Properties

Label 1275.2.g.e.526.3
Level $1275$
Weight $2$
Character 1275.526
Analytic conductor $10.181$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1275,2,Mod(526,1275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1275, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1275.526"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1275 = 3 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1275.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,16,0,0,0,0,-12,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1809262577\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 20x^{10} + 144x^{8} + 452x^{6} + 604x^{4} + 268x^{2} + 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 526.3
Root \(-1.54662i\) of defining polynomial
Character \(\chi\) \(=\) 1275.526
Dual form 1275.2.g.e.526.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.54662 q^{2} -1.00000i q^{3} +0.392039 q^{4} +1.54662i q^{6} +0.429930i q^{7} +2.48691 q^{8} -1.00000 q^{9} +0.976552i q^{11} -0.392039i q^{12} +5.16256 q^{13} -0.664939i q^{14} -4.63038 q^{16} +(0.963160 - 4.00903i) q^{17} +1.54662 q^{18} -3.67728 q^{19} +0.429930 q^{21} -1.51036i q^{22} -0.477303i q^{23} -2.48691i q^{24} -7.98453 q^{26} +1.00000i q^{27} +0.168549i q^{28} +6.61594i q^{29} +9.07940i q^{31} +2.18764 q^{32} +0.976552 q^{33} +(-1.48964 + 6.20045i) q^{34} -0.392039 q^{36} +7.72152i q^{37} +5.68736 q^{38} -5.16256i q^{39} -8.75942i q^{41} -0.664939 q^{42} +6.80650 q^{43} +0.382846i q^{44} +0.738207i q^{46} -4.76254 q^{47} +4.63038i q^{48} +6.81516 q^{49} +(-4.00903 - 0.963160i) q^{51} +2.02392 q^{52} +7.93763 q^{53} -1.54662i q^{54} +1.06920i q^{56} +3.67728i q^{57} -10.2324i q^{58} -0.842970 q^{59} +4.24945i q^{61} -14.0424i q^{62} -0.429930i q^{63} +5.87732 q^{64} -1.51036 q^{66} +4.43839 q^{67} +(0.377596 - 1.57170i) q^{68} -0.477303 q^{69} -8.61804i q^{71} -2.48691 q^{72} -7.06754i q^{73} -11.9423i q^{74} -1.44164 q^{76} -0.419849 q^{77} +7.98453i q^{78} +2.47389i q^{79} +1.00000 q^{81} +13.5475i q^{82} +6.29370 q^{83} +0.168549 q^{84} -10.5271 q^{86} +6.61594 q^{87} +2.42859i q^{88} +5.57341 q^{89} +2.21954i q^{91} -0.187121i q^{92} +9.07940 q^{93} +7.36585 q^{94} -2.18764i q^{96} +3.74952i q^{97} -10.5405 q^{98} -0.976552i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 16 q^{4} - 12 q^{9} - 4 q^{13} + 32 q^{16} + 10 q^{17} - 4 q^{19} - 36 q^{26} - 20 q^{32} - 12 q^{33} - 24 q^{34} - 16 q^{36} - 44 q^{38} + 28 q^{42} + 28 q^{43} - 16 q^{47} - 16 q^{49} + 6 q^{51}+ \cdots - 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1275\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(751\) \(851\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.54662 −1.09363 −0.546813 0.837255i \(-0.684159\pi\)
−0.546813 + 0.837255i \(0.684159\pi\)
\(3\) 1.00000i 0.577350i
\(4\) 0.392039 0.196019
\(5\) 0 0
\(6\) 1.54662i 0.631406i
\(7\) 0.429930i 0.162498i 0.996694 + 0.0812491i \(0.0258909\pi\)
−0.996694 + 0.0812491i \(0.974109\pi\)
\(8\) 2.48691 0.879255
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 0.976552i 0.294441i 0.989104 + 0.147221i \(0.0470328\pi\)
−0.989104 + 0.147221i \(0.952967\pi\)
\(12\) 0.392039i 0.113172i
\(13\) 5.16256 1.43184 0.715919 0.698184i \(-0.246008\pi\)
0.715919 + 0.698184i \(0.246008\pi\)
\(14\) 0.664939i 0.177712i
\(15\) 0 0
\(16\) −4.63038 −1.15760
\(17\) 0.963160 4.00903i 0.233601 0.972333i
\(18\) 1.54662 0.364542
\(19\) −3.67728 −0.843626 −0.421813 0.906683i \(-0.638606\pi\)
−0.421813 + 0.906683i \(0.638606\pi\)
\(20\) 0 0
\(21\) 0.429930 0.0938184
\(22\) 1.51036i 0.322009i
\(23\) 0.477303i 0.0995246i −0.998761 0.0497623i \(-0.984154\pi\)
0.998761 0.0497623i \(-0.0158464\pi\)
\(24\) 2.48691i 0.507638i
\(25\) 0 0
\(26\) −7.98453 −1.56590
\(27\) 1.00000i 0.192450i
\(28\) 0.168549i 0.0318528i
\(29\) 6.61594i 1.22855i 0.789092 + 0.614275i \(0.210551\pi\)
−0.789092 + 0.614275i \(0.789449\pi\)
\(30\) 0 0
\(31\) 9.07940i 1.63071i 0.578962 + 0.815354i \(0.303458\pi\)
−0.578962 + 0.815354i \(0.696542\pi\)
\(32\) 2.18764 0.386723
\(33\) 0.976552 0.169996
\(34\) −1.48964 + 6.20045i −0.255472 + 1.06337i
\(35\) 0 0
\(36\) −0.392039 −0.0653398
\(37\) 7.72152i 1.26941i 0.772754 + 0.634705i \(0.218879\pi\)
−0.772754 + 0.634705i \(0.781121\pi\)
\(38\) 5.68736 0.922612
\(39\) 5.16256i 0.826672i
\(40\) 0 0
\(41\) 8.75942i 1.36799i −0.729486 0.683995i \(-0.760241\pi\)
0.729486 0.683995i \(-0.239759\pi\)
\(42\) −0.664939 −0.102602
\(43\) 6.80650 1.03798 0.518991 0.854780i \(-0.326308\pi\)
0.518991 + 0.854780i \(0.326308\pi\)
\(44\) 0.382846i 0.0577162i
\(45\) 0 0
\(46\) 0.738207i 0.108843i
\(47\) −4.76254 −0.694688 −0.347344 0.937738i \(-0.612916\pi\)
−0.347344 + 0.937738i \(0.612916\pi\)
\(48\) 4.63038i 0.668338i
\(49\) 6.81516 0.973594
\(50\) 0 0
\(51\) −4.00903 0.963160i −0.561377 0.134869i
\(52\) 2.02392 0.280668
\(53\) 7.93763 1.09032 0.545159 0.838333i \(-0.316469\pi\)
0.545159 + 0.838333i \(0.316469\pi\)
\(54\) 1.54662i 0.210469i
\(55\) 0 0
\(56\) 1.06920i 0.142877i
\(57\) 3.67728i 0.487068i
\(58\) 10.2324i 1.34357i
