0 0
\(881\) 18.7208i 0.630721i 0.948972 + 0.315360i \(0.102125\pi\)
−0.948972 + 0.315360i \(0.897875\pi\)
\(882\) 10.5405i 0.354916i
\(883\) 29.4224i 0.990142i 0.868852 + 0.495071i \(0.164858\pi\)
−0.868852 + 0.495071i \(0.835142\pi\)
\(884\) −1.94936 + 8.11398i −0.0655642 + 0.272903i
\(885\) 0 0
\(886\) −26.0015 −0.873538
\(887\) −43.7003 −1.46731 −0.733656 0.679521i \(-0.762188\pi\)
−0.733656 + 0.679521i \(0.762188\pi\)
\(888\) 19.2027i 0.644401i
\(889\) 4.39634i 0.147449i
\(890\) 0 0
\(891\) 0.976552i 0.0327157i
\(892\) 1.36578i 0.0457296i
\(893\) 17.5132i 0.586057i
\(894\) 3.92428i 0.131248i
\(895\) 0 0
\(896\) 5.78912i 0.193401i
\(897\) 2.46411i 0.0822741i
\(898\) 27.9331 0.932139
\(899\) 60.0688 2.00341
\(900\) 0 0
\(901\) 7.64521 31.8222i 0.254699 1.06015i
\(902\) 13.2298i 0.440505i
\(903\) 2.92632i 0.0973818i
\(904\) 41.4742i 1.37941i
\(905\) 0 0
\(906\) 31.2115i 1.03693i
\(907\) −53.1209 −1.76385 −0.881926 0.471388i \(-0.843753\pi\)
−0.881926 + 0.471388i \(0.843753\pi\)
\(908\) −0.743063 −0.0246594
\(909\) 7.69515 0.255232
\(910\) 0 0
\(911\) 47.7278i 1.58129i 0.612273 + 0.790647i \(0.290255\pi\)
−0.612273 + 0.790647i \(0.709745\pi\)
\(912\) 17.0272 0.563827
\(913\) 6.14612 0.203407
\(914\) 44.7133 1.47899
\(915\) 0 0
\(916\) −3.47088 −0.114681
\(917\) 3.88672i 0.128351i
\(918\) −1.48964 + 6.20045i −0.0491656 + 0.204645i
\(919\) −1.14793 −0.0378667 −0.0189334 0.999821i \(-0.506027\pi\)
−0.0189334 + 0.999821i \(0.506027\pi\)
\(920\) 0 0
\(921\) 5.76186i 0.189860i
\(922\) 24.5868i 0.809723i
\(923\) −44.4912 −1.46445
\(924\) 0.164597i 0.00541484i
\(925\) 0 0
\(926\) 46.0776 1.51420
\(927\) 5.66786i 0.186157i
\(928\) 14.4733 0.475108
\(929\) 27.1035i 0.889237i 0.895720 + 0.444619i \(0.146661\pi\)
−0.895720 + 0.444619i \(0.853339\pi\)
\(930\) 0 0
\(931\) −25.0613 −0.821349
\(932\) −10.2063 −0.334319
\(933\) 24.9984i 0.818412i
\(934\) −3.84038 −0.125661
\(935\) 0 0
\(936\) −12.8388 −0.419650
\(937\) 48.1087i 1.57164i −0.618453 0.785822i \(-0.712240\pi\)
0.618453 0.785822i \(-0.287760\pi\)
\(938\) −2.95126 −0.0963619
\(939\) −3.42518 −0.111776
\(940\) 0 0
\(941\) 31.7723i 1.03575i −0.855457 0.517873i \(-0.826724\pi\)
0.855457 0.517873i \(-0.173276\pi\)
\(942\) −12.5037 −0.407392
\(943\) 4.18090i 0.136149i
\(944\) −3.90328 −0.127041
\(945\) 0 0
\(946\) 10.2802i 0.334239i
\(947\) 34.4567 1.11969 0.559846 0.828596i \(-0.310860\pi\)
0.559846 + 0.828596i \(0.310860\pi\)
\(948\) 0.969859i 0.0314996i
