Properties

Label 1275.2.d.i.424.10
Level $1275$
Weight $2$
Character 1275.424
Analytic conductor $10.181$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1275,2,Mod(424,1275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1275.424"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1275, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1275 = 3 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1275.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,-12,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1809262577\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 20x^{10} + 144x^{8} + 452x^{6} + 604x^{4} + 268x^{2} + 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 424.10
Root \(1.74480i\) of defining polynomial
Character \(\chi\) \(=\) 1275.424
Dual form 1275.2.d.i.424.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.74480i q^{2} -1.00000 q^{3} -1.04434 q^{4} -1.74480i q^{6} -4.98357 q^{7} +1.66744i q^{8} +1.00000 q^{9} +2.23877i q^{11} +1.04434 q^{12} +2.92477i q^{13} -8.69535i q^{14} -4.99803 q^{16} +(-1.15455 - 3.95816i) q^{17} +1.74480i q^{18} +1.52050 q^{19} +4.98357 q^{21} -3.90621 q^{22} +1.30964 q^{23} -1.66744i q^{24} -5.10314 q^{26} -1.00000 q^{27} +5.20454 q^{28} -1.82004i q^{29} +1.39136i q^{31} -5.38571i q^{32} -2.23877i q^{33} +(6.90621 - 2.01446i) q^{34} -1.04434 q^{36} -3.54628 q^{37} +2.65298i q^{38} -2.92477i q^{39} -8.48551i q^{41} +8.69535i q^{42} -9.13105i q^{43} -2.33803i q^{44} +2.28507i q^{46} -0.166519i q^{47} +4.99803 q^{48} +17.8360 q^{49} +(1.15455 + 3.95816i) q^{51} -3.05445i q^{52} -7.58067i q^{53} -1.74480i q^{54} -8.30981i q^{56} -1.52050 q^{57} +3.17561 q^{58} -13.7233 q^{59} -4.50092i q^{61} -2.42765 q^{62} -4.98357 q^{63} -0.599071 q^{64} +3.90621 q^{66} +1.03226i q^{67} +(1.20574 + 4.13366i) q^{68} -1.30964 q^{69} -1.78218i q^{71} +1.66744i q^{72} +11.6402 q^{73} -6.18756i q^{74} -1.58792 q^{76} -11.1570i q^{77} +5.10314 q^{78} -13.9481i q^{79} +1.00000 q^{81} +14.8055 q^{82} +4.47514i q^{83} -5.20454 q^{84} +15.9319 q^{86} +1.82004i q^{87} -3.73301 q^{88} -14.6490 q^{89} -14.5758i q^{91} -1.36771 q^{92} -1.39136i q^{93} +0.290543 q^{94} +5.38571i q^{96} -14.7821 q^{97} +31.1203i q^{98} +2.23877i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{3} - 16 q^{4} + 12 q^{9} + 16 q^{12} + 32 q^{16} - 6 q^{17} + 4 q^{19} + 12 q^{22} - 16 q^{23} - 36 q^{26} - 12 q^{27} - 36 q^{28} + 24 q^{34} - 16 q^{36} - 4 q^{37} - 32 q^{48} + 16 q^{49}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1275\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(751\) \(851\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.74480i 1.23376i 0.787056 + 0.616881i \(0.211604\pi\)
−0.787056 + 0.616881i \(0.788396\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.04434 −0.522169
\(5\) 0 0
\(6\) 1.74480i 0.712313i
\(7\) −4.98357 −1.88361 −0.941806 0.336157i \(-0.890873\pi\)
−0.941806 + 0.336157i \(0.890873\pi\)
\(8\) 1.66744i 0.589529i
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 2.23877i 0.675013i 0.941323 + 0.337507i \(0.109584\pi\)