\(59\) −0.842970 −0.109745 −0.0548727 0.998493i \(-0.517475\pi\)
−0.0548727 + 0.998493i \(0.517475\pi\)
\(60\) 0 0
\(61\) 4.24945i 0.544087i 0.962285 + 0.272043i \(0.0876994\pi\)
−0.962285 + 0.272043i \(0.912301\pi\)
\(62\) 14.0424i 1.78339i
\(63\) 0.429930i 0.0541661i
\(64\) 5.87732 0.734665
\(65\) 0 0
\(66\) −1.51036 −0.185912
\(67\) 4.43839 0.542235 0.271118 0.962546i \(-0.412607\pi\)
0.271118 + 0.962546i \(0.412607\pi\)
\(68\) 0.377596 1.57170i 0.0457902 0.190596i
\(69\) −0.477303 −0.0574605
\(70\) 0 0
\(71\) 8.61804i 1.02277i −0.859351 0.511387i \(-0.829132\pi\)
0.859351 0.511387i \(-0.170868\pi\)
\(72\) −2.48691 −0.293085
\(73\) 7.06754i 0.827192i −0.910460 0.413596i \(-0.864273\pi\)
0.910460 0.413596i \(-0.135727\pi\)
\(74\) 11.9423i 1.38826i
\(75\) 0 0
\(76\) −1.44164 −0.165367
\(77\) −0.419849 −0.0478462
\(78\) 7.98453i 0.904070i
\(79\) 2.47389i 0.278334i 0.990269 + 0.139167i \(0.0444425\pi\)
−0.990269 + 0.139167i \(0.955558\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 13.5475i 1.49607i
\(83\) 6.29370 0.690823 0.345411 0.938451i \(-0.387739\pi\)
0.345411 + 0.938451i \(0.387739\pi\)
\(84\) 0.168549 0.0183902
\(85\) 0 0
\(86\) −10.5271 −1.13516
\(87\) 6.61594 0.709303
\(88\) 2.42859i 0.258889i
\(89\) 5.57341 0.590780 0.295390 0.955377i \(-0.404550\pi\)
0.295390 + 0.955377i \(0.404550\pi\)
\(90\) 0 0
\(91\) 2.21954i 0.232671i
\(92\) 0.187121i 0.0195087i
\(93\) 9.07940 0.941490
\(94\) 7.36585 0.759730
\(95\) 0 0
\(96\) 2.18764i 0.223275i
\(97\) 3.74952i 0.380706i 0.981716 + 0.190353i \(0.0609633\pi\)
−0.981716 + 0.190353i \(0.939037\pi\)
\(98\) −10.5405 −1.06475
\(99\) 0.976552i 0.0981471i
\(100\) 0 0
\(101\) 7.69515 0.765696 0.382848 0.923811i \(-0.374943\pi\)
0.382848 + 0.923811i \(0.374943\pi\)
\(102\) 6.20045 + 1.48964i 0.613936 + 0.147497i
\(103\) −5.66786 −0.558471 −0.279236 0.960223i \(-0.590081\pi\)
−0.279236 + 0.960223i \(0.590081\pi\)
\(104\) 12.8388 1.25895
\(105\) 0 0
\(106\) −12.2765 −1.19240
\(107\) 11.2117i 1.08388i −0.840417 0.541940i \(-0.817690\pi\)
0.840417 0.541940i \(-0.182310\pi\)
\(108\) 0.392039i 0.0377240i
\(109\) 3.24392i 0.310711i −0.987859 0.155356i \(-0.950348\pi\)
0.987859 0.155356i \(-0.0496523\pi\)
\(110\) 0 0
\(111\) 7.72152 0.732895
\(112\) 1.99074i 0.188107i
\(113\) 16.6770i 1.56884i −0.620229 0.784421i \(-0.712960\pi\)
0.620229 0.784421i \(-0.287040\pi\)
\(114\) 5.68736i 0.532670i
\(115\) 0 0
\(116\) 2.59371i 0.240820i
\(117\) −5.16256 −0.477279
\(118\) 1.30376 0.120020
\(119\) 1.72360 + 0.414091i 0.158002 + 0.0379597i
\(120\) 0 0
\(121\) 10.0463 0.913304
\(122\) 6.57229i 0.595028i
\(123\) −8.75942 −0.789810
\(124\) 3.55948i 0.319650i
\(125\) 0 0
\(126\) 0.664939i 0.0592375i
\(127\) 10.2257 0.907385 0.453693 0.891158i \(-0.350106\pi\)
0.453693 + 0.891158i \(0.350106\pi\)
\(128\) −13.4653 −1.19017
\(129\) 6.80650i 0.599279i
\(130\) 0 0
\(131\) 9.04036i 0.789860i −0.918711 0.394930i \(-0.870769\pi\)
0.918711 0.394930i \(-0.129231\pi\)
\(132\) 0.382846 0.0333225
\(133\) 1.58097i 0.137088i
\(134\) −6.86450 −0.593003
\(135\) 0 0
\(136\) 2.39529 9.97009i 0.205394 0.854928i
\(137\) 14.8099 1.26530 0.632649 0.774439i \(-0.281968\pi\)
0.632649 + 0.774439i \(0.281968\pi\)
\(138\) 0.738207 0.0628404
\(139\) 12.1919i 1.03410i 0.855954 + 0.517052i \(0.172971\pi\)
−0.855954 + 0.517052i \(0.827029\pi\)
\(140\) 0 0
\(141\) 4.76254i 0.401079i
\(142\) 13.3289i 1.11853i
\(143\) 5.04151i 0.421592i
\(144\) 4.63038 0.385865
\(145\) 0 0
\(146\) 10.9308i 0.904640i
\(147\) 6.81516i 0.562105i
\(148\) 3.02714i 0.248829i
\(149\) −2.53733 −0.207866 −0.103933 0.994584i \(-0.533143\pi\)
−0.103933 + 0.994584i \(0.533143\pi\)
\(150\) 0 0
\(151\) 20.1805 1.64226 0.821131 0.570739i \(-0.193343\pi\)
0.821131 + 0.570739i \(0.193343\pi\)
\(152\) −9.14506 −0.741762
\(153\) −0.963160 + 4.00903i −0.0778669 + 0.324111i
\(154\) 0.649347 0.0523259
\(155\) 0 0
\(156\) 2.02392i 0.162044i
\(157\) 8.08452 0.645215 0.322607 0.946533i \(-0.395441\pi\)
0.322607 + 0.946533i \(0.395441\pi\)
\(158\) 3.82617i 0.304393i
\(159\) 7.93763i 0.629495i
\(160\) 0 0
\(161\) 0.205207 0.0161726
\(162\) −1.54662 −0.121514
\(163\) 14.8181i 1.16064i 0.814388 + 0.580321i \(0.197073\pi\)
−0.814388 + 0.580321i \(0.802927\pi\)
\(164\) 3.43403i 0.268153i
\(165\) 0 0
\(166\) −9.73397 −0.755502
\(167\) 1.83612i 0.142083i 0.997473 + 0.0710417i \(0.0226323\pi\)
−0.997473 + 0.0710417i \(0.977368\pi\)
\(168\) 1.06920 0.0824903
\(169\) 13.6520 1.05016
\(170\) 0 0
\(171\) 3.67728 0.281209
\(172\) 2.66841 0.203465
\(173\) 16.5137i 1.25551i 0.778409 + 0.627757i \(0.216027\pi\)
−0.778409 + 0.627757i \(0.783973\pi\)
\(174\) −10.2324 −0.775713
\(175\) 0 0
\(176\) 4.52181i 0.340844i
\(177\) 0.842970i 0.0633615i
\(178\) −8.61995 −0.646093
\(179\) 8.48016 0.633837 0.316919 0.948453i \(-0.397352\pi\)
0.316919 + 0.948453i \(0.397352\pi\)
\(180\) 0 0
\(181\) 11.2829i 0.838649i 0.907836 + 0.419325i \(0.137733\pi\)
−0.907836 + 0.419325i \(0.862267\pi\)
\(182\) 3.43279i 0.254455i
\(183\) 4.24945 0.314129
\(184\) 1.18701i 0.0875074i
\(185\) 0 0
\(186\) −14.0424 −1.02964