\(949\) 36.4866i 1.18440i
\(950\) 0 0
\(951\) 23.7739 0.770921
\(952\) −1.02981 + 4.28644i −0.0333762 + 0.138924i
\(953\) 30.1023i 0.975110i −0.873092 0.487555i \(-0.837889\pi\)
0.873092 0.487555i \(-0.162111\pi\)
\(954\) −12.2765 −0.397467
\(955\) 0 0
\(956\) −9.43496 −0.305149
\(957\) −6.46081 −0.208848
\(958\) −33.0019 −1.06624
\(959\) 6.36723i 0.205609i
\(960\) 0 0
\(961\) −51.4355 −1.65921
\(962\) 61.6528 1.98776
\(963\) 11.2117 0.361294
\(964\) 4.39441i 0.141534i
\(965\) 0 0
\(966\) 0.317377i 0.0102115i
\(967\) 33.5567i 1.07911i 0.841951 + 0.539555i \(0.181407\pi\)
−0.841951 + 0.539555i \(0.818593\pi\)
\(968\) 24.9843i 0.803027i
\(969\) −14.7423 3.54181i −0.473592 0.113779i
\(970\) 0 0
\(971\) 22.5468 0.723561 0.361780 0.932263i \(-0.382169\pi\)
0.361780 + 0.932263i \(0.382169\pi\)
\(972\) 0.392039 0.0125747
\(973\) 5.24167i 0.168040i
\(974\) 64.0121i 2.05108i
\(975\) 0 0
\(976\) 19.6766i 0.629832i
\(977\) 48.7390i 1.55930i −0.626217 0.779649i \(-0.715397\pi\)
0.626217 0.779649i \(-0.284603\pi\)
\(978\) 22.9180i 0.732836i
\(979\) 5.44272i 0.173950i
\(980\) 0 0
\(981\) 3.24392i 0.103570i
\(982\) 24.0813i 0.768466i
\(983\) −27.7107 −0.883836 −0.441918 0.897056i \(-0.645702\pi\)
−0.441918 + 0.897056i \(0.645702\pi\)
\(984\) 21.7839 0.694444
\(985\) 0 0
\(986\) −41.0218 9.85540i −1.30640 0.313860i
\(987\) 2.04756i 0.0651746i
\(988\) 7.44254i 0.236779i
\(989\) 3.24876i 0.103305i
\(990\) 0 0
\(991\) 44.7839i 1.42261i 0.702884 + 0.711304i \(0.251895\pi\)
−0.702884 + 0.711304i \(0.748105\pi\)
\(992\) −19.8624 −0.630633
\(993\) −9.57377 −0.303814
\(994\) 5.73047 0.181760
\(995\) 0 0
\(996\) 2.46737i 0.0781817i
\(997\) −24.6416 −0.780408 −0.390204 0.920728i \(-0.627595\pi\)
−0.390204 + 0.920728i \(0.627595\pi\)
\(998\) 43.8393 1.38771
\(999\) 7.72152 0.244298
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1275.2.d.i.424.4 12
5.2 odd 4 1275.2.g.f.526.10 yes 12
5.3 odd 4 1275.2.g.e.526.3 12
5.4 even 2 1275.2.d.j.424.9 12
17.16 even 2 1275.2.d.j.424.4 12
85.33 odd 4 1275.2.g.e.526.4 yes 12
85.67 odd 4 1275.2.g.f.526.9 yes 12
85.84 even 2 inner 1275.2.d.i.424.9 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1275.2.d.i.424.4 12 1.1 even 1 trivial
1275.2.d.i.424.9 12 85.84 even 2 inner
1275.2.d.j.424.4 12 17.16 even 2
1275.2.d.j.424.9 12 5.4 even 2
1275.2.g.e.526.3 12 5.3 odd 4
1275.2.g.e.526.4 yes 12 85.33 odd 4
1275.2.g.f.526.9 yes 12 85.67 odd 4
1275.2.g.f.526.10 yes 12 5.2 odd 4