\(187\) 3.91503 + 0.940575i 0.286295 + 0.0687817i
\(188\) −1.86710 −0.136172
\(189\) −0.429930 −0.0312728
\(190\) 0 0
\(191\) 3.03667 0.219726 0.109863 0.993947i \(-0.464959\pi\)
0.109863 + 0.993947i \(0.464959\pi\)
\(192\) 5.87732i 0.424159i
\(193\) 23.9780i 1.72598i −0.505225 0.862988i \(-0.668591\pi\)
0.505225 0.862988i \(-0.331409\pi\)
\(194\) 5.79909i 0.416351i
\(195\) 0 0
\(196\) 2.67181 0.190843
\(197\) 8.42347i 0.600147i −0.953916 0.300074i \(-0.902989\pi\)
0.953916 0.300074i \(-0.0970112\pi\)
\(198\) 1.51036i 0.107336i
\(199\) 26.2107i 1.85803i 0.370042 + 0.929015i \(0.379343\pi\)
−0.370042 + 0.929015i \(0.620657\pi\)
\(200\) 0 0
\(201\) 4.43839i 0.313060i
\(202\) −11.9015 −0.837386
\(203\) −2.84439 −0.199637
\(204\) −1.57170 0.377596i −0.110041 0.0264370i
\(205\) 0 0
\(206\) 8.76604 0.610759
\(207\) 0.477303i 0.0331749i
\(208\) −23.9046 −1.65749
\(209\) 3.59105i 0.248398i
\(210\) 0 0
\(211\) 4.35210i 0.299611i 0.988716 + 0.149805i \(0.0478647\pi\)
−0.988716 + 0.149805i \(0.952135\pi\)
\(212\) 3.11186 0.213723
\(213\) −8.61804 −0.590499
\(214\) 17.3403i 1.18536i
\(215\) 0 0
\(216\) 2.48691i 0.169213i
\(217\) −3.90351 −0.264987
\(218\) 5.01712i 0.339802i
\(219\) −7.06754 −0.477580
\(220\) 0 0
\(221\) 4.97237 20.6969i 0.334478 1.39222i
\(222\) −11.9423 −0.801513
\(223\) −3.48378 −0.233291 −0.116646 0.993174i \(-0.537214\pi\)
−0.116646 + 0.993174i \(0.537214\pi\)
\(224\) 0.940530i 0.0628418i
\(225\) 0 0
\(226\) 25.7930i 1.71573i
\(227\) 1.89538i 0.125801i −0.998020 0.0629004i \(-0.979965\pi\)
0.998020 0.0629004i \(-0.0200351\pi\)
\(228\) 1.44164i 0.0954747i
\(229\) −8.85340 −0.585049 −0.292524 0.956258i \(-0.594495\pi\)
−0.292524 + 0.956258i \(0.594495\pi\)
\(230\) 0 0
\(231\) 0.419849i 0.0276240i
\(232\) 16.4532i 1.08021i
\(233\) 26.0340i 1.70554i 0.522285 + 0.852771i \(0.325080\pi\)
−0.522285 + 0.852771i \(0.674920\pi\)
\(234\) 7.98453 0.521965
\(235\) 0 0
\(236\) −0.330477 −0.0215122
\(237\) 2.47389 0.160696
\(238\) −2.66576 0.640443i −0.172796 0.0415137i
\(239\) −24.0664 −1.55673 −0.778363 0.627815i \(-0.783950\pi\)
−0.778363 + 0.627815i \(0.783950\pi\)
\(240\) 0 0
\(241\) 11.2091i 0.722042i −0.932558 0.361021i \(-0.882428\pi\)
0.932558 0.361021i \(-0.117572\pi\)
\(242\) −15.5379 −0.998814
\(243\) 1.00000i 0.0641500i
\(244\) 1.66595i 0.106652i
\(245\) 0 0
\(246\) 13.5475 0.863757
\(247\) −18.9842 −1.20793
\(248\) 22.5796i 1.43381i
\(249\) 6.29370i 0.398847i
\(250\) 0 0
\(251\) 28.2730 1.78458 0.892289 0.451465i \(-0.149098\pi\)
0.892289 + 0.451465i \(0.149098\pi\)
\(252\) 0.168549i 0.0106176i
\(253\) 0.466111 0.0293042
\(254\) −15.8153 −0.992341
\(255\) 0 0
\(256\) 9.07103 0.566939
\(257\) 5.51730 0.344159 0.172080 0.985083i \(-0.444951\pi\)
0.172080 + 0.985083i \(0.444951\pi\)
\(258\) 10.5271i 0.655387i
\(259\) −3.31971 −0.206277
\(260\) 0 0
\(261\) 6.61594i 0.409516i
\(262\) 13.9820i 0.863812i
\(263\) −16.0439 −0.989310 −0.494655 0.869089i \(-0.664706\pi\)
−0.494655 + 0.869089i \(0.664706\pi\)
\(264\) 2.42859 0.149470
\(265\) 0 0
\(266\) 2.44517i 0.149923i
\(267\) 5.57341i 0.341087i
\(268\) 1.74002 0.106289
\(269\) 7.17003i 0.437165i 0.975819 + 0.218582i \(0.0701432\pi\)
−0.975819 + 0.218582i \(0.929857\pi\)
\(270\) 0 0
\(271\) 7.17160 0.435643 0.217822 0.975989i \(-0.430105\pi\)
0.217822 + 0.975989i \(0.430105\pi\)
\(272\) −4.45980 + 18.5633i −0.270415 + 1.12557i
\(273\) 2.21954 0.134333
\(274\) −22.9054 −1.38376
\(275\) 0 0
\(276\) −0.187121 −0.0112634
\(277\) 24.1787i 1.45275i −0.687296 0.726377i \(-0.741203\pi\)
0.687296 0.726377i \(-0.258797\pi\)
\(278\) 18.8563i 1.13092i
\(279\) 9.07940i 0.543569i
\(280\) 0 0
\(281\) −28.2491 −1.68520 −0.842601 0.538539i \(-0.818976\pi\)
−0.842601 + 0.538539i \(0.818976\pi\)
\(282\) 7.36585i 0.438630i
\(283\) 32.2601i 1.91766i −0.283973 0.958832i \(-0.591653\pi\)
0.283973 0.958832i \(-0.408347\pi\)
\(284\) 3.37861i 0.200483i
\(285\) 0 0
\(286\) 7.79731i 0.461064i
\(287\) 3.76594 0.222296
\(288\) −2.18764 −0.128908
\(289\) −15.1446 7.72267i −0.890862 0.454275i
\(290\) 0 0
\(291\) 3.74952 0.219801
\(292\) 2.77075i 0.162146i
\(293\) 26.0057 1.51927 0.759636 0.650349i \(-0.225377\pi\)
0.759636 + 0.650349i \(0.225377\pi\)
\(294\) 10.5405i 0.614733i
\(295\) 0 0
\(296\) 19.2027i 1.11614i
\(297\) −0.976552 −0.0566653
\(298\) 3.92428 0.227328
\(299\) 2.46411i 0.142503i
\(300\) 0 0
\(301\) 2.92632i 0.168670i
\(302\) −31.2115 −1.79602
\(303\) 7.69515i 0.442075i
\(304\) 17.0272 0.976578
\(305\) 0 0
\(306\) 1.48964 6.20045i 0.0851573 0.354456i
\(307\) −5.76186 −0.328847 −0.164423 0.986390i \(-0.552576\pi\)
−0.164423 + 0.986390i \(0.552576\pi\)
\(308\) −0.164597 −0.00937879
\(309\) 5.66786i 0.322433i
\(310\) 0 0
\(311\) 24.9984i 1.41753i 0.705444 + 0.708766i \(0.250748\pi\)
−0.705444 + 0.708766i \(0.749252\pi\)
\(312\) 12.8388i 0.726855i
\(313\) 3.42518i 0.193602i 0.995304 + 0.0968012i \(0.0308611\pi\)
−0.995304 + 0.0968012i \(0.969139\pi\)
\(314\) −12.5037 −0.705624
\(315\) 0 0
\(316\) 0.969859i 0.0545588i
\(317\) 23.7739i 1.33527i 0.744487 + 0.667637i \(0.232694\pi\)
−0.744487 + 0.667637i \(0.767306\pi\)
\(318\) 12.2765i 0.688433i
\(319\) −6.46081 −0.361736
\(320\) 0 0
\(321\) −11.2117 −0.625779
\(322\) −0.317377 −0.0176868
\(323\) −3.54181 + 14.7423i −0.197071 + 0.820285i
\(324\) 0.392039 0.0217799
\(325\) 0 0
\(326\) 22.9180i 1.26931i
\(327\) −3.24392 −0.179389
\(328\) 21.7839i 1.20281i
\(329\) 2.04756i 0.112886i
\(330\) 0 0
\(331\) 9.57377 0.526222 0.263111 0.964766i \(-0.415251\pi\)
0.263111 + 0.964766i \(0.415251\pi\)
\(332\) 2.46737 0.135415
\(333\) 7.72152i 0.423137i
\(334\) 2.83979i 0.155386i
\(335\) 0 0
\(336\) −1.99074 −0.108604
\(337\) 18.1726i 0.989927i −0.868914 0.494963i \(-0.835181\pi\)
0.868914 0.494963i \(-0.164819\pi\)
\(338\) −21.1146 −1.14848
\(339\) −16.6770 −0.905771
\(340\) 0 0
\(341\) −8.86650 −0.480148
\(342\) −5.68736 −0.307537
\(343\) 5.93955i 0.320706i
\(344\) 16.9271 0.912650
\(345\) 0 0
\(346\) 25.5405i 1.37306i
\(347\) 23.2530i 1.24828i 0.781311 + 0.624142i \(0.214551\pi\)
−0.781311 + 0.624142i \(0.785449\pi\)
\(348\) 2.59371 0.139037
\(349\) −32.9277 −1.76258 −0.881290 0.472575i \(-0.843324\pi\)
−0.881290 + 0.472575i \(0.843324\pi\)
\(350\) 0 0
\(351\) 5.16256i 0.275557i
\(352\) 2.13634i 0.113867i
\(353\) −6.76112 −0.359858 −0.179929 0.983680i \(-0.557587\pi\)
−0.179929 + 0.983680i \(0.557587\pi\)
\(354\) 1.30376i 0.0692939i
\(355\) 0 0
\(356\) 2.18499 0.115804
\(357\) 0.414091 1.72360i 0.0219160 0.0912227i
\(358\) −13.1156 −0.693181
\(359\) −25.2197 −1.33104 −0.665521 0.746379i \(-0.731791\pi\)
−0.665521 + 0.746379i \(0.731791\pi\)
\(360\) 0 0
\(361\) −5.47761 −0.288295
\(362\) 17.4503i 0.917169i
\(363\) 10.0463i 0.527296i
\(364\) 0.870146i 0.0456080i
\(365\) 0 0
\(366\) −6.57229 −0.343539
\(367\) 8.08168i 0.421860i 0.977501 + 0.210930i \(0.0676493\pi\)
−0.977501 + 0.210930i \(0.932351\pi\)
\(368\) 2.21010i 0.115209i
\(369\) 8.75942i 0.455997i
\(370\) 0 0
\(371\) 3.41263i 0.177175i
\(372\) 3.55948 0.184550
\(373\) −17.1991 −0.890537 −0.445268 0.895397i \(-0.646892\pi\)
−0.445268 + 0.895397i \(0.646892\pi\)
\(374\) −6.05506 1.45471i −0.313100 0.0752215i
\(375\) 0 0
\(376\) −11.8440 −0.610808
\(377\) 34.1552i 1.75908i
\(378\) 0.664939 0.0342008
\(379\) 0.531420i 0.0272972i 0.999907 + 0.0136486i \(0.00434462\pi\)
−0.999907 + 0.0136486i \(0.995655\pi\)
\(380\) 0 0
\(381\) 10.2257i 0.523879i
\(382\) −4.69658 −0.240298
\(383\) −0.874772 −0.0446988 −0.0223494 0.999750i \(-0.507115\pi\)
−0.0223494 + 0.999750i \(0.507115\pi\)
\(384\) 13.4653i 0.687146i
\(385\) 0 0
\(386\) 37.0849i 1.88757i
\(387\) −6.80650 −0.345994
\(388\) 1.46996i 0.0746258i
\(389\) −24.9537 −1.26520 −0.632602 0.774477i \(-0.718013\pi\)
−0.632602 + 0.774477i \(0.718013\pi\)
\(390\) 0 0
\(391\) −1.91352 0.459719i −0.0967710 0.0232490i
\(392\) 16.9487 0.856037
\(393\) −9.04036 −0.456026
\(394\) 13.0279i 0.656337i
\(395\) 0 0
\(396\) 0.382846i 0.0192387i
\(397\) 15.7628i 0.791111i −0.918442 0.395555i \(-0.870552\pi\)
0.918442 0.395555i \(-0.129448\pi\)
\(398\) 40.5381i 2.03199i
\(399\) −1.58097 −0.0791476
\(400\) 0 0
\(401\) 10.7657i 0.537615i −0.963194 0.268807i \(-0.913370\pi\)
0.963194 0.268807i \(-0.0866295\pi\)
\(402\) 6.86450i 0.342370i
\(403\) 46.8730i 2.33491i
\(404\) 3.01680 0.150091
\(405\) 0 0
\(406\) 4.39920 0.218328
\(407\) −7.54047 −0.373767
\(408\) −9.97009 2.39529i −0.493593 0.118585i
\(409\) 10.2591 0.507282 0.253641 0.967298i \(-0.418372\pi\)
0.253641 + 0.967298i \(0.418372\pi\)
\(410\) 0 0
\(411\) 14.8099i 0.730520i
\(412\) −2.22202 −0.109471
\(413\) 0.362418i 0.0178334i
\(414\) 0.738207i 0.0362809i
\(415\) 0 0
\(416\) 11.2938 0.553724
\(417\) 12.1919 0.597041
\(418\) 5.55400i 0.271655i
\(419\) 32.3428i 1.58005i −0.613074 0.790026i \(-0.710067\pi\)
0.613074 0.790026i \(-0.289933\pi\)
\(420\) 0 0
\(421\) −26.4919 −1.29114 −0.645568 0.763703i \(-0.723379\pi\)
−0.645568 + 0.763703i \(0.723379\pi\)
\(422\) 6.73104i 0.327662i
\(423\) 4.76254 0.231563
\(424\) 19.7402 0.958667
\(425\) 0 0
\(426\) 13.3289 0.645785
\(427\) −1.82697 −0.0884131
\(428\) 4.39544i 0.212462i
\(429\) 5.04151 0.243406
\(430\) 0 0
\(431\) 15.5752i 0.750233i −0.926978 0.375116i \(-0.877603\pi\)
0.926978 0.375116i \(-0.122397\pi\)
\(432\) 4.63038i 0.222779i
\(433\) 36.6438 1.76099 0.880494 0.474057i \(-0.157211\pi\)
0.880494 + 0.474057i \(0.157211\pi\)
\(434\) 6.03725 0.289797
\(435\) 0 0
\(436\) 1.27174i 0.0609054i
\(437\) 1.75518i 0.0839615i
\(438\) 10.9308 0.522294
\(439\) 35.7519i 1.70634i 0.521630 + 0.853172i \(0.325324\pi\)
−0.521630 + 0.853172i \(0.674676\pi\)
\(440\) 0 0
\(441\) −6.81516 −0.324531
\(442\) −7.69038 + 32.0102i −0.365794 + 1.52257i
\(443\) 16.8118 0.798753 0.399377 0.916787i \(-0.369227\pi\)
0.399377 + 0.916787i \(0.369227\pi\)
\(444\) 3.02714 0.143662
\(445\) 0 0
\(446\) 5.38809 0.255133
\(447\) 2.53733i 0.120011i
\(448\) 2.52684i 0.119382i
\(449\) 18.0607i 0.852337i −0.904644 0.426169i \(-0.859863\pi\)
0.904644 0.426169i \(-0.140137\pi\)
\(450\) 0 0
\(451\) 8.55402 0.402793
\(452\) 6.53804i 0.307523i
\(453\) 20.1805i 0.948161i
\(454\) 2.93144i 0.137579i
\(455\) 0 0
\(456\) 9.14506i 0.428256i
\(457\) 28.9103 1.35237 0.676184 0.736733i \(-0.263632\pi\)
0.676184 + 0.736733i \(0.263632\pi\)
\(458\) 13.6929 0.639825
\(459\) 4.00903 + 0.963160i 0.187126 + 0.0449565i
\(460\) 0 0
\(461\) 15.8971 0.740401 0.370201 0.928952i \(-0.379289\pi\)
0.370201 + 0.928952i \(0.379289\pi\)
\(462\) 0.649347i 0.0302104i
\(463\) −29.7924 −1.38457 −0.692285 0.721624i \(-0.743396\pi\)
−0.692285 + 0.721624i \(0.743396\pi\)
\(464\) 30.6343i 1.42216i
\(465\) 0 0
\(466\) 40.2647i 1.86523i
\(467\) −2.48308 −0.114903 −0.0574516 0.998348i \(-0.518297\pi\)
−0.0574516 + 0.998348i \(0.518297\pi\)
\(468\) −2.02392 −0.0935560
\(469\) 1.90819i 0.0881122i
\(470\) 0 0
\(471\) 8.08452i 0.372515i
\(472\) −2.09639 −0.0964941
\(473\) 6.64690i 0.305625i
\(474\) −3.82617 −0.175742
\(475\) 0 0
\(476\) 0.675719 + 0.162340i 0.0309715 + 0.00744083i
\(477\) −7.93763 −0.363439
\(478\) 37.2216 1.70248
\(479\) 21.3380i 0.974960i 0.873134 + 0.487480i \(0.162084\pi\)
−0.873134 + 0.487480i \(0.837916\pi\)
\(480\) 0 0
\(481\) 39.8629i 1.81759i
\(482\) 17.3363i 0.789645i
\(483\) 0.205207i 0.00933724i
\(484\) 3.93856 0.179025
\(485\) 0 0
\(486\) 1.54662i 0.0701562i
\(487\) 41.3883i 1.87548i −0.347333 0.937742i \(-0.612913\pi\)
0.347333 0.937742i \(-0.387087\pi\)
\(488\) 10.5680i 0.478391i
\(489\) 14.8181 0.670097
\(490\) 0 0
\(491\) −15.5703 −0.702677 −0.351338 0.936249i \(-0.614273\pi\)
−0.351338 + 0.936249i \(0.614273\pi\)
\(492\) −3.43403 −0.154818
\(493\) 26.5235 + 6.37221i 1.19456 + 0.286990i
\(494\) 29.3614 1.32103
\(495\) 0 0
\(496\) 42.0411i 1.88770i
\(497\) 3.70515 0.166199
\(498\) 9.73397i 0.436190i
\(499\) 28.3452i 1.26891i −0.772961 0.634453i \(-0.781225\pi\)
0.772961 0.634453i \(-0.218775\pi\)
\(500\) 0 0
\(501\) 1.83612 0.0820319
\(502\) −43.7277 −1.95166
\(503\) 28.3949i 1.26606i 0.774125 + 0.633032i \(0.218190\pi\)
−0.774125 + 0.633032i \(0.781810\pi\)
\(504\) 1.06920i 0.0476258i
\(505\) 0 0
\(506\) −0.720898 −0.0320478
\(507\) 13.6520i 0.606309i
\(508\) 4.00888 0.177865
\(509\) 15.6779 0.694909 0.347454 0.937697i \(-0.387046\pi\)
0.347454 + 0.937697i \(0.387046\pi\)
\(510\) 0 0
\(511\) 3.03854 0.134417
\(512\) 12.9011 0.570153
\(513\) 3.67728i 0.162356i
\(514\) −8.53317 −0.376382
\(515\) 0 0
\(516\) 2.66841i 0.117470i
\(517\) 4.65087i 0.204545i
\(518\) 5.13434 0.225590
\(519\) 16.5137 0.724872
\(520\) 0 0
\(521\) 22.7228i 0.995504i 0.867319 + 0.497752i \(0.165841\pi\)
−0.867319 + 0.497752i \(0.834159\pi\)
\(522\) 10.2324i 0.447858i
\(523\) −22.3505 −0.977319 −0.488660 0.872475i \(-0.662514\pi\)
−0.488660 + 0.872475i \(0.662514\pi\)
\(524\) 3.54417i 0.154828i
\(525\) 0 0
\(526\) 24.8139 1.08194
\(527\) 36.3996 + 8.74491i 1.58559 + 0.380934i
\(528\) −4.52181 −0.196786
\(529\) 22.7722 0.990095
\(530\) 0 0
\(531\) 0.842970 0.0365818
\(532\) 0.619803i 0.0268719i
\(533\) 45.2210i 1.95874i
\(534\) 8.61995i 0.373022i
\(535\) 0 0
\(536\) 11.0379 0.476763
\(537\) 8.48016i 0.365946i
\(538\) 11.0893i 0.478095i
\(539\) 6.65536i 0.286666i
\(540\) 0 0
\(541\) 1.49693i 0.0643580i 0.999482 + 0.0321790i \(0.0102447\pi\)
−0.999482 + 0.0321790i \(0.989755\pi\)
\(542\) −11.0917 −0.476431
\(543\) 11.2829 0.484194
\(544\) 2.10704 8.77030i 0.0903387 0.376023i
\(545\) 0 0
\(546\) −3.43279 −0.146910
\(547\) 23.1972i 0.991843i 0.868367 + 0.495921i \(0.165170\pi\)
−0.868367 + 0.495921i \(0.834830\pi\)
\(548\) 5.80607 0.248023
\(549\) 4.24945i 0.181362i
\(550\) 0 0
\(551\) 24.3287i 1.03644i
\(552\) −1.18701 −0.0505224
\(553\) −1.06360 −0.0452288
\(554\) 37.3952i 1.58877i
\(555\) 0 0
\(556\) 4.77970i 0.202705i
\(557\) 44.8334 1.89965 0.949827 0.312777i \(-0.101259\pi\)
0.949827 + 0.312777i \(0.101259\pi\)
\(558\) 14.0424i 0.594462i
\(559\) 35.1390 1.48622
\(560\) 0 0
\(561\) 0.940575 3.91503i 0.0397111 0.165292i
\(562\) 43.6907 1.84298
\(563\) −43.5968 −1.83739 −0.918694 0.394970i \(-0.870755\pi\)
−0.918694 + 0.394970i \(0.870755\pi\)
\(564\) 1.86710i 0.0786192i
\(565\) 0 0
\(566\) 49.8942i 2.09721i
\(567\) 0.429930i 0.0180554i
\(568\) 21.4323i 0.899278i
\(569\) 16.0087 0.671118 0.335559 0.942019i \(-0.391075\pi\)
0.335559 + 0.942019i \(0.391075\pi\)
\(570\) 0 0
\(571\) 46.0825i 1.92849i 0.265007 + 0.964246i \(0.414626\pi\)
−0.265007 + 0.964246i \(0.585374\pi\)
\(572\) 1.97647i 0.0826402i
\(573\) 3.03667i 0.126859i
\(574\) −5.82448 −0.243109
\(575\) 0 0
\(576\) −5.87732 −0.244888
\(577\) 7.87973 0.328037 0.164019 0.986457i \(-0.447554\pi\)
0.164019 + 0.986457i \(0.447554\pi\)
\(578\) 23.4230 + 11.9441i 0.974270 + 0.496807i
\(579\) −23.9780 −0.996492
\(580\) 0 0
\(581\) 2.70585i 0.112258i
\(582\) −5.79909 −0.240380
\(583\) 7.75151i 0.321035i
\(584\) 17.5763i 0.727313i
\(585\) 0 0
\(586\) −40.2210 −1.66152
\(587\) 10.6361 0.439000 0.219500 0.975613i \(-0.429557\pi\)
0.219500 + 0.975613i \(0.429557\pi\)
\(588\) 2.67181i 0.110183i
\(589\) 33.3875i 1.37571i
\(590\) 0 0
\(591\) −8.42347 −0.346495
\(592\) 35.7536i 1.46946i
\(593\) 7.79634 0.320157 0.160079 0.987104i \(-0.448825\pi\)
0.160079 + 0.987104i \(0.448825\pi\)
\(594\) 1.51036 0.0619707
\(595\) 0 0
\(596\) −0.994731 −0.0407458
\(597\) 26.2107 1.07273
\(598\) 3.81104i 0.155845i
\(599\) −2.26066 −0.0923679 −0.0461840 0.998933i \(-0.514706\pi\)
−0.0461840 + 0.998933i \(0.514706\pi\)
\(600\) 0 0
\(601\) 4.72766i 0.192845i −0.995340 0.0964226i \(-0.969260\pi\)
0.995340 0.0964226i \(-0.0307400\pi\)
\(602\) 4.52591i 0.184462i
\(603\) −4.43839 −0.180745
\(604\) 7.91153 0.321915
\(605\) 0 0
\(606\) 11.9015i 0.483465i
\(607\) 26.7457i 1.08557i −0.839871 0.542786i \(-0.817369\pi\)
0.839871 0.542786i \(-0.182631\pi\)
\(608\) −8.04455 −0.326250
\(609\) 2.84439i 0.115261i
\(610\) 0 0
\(611\) −24.5869 −0.994681
\(612\) −0.377596 + 1.57170i −0.0152634 + 0.0635320i
\(613\) −2.83165 −0.114369 −0.0571847 0.998364i \(-0.518212\pi\)
−0.0571847 + 0.998364i \(0.518212\pi\)
\(614\) 8.91142 0.359636
\(615\) 0 0
\(616\) −1.04413 −0.0420690
\(617\) 8.05591i 0.324319i −0.986765 0.162159i \(-0.948154\pi\)
0.986765 0.162159i \(-0.0518459\pi\)
\(618\) 8.76604i 0.352622i
\(619\) 20.4157i 0.820576i −0.911956 0.410288i \(-0.865428\pi\)
0.911956 0.410288i \(-0.134572\pi\)
\(620\) 0 0
\(621\) 0.477303 0.0191535
\(622\) 38.6631i 1.55025i
\(623\) 2.39617i 0.0960007i
\(624\) 23.9046i 0.956952i
\(625\) 0 0
\(626\) 5.29745i 0.211729i
\(627\) −3.59105 −0.143413
\(628\) 3.16945 0.126475
\(629\) 30.9558 + 7.43706i 1.23429 + 0.296535i
\(630\) 0 0
\(631\) −20.6328 −0.821378 −0.410689 0.911775i \(-0.634712\pi\)
−0.410689 + 0.911775i \(0.634712\pi\)
\(632\) 6.15232i 0.244726i
\(633\) 4.35210 0.172980
\(634\) 36.7692i 1.46029i
\(635\) 0 0
\(636\) 3.11186i 0.123393i
\(637\) 35.1837 1.39403
\(638\) 9.99243 0.395604
\(639\) 8.61804i 0.340924i
\(640\) 0 0
\(641\) 17.5622i 0.693667i −0.937927 0.346833i \(-0.887257\pi\)
0.937927 0.346833i \(-0.112743\pi\)
\(642\) 17.3403 0.684368
\(643\) 2.24211i 0.0884201i −0.999022 0.0442100i \(-0.985923\pi\)
0.999022 0.0442100i \(-0.0140771\pi\)
\(644\) 0.0804491 0.00317014
\(645\) 0 0
\(646\) 5.47784 22.8008i 0.215523 0.897086i
\(647\) −35.5856 −1.39902 −0.699508 0.714625i \(-0.746597\pi\)
−0.699508 + 0.714625i \(0.746597\pi\)
\(648\) 2.48691 0.0976950
\(649\) 0.823204i 0.0323136i
\(650\) 0 0
\(651\) 3.90351i 0.152990i
\(652\) 5.80926i 0.227508i
\(653\) 17.6154i 0.689345i −0.938723 0.344672i \(-0.887990\pi\)
0.938723 0.344672i \(-0.112010\pi\)
\(654\) 5.01712 0.196185
\(655\) 0 0
\(656\) 40.5595i 1.58358i
\(657\) 7.06754i 0.275731i
\(658\) 3.16680i 0.123455i
\(659\) 8.61882 0.335742 0.167871 0.985809i \(-0.446311\pi\)
0.167871 + 0.985809i \(0.446311\pi\)
\(660\) 0 0
\(661\) −11.7014 −0.455132 −0.227566 0.973763i \(-0.573077\pi\)
−0.227566 + 0.973763i \(0.573077\pi\)
\(662\) −14.8070 −0.575491
\(663\) −20.6969 4.97237i −0.803800 0.193111i
\(664\) 15.6518 0.607409
\(665\) 0 0
\(666\) 11.9423i 0.462754i
\(667\) 3.15781 0.122271
\(668\) 0.719831i 0.0278511i
\(669\) 3.48378i 0.134691i
\(670\) 0 0
\(671\) −4.14981 −0.160202
\(672\) 0.940530 0.0362817
\(673\) 44.9610i 1.73312i 0.499073 + 0.866560i \(0.333674\pi\)
−0.499073 + 0.866560i \(0.666326\pi\)
\(674\) 28.1062i 1.08261i
\(675\) 0 0
\(676\) 5.35213 0.205851
\(677\) 2.79937i 0.107589i 0.998552 + 0.0537943i \(0.0171315\pi\)
−0.998552 + 0.0537943i \(0.982868\pi\)
\(678\) 25.7930 0.990575
\(679\) −1.61203 −0.0618641
\(680\) 0 0
\(681\) −1.89538 −0.0726312
\(682\) 13.7131 0.525103
\(683\) 22.2621i 0.851835i 0.904762 + 0.425917i \(0.140049\pi\)
−0.904762 + 0.425917i \(0.859951\pi\)
\(684\) 1.44164 0.0551223
\(685\) 0 0
\(686\) 9.18624i 0.350732i
\(687\) 8.85340i 0.337778i
\(688\) −31.5167 −1.20156
\(689\) 40.9785 1.56116
\(690\) 0 0
\(691\) 16.1547i 0.614554i 0.951620 + 0.307277i \(0.0994177\pi\)
−0.951620 + 0.307277i \(0.900582\pi\)
\(692\) 6.47402i 0.246105i
\(693\) 0.419849 0.0159487
\(694\) 35.9635i 1.36516i
\(695\) 0 0
\(696\) 16.4532 0.623658
\(697\) −35.1168 8.43672i −1.33014 0.319563i
\(698\) 50.9267 1.92761
\(699\) 26.0340 0.984695
\(700\) 0 0
\(701\) −29.6175 −1.11864 −0.559319 0.828952i \(-0.688937\pi\)
−0.559319 + 0.828952i \(0.688937\pi\)
\(702\) 7.98453i 0.301357i
\(703\) 28.3942i 1.07091i
\(704\) 5.73951i 0.216316i
\(705\) 0 0
\(706\) 10.4569 0.393551
\(707\) 3.30838i 0.124424i
\(708\) 0.330477i 0.0124201i
\(709\) 4.66171i 0.175074i −0.996161 0.0875371i \(-0.972100\pi\)
0.996161 0.0875371i \(-0.0278996\pi\)
\(710\) 0 0
\(711\) 2.47389i 0.0927780i
\(712\) 13.8605 0.519446
\(713\) 4.33363 0.162296
\(714\) −0.640443 + 2.66576i −0.0239680 + 0.0997636i
\(715\) 0 0
\(716\) 3.32455 0.124244
\(717\) 24.0664i 0.898776i
\(718\) 39.0053 1.45566
\(719\) 0.691404i 0.0257850i 0.999917 + 0.0128925i \(0.00410393\pi\)
−0.999917 + 0.0128925i \(0.995896\pi\)
\(720\) 0 0
\(721\) 2.43678i 0.0907506i
\(722\) 8.47180 0.315288
\(723\) −11.2091 −0.416871
\(724\) 4.42332i 0.164392i
\(725\) 0 0
\(726\) 15.5379i 0.576665i
\(727\) −26.9835 −1.00076 −0.500380 0.865806i \(-0.666807\pi\)
−0.500380 + 0.865806i \(0.666807\pi\)
\(728\) 5.51979i 0.204577i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 6.55575 27.2875i 0.242473 1.00926i
\(732\) 1.66595 0.0615753
\(733\) 38.6190 1.42643 0.713213 0.700948i \(-0.247239\pi\)
0.713213 + 0.700948i \(0.247239\pi\)
\(734\) 12.4993i 0.461358i
\(735\) 0 0
\(736\) 1.04417i 0.0384884i
\(737\) 4.33431i 0.159656i
\(738\) 13.5475i 0.498690i
\(739\) −12.7144 −0.467705 −0.233853 0.972272i \(-0.575133\pi\)
−0.233853 + 0.972272i \(0.575133\pi\)
\(740\) 0 0
\(741\) 18.9842i 0.697401i
\(742\) 5.27804i 0.193763i
\(743\) 4.75526i 0.174454i −0.996188 0.0872268i \(-0.972200\pi\)
0.996188 0.0872268i \(-0.0278005\pi\)
\(744\) 22.5796 0.827809
\(745\) 0 0
\(746\) 26.6005 0.973915
\(747\) −6.29370 −0.230274
\(748\) 1.53484 + 0.368742i 0.0561194 + 0.0134825i
\(749\) 4.82027 0.176129
\(750\) 0 0
\(751\) 16.7360i 0.610705i 0.952239 + 0.305352i \(0.0987742\pi\)
−0.952239 + 0.305352i \(0.901226\pi\)
\(752\) 22.0524 0.804168
\(753\) 28.2730i 1.03033i
\(754\) 52.8252i 1.92378i
\(755\) 0 0
\(756\) −0.168549 −0.00613008
\(757\) 1.54235 0.0560578 0.0280289 0.999607i \(-0.491077\pi\)
0.0280289 + 0.999607i \(0.491077\pi\)
\(758\) 0.821906i 0.0298530i
\(759\) 0.466111i 0.0169188i
\(760\) 0 0
\(761\) −30.8203 −1.11723 −0.558617 0.829426i \(-0.688668\pi\)
−0.558617 + 0.829426i \(0.688668\pi\)
\(762\) 15.8153i 0.572928i
\(763\) 1.39466 0.0504900
\(764\) 1.19049 0.0430705
\(765\) 0 0
\(766\) 1.35294 0.0488838
\(767\) −4.35189 −0.157138
\(768\) 9.07103i 0.327323i
\(769\) 30.7066 1.10731 0.553654 0.832747i \(-0.313233\pi\)
0.553654 + 0.832747i \(0.313233\pi\)
\(770\) 0 0
\(771\) 5.51730i 0.198701i
\(772\) 9.40031i 0.338325i
\(773\) 7.40148 0.266213 0.133106 0.991102i \(-0.457505\pi\)
0.133106 + 0.991102i \(0.457505\pi\)
\(774\) 10.5271 0.378388
\(775\) 0 0
\(776\) 9.32471i 0.334738i
\(777\) 3.31971i 0.119094i
\(778\) 38.5940 1.38366
\(779\) 32.2108i 1.15407i
\(780\) 0 0
\(781\) 8.41596 0.301147
\(782\) 2.95950 + 0.711012i 0.105831 + 0.0254257i
\(783\) −6.61594 −0.236434
\(784\) −31.5568 −1.12703
\(785\) 0 0
\(786\) 13.9820 0.498722
\(787\) 3.70140i 0.131941i −0.997822 0.0659703i \(-0.978986\pi\)
0.997822 0.0659703i \(-0.0210143\pi\)
\(788\) 3.30233i 0.117640i
\(789\) 16.0439i 0.571178i
\(790\) 0 0
\(791\) 7.16995 0.254934
\(792\) 2.42859i 0.0862963i
\(793\) 21.9381i 0.779043i
\(794\) 24.3790i 0.865180i
\(795\) 0 0
\(796\) 10.2756i 0.364210i
\(797\) −34.7651 −1.23144 −0.615722 0.787963i \(-0.711136\pi\)
−0.615722 + 0.787963i \(0.711136\pi\)
\(798\) 2.44517 0.0865580
\(799\) −4.58709 + 19.0932i −0.162280 + 0.675468i
\(800\) 0 0
\(801\) −5.57341 −0.196927
\(802\) 16.6505i 0.587950i
\(803\) 6.90181 0.243560
\(804\) 1.74002i 0.0613658i
\(805\) 0 0
\(806\) 72.4947i 2.55352i
\(807\) 7.17003 0.252397
\(808\) 19.1371 0.673242
\(809\) 42.0271i 1.47760i 0.673927 + 0.738798i \(0.264606\pi\)
−0.673927 + 0.738798i \(0.735394\pi\)
\(810\) 0 0
\(811\) 35.1420i 1.23400i −0.786962 0.617001i \(-0.788347\pi\)
0.786962 0.617001i \(-0.211653\pi\)
\(812\) −1.11511 −0.0391327
\(813\) 7.17160i 0.251519i
\(814\) 11.6623 0.408762
\(815\) 0 0
\(816\) 18.5633 + 4.45980i 0.649847 + 0.156124i
\(817\) −25.0294 −0.875668
\(818\) −15.8670 −0.554777
\(819\) 2.21954i 0.0775570i
\(820\) 0 0
\(821\) 17.8719i 0.623734i 0.950126 + 0.311867i \(0.100954\pi\)
−0.950126 + 0.311867i \(0.899046\pi\)
\(822\) 22.9054i 0.798916i
\(823\) 33.3852i 1.16373i −0.813284 0.581867i \(-0.802322\pi\)
0.813284 0.581867i \(-0.197678\pi\)
\(824\) −14.0955 −0.491038
\(825\) 0 0
\(826\) 0.560524i 0.0195031i
\(827\) 42.7442i 1.48636i −0.669091 0.743180i \(-0.733317\pi\)
0.669091 0.743180i \(-0.266683\pi\)
\(828\) 0.187121i 0.00650292i
\(829\) −17.0407 −0.591848 −0.295924 0.955212i \(-0.595627\pi\)
−0.295924 + 0.955212i \(0.595627\pi\)
\(830\) 0 0
\(831\) −24.1787 −0.838748
\(832\) 30.3420 1.05192
\(833\) 6.56409 27.3222i 0.227432 0.946658i
\(834\) −18.8563 −0.652940
\(835\) 0 0
\(836\) 1.40783i 0.0486909i
\(837\) −9.07940 −0.313830
\(838\) 50.0221i 1.72799i
\(839\) 5.38898i 0.186048i 0.995664 + 0.0930242i \(0.0296534\pi\)
−0.995664 + 0.0930242i \(0.970347\pi\)
\(840\) 0 0
\(841\) −14.7707 −0.509333
\(842\) 40.9729 1.41202
\(843\) 28.2491i 0.972951i
\(844\) 1.70619i 0.0587295i
\(845\) 0 0
\(846\) −7.36585 −0.253243
\(847\) 4.31923i 0.148410i
\(848\) −36.7543 −1.26215
\(849\) −32.2601 −1.10716
\(850\) 0 0
\(851\) 3.68551 0.126338
\(852\) −3.37861 −0.115749
\(853\) 44.3831i 1.51965i 0.650129 + 0.759824i \(0.274715\pi\)
−0.650129 + 0.759824i \(0.725285\pi\)
\(854\) 2.82563 0.0966909
\(855\) 0 0
\(856\) 27.8826i 0.953007i
\(857\) 21.4348i 0.732199i −0.930576 0.366100i \(-0.880693\pi\)
0.930576 0.366100i \(-0.119307\pi\)
\(858\) −7.79731 −0.266196
\(859\) −41.7437 −1.42428 −0.712138 0.702039i \(-0.752273\pi\)
−0.712138 + 0.702039i \(0.752273\pi\)
\(860\) 0 0
\(861\) 3.76594i 0.128343i
\(862\) 24.0890i 0.820475i
\(863\) −13.7962 −0.469627 −0.234813 0.972040i \(-0.575448\pi\)
−0.234813 + 0.972040i \(0.575448\pi\)
\(864\) 2.18764i 0.0744249i
\(865\) 0 0
\(866\) −56.6741 −1.92586
\(867\) −7.72267 + 15.1446i −0.262276 + 0.514339i
\(868\) −1.53033 −0.0519426
\(869\) −2.41588 −0.0819530
\(870\) 0 0
\(871\) 22.9134 0.776392
\(872\) 8.06733i 0.273194i
\(873\) 3.74952i 0.126902i
\(874\) 2.71459i 0.0918225i
\(875\) 0 0
\(876\) −2.77075 −0.0936149
\(877\) 29.2334i 0.987141i −0.869706 0.493571i \(-0.835691\pi\)
0.869706 0.493571i \(-0.164309\pi\)
\(878\) 55.2946i 1.86610i
\(879\) 26.0057i 0.877152i
\(880\) 0 0
\(881\) 18.7208i 0.630721i 0.948972 + 0.315360i \(0.102125\pi\)
−0.948972 + 0.315360i \(0.897875\pi\)
\(882\) 10.5405 0.354916
\(883\) −29.4224 −0.990142 −0.495071 0.868852i \(-0.664858\pi\)
−0.495071 + 0.868852i \(0.664858\pi\)
\(884\) 1.94936 8.11398i 0.0655642 0.272903i
\(885\) 0 0
\(886\) −26.0015 −0.873538
\(887\) 43.7003i 1.46731i 0.679521 + 0.733656i \(0.262188\pi\)
−0.679521 + 0.733656i \(0.737812\pi\)
\(888\) 19.2027 0.644401
\(889\) 4.39634i 0.147449i
\(890\) 0 0
\(891\) 0.976552i 0.0327157i
\(892\) −1.36578 −0.0457296
\(893\) 17.5132 0.586057
\(894\) 3.92428i 0.131248i
\(895\) 0 0
\(896\) 5.78912i 0.193401i
\(897\) −2.46411 −0.0822741
\(898\) 27.9331i 0.932139i
\(899\) −60.0688 −2.00341
\(900\) 0 0
\(901\) 7.64521 31.8222i 0.254699 1.06015i
\(902\) −13.2298 −0.440505
\(903\) 2.92632 0.0973818
\(904\) 41.4742i 1.37941i
\(905\) 0 0
\(906\) 31.2115i 1.03693i
\(907\) 53.1209i 1.76385i 0.471388 + 0.881926i \(0.343753\pi\)
−0.471388 + 0.881926i \(0.656247\pi\)
\(908\) 0.743063i 0.0246594i
\(909\) −7.69515 −0.255232
\(910\) 0 0
\(911\) 47.7278i 1.58129i 0.612273 + 0.790647i \(0.290255\pi\)
−0.612273 + 0.790647i \(0.709745\pi\)
\(912\) 17.0272i 0.563827i
\(913\) 6.14612i 0.203407i
\(914\) −44.7133 −1.47899
\(915\) 0 0
\(916\) −3.47088 −0.114681
\(917\) 3.88672 0.128351
\(918\) −6.20045 1.48964i −0.204645 0.0491656i
\(919\) 1.14793 0.0378667 0.0189334 0.999821i \(-0.493973\pi\)
0.0189334 + 0.999821i \(0.493973\pi\)
\(920\) 0 0
\(921\) 5.76186i 0.189860i
\(922\) −24.5868 −0.809723
\(923\) 44.4912i 1.46445i
\(924\) 0.164597i 0.00541484i
\(925\) 0 0
\(926\) 46.0776 1.51420
\(927\) 5.66786 0.186157
\(928\) 14.4733i 0.475108i
\(929\) 27.1035i 0.889237i −0.895720 0.444619i \(-0.853339\pi\)
0.895720 0.444619i \(-0.146661\pi\)
\(930\) 0 0
\(931\) −25.0613 −0.821349
\(932\) 10.2063i 0.334319i
\(933\) 24.9984 0.818412
\(934\) 3.84038 0.125661
\(935\) 0 0
\(936\) −12.8388 −0.419650
\(937\) −48.1087 −1.57164 −0.785822 0.618453i \(-0.787760\pi\)
−0.785822 + 0.618453i \(0.787760\pi\)
\(938\) 2.95126i 0.0963619i
\(939\) 3.42518 0.111776
\(940\) 0 0
\(941\) 31.7723i 1.03575i −0.855457 0.517873i \(-0.826724\pi\)
0.855457 0.517873i \(-0.173276\pi\)
\(942\) 12.5037i 0.407392i
\(943\) −4.18090 −0.136149
\(944\) 3.90328 0.127041
\(945\) 0 0
\(946\) 10.2802i 0.334239i
\(947\) 34.4567i 1.11969i −0.828596 0.559846i \(-0.810860\pi\)
0.828596 0.559846i \(-0.189140\pi\)
\(948\) 0.969859 0.0314996
\(949\) 36.4866i 1.18440i
\(950\) 0 0
\(951\) 23.7739 0.770921
\(952\) 4.28644 + 1.02981i 0.138924 + 0.0333762i
\(953\) 30.1023 0.975110 0.487555 0.873092i \(-0.337889\pi\)
0.487555 + 0.873092i \(0.337889\pi\)
\(954\) 12.2765 0.397467
\(955\) 0 0
\(956\) −9.43496 −0.305149
\(957\) 6.46081i 0.208848i
\(958\) 33.0019i 1.06624i
\(959\) 6.36723i 0.205609i
\(960\) 0 0
\(961\) −51.4355 −1.65921
\(962\) 61.6528i 1.98776i
\(963\) 11.2117i 0.361294i
\(964\) 4.39441i 0.141534i
\(965\) 0 0
\(966\) 0.317377i 0.0102115i
\(967\) 33.5567 1.07911 0.539555 0.841951i \(-0.318593\pi\)
0.539555 + 0.841951i \(0.318593\pi\)
\(968\) 24.9843 0.803027
\(969\) 14.7423 + 3.54181i 0.473592 + 0.113779i
\(970\) 0 0
\(971\) 22.5468 0.723561 0.361780 0.932263i \(-0.382169\pi\)
0.361780 + 0.932263i \(0.382169\pi\)
\(972\) 0.392039i 0.0125747i
\(973\) −5.24167 −0.168040
\(974\) 64.0121i 2.05108i
\(975\) 0 0
\(976\) 19.6766i 0.629832i
\(977\) −48.7390 −1.55930 −0.779649 0.626217i \(-0.784603\pi\)
−0.779649 + 0.626217i \(0.784603\pi\)
\(978\) −22.9180 −0.732836
\(979\) 5.44272i 0.173950i
\(980\) 0 0
\(981\) 3.24392i 0.103570i
\(982\) 24.0813 0.768466
\(983\) 27.7107i 0.883836i −0.897056 0.441918i \(-0.854298\pi\)
0.897056 0.441918i \(-0.145702\pi\)
\(984\) −21.7839 −0.694444
\(985\) 0 0
\(986\) −41.0218 9.85540i −1.30640 0.313860i
\(987\) −2.04756 −0.0651746
\(988\) −7.44254 −0.236779
\(989\) 3.24876i 0.103305i
\(990\) 0 0
\(991\) 44.7839i 1.42261i 0.702884 + 0.711304i \(0.251895\pi\)
−0.702884 + 0.711304i \(0.748105\pi\)
\(992\) 19.8624i 0.630633i
\(993\) 9.57377i 0.303814i
\(994\) −5.73047 −0.181760
\(995\) 0 0
\(996\) 2.46737i 0.0781817i
\(997\) 24.6416i 0.780408i 0.920728 + 0.390204i \(0.127595\pi\)
−0.920728 + 0.390204i \(0.872405\pi\)
\(998\) 43.8393i 1.38771i
\(999\) −7.72152 −0.244298
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1275.2.g.e.526.3 12
5.2 odd 4 1275.2.d.i.424.4 12
5.3 odd 4 1275.2.d.j.424.9 12
5.4 even 2 1275.2.g.f.526.10 yes 12
17.16 even 2 inner 1275.2.g.e.526.4 yes 12
85.33 odd 4 1275.2.d.i.424.9 12
85.67 odd 4 1275.2.d.j.424.4 12
85.84 even 2 1275.2.g.f.526.9 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1275.2.d.i.424.4 12 5.2 odd 4
1275.2.d.i.424.9 12 85.33 odd 4
1275.2.d.j.424.4 12 85.67 odd 4
1275.2.d.j.424.9 12 5.3 odd 4
1275.2.g.e.526.3 12 1.1 even 1 trivial
1275.2.g.e.526.4 yes 12 17.16 even 2 inner
1275.2.g.f.526.9 yes 12 85.84 even 2
1275.2.g.f.526.10 yes 12 5.4 even 2