−0.941323 + 0.337507i \(0.890416\pi\)
\(12\) 1.04434 0.301475
\(13\) 2.92477i 0.811184i 0.914054 + 0.405592i \(0.132935\pi\)
−0.914054 + 0.405592i \(0.867065\pi\)
\(14\) 8.69535i 2.32393i
\(15\) 0 0
\(16\) −4.99803 −1.24951
\(17\) −1.15455 3.95816i −0.280020 0.959994i
\(18\) 1.74480i 0.411254i
\(19\) 1.52050 0.348827 0.174413 0.984673i \(-0.444197\pi\)
0.174413 + 0.984673i \(0.444197\pi\)
\(20\) 0 0
\(21\) 4.98357 1.08750
\(22\) −3.90621 −0.832806
\(23\) 1.30964 0.273080 0.136540 0.990635i \(-0.456402\pi\)
0.136540 + 0.990635i \(0.456402\pi\)
\(24\) 1.66744i 0.340365i
\(25\) 0 0
\(26\) −5.10314 −1.00081
\(27\) −1.00000 −0.192450
\(28\) 5.20454 0.983565
\(29\) 1.82004i 0.337972i −0.985618 0.168986i \(-0.945951\pi\)
0.985618 0.168986i \(-0.0540493\pi\)
\(30\) 0 0
\(31\) 1.39136i 0.249896i 0.992163 + 0.124948i \(0.0398764\pi\)
−0.992163 + 0.124948i \(0.960124\pi\)
\(32\) 5.38571i 0.952067i
\(33\) 2.23877i 0.389719i
\(34\) 6.90621 2.01446i 1.18440 0.345478i
\(35\) 0 0
\(36\) −1.04434 −0.174056
\(37\) −3.54628 −0.583005 −0.291503 0.956570i \(-0.594155\pi\)
−0.291503 + 0.956570i \(0.594155\pi\)
\(38\) 2.65298i 0.430370i
\(39\) 2.92477i 0.468337i
\(40\) 0 0
\(41\) 8.48551i 1.32521i −0.748967 0.662607i \(-0.769450\pi\)
0.748967 0.662607i \(-0.230550\pi\)
\(42\) 8.69535i 1.34172i
\(43\) 9.13105i 1.39247i −0.717813 0.696236i \(-0.754857\pi\)
0.717813 0.696236i \(-0.245143\pi\)
\(44\) 2.33803i 0.352471i
\(45\) 0 0
\(46\) 2.28507i 0.336915i
\(47\) 0.166519i 0.0242893i −0.999926 0.0121446i \(-0.996134\pi\)
0.999926 0.0121446i \(-0.00386585\pi\)
\(48\) 4.99803 0.721404
\(49\) 17.8360 2.54800
\(50\) 0 0
\(51\) 1.15455 + 3.95816i 0.161669 + 0.554253i
\(52\) 3.05445i 0.423576i
\(53\) 7.58067i 1.04129i −0.853775 0.520643i \(-0.825692\pi\)
0.853775 0.520643i \(-0.174308\pi\)
\(54\) 1.74480i 0.237438i
\(55\) 0 0
\(56\) 8.30981i 1.11044i
\(57\) −1.52050 −0.201395
\(58\) 3.17561 0.416978
\(59\) −13.7233 −1.78662 −0.893308 0.449445i \(-0.851622\pi\)
−0.893308 + 0.449445i \(0.851622\pi\)
\(60\) 0 0
\(61\) 4.50092i 0.576284i −0.957588 0.288142i \(-0.906962\pi\)
0.957588 0.288142i \(-0.0930375\pi\)
\(62\) −2.42765 −0.308312
\(63\) −4.98357 −0.627871
\(64\) −0.599071 −0.0748839
\(65\) 0 0
\(66\) 3.90621 0.480821
\(67\) 1.03226i 0.126111i 0.998010 + 0.0630556i \(0.0200845\pi\)
−0.998010 + 0.0630556i \(0.979915\pi\)
\(68\) 1.20574 + 4.13366i 0.146218 + 0.501280i
\(69\) −1.30964 −0.157663
\(70\) 0 0
\(71\) 1.78218i 0.211506i −0.994392 0.105753i \(-0.966275\pi\)
0.994392 0.105753i \(-0.0337253\pi\)
\(72\) 1.66744i 0.196510i
\(73\) 11.6402 1.36238 0.681189 0.732107i \(-0.261463\pi\)
0.681189 + 0.732107i \(0.261463\pi\)
\(74\) 6.18756i 0.719290i
\(75\) 0 0
\(76\) −1.58792 −0.182147
\(77\) 11.1570i 1.27146i
\(78\) 5.10314 0.577817
\(79\) 13.9481i 1.56928i −0.619949 0.784642i \(-0.712847\pi\)
0.619949 0.784642i \(-0.287153\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 14.8055 1.63500
\(83\) 4.47514i 0.491211i 0.969370 + 0.245605i \(0.0789867\pi\)
−0.969370 + 0.245605i \(0.921013\pi\)
\(84\) −5.20454 −0.567861
\(85\) 0 0
\(86\) 15.9319 1.71798
\(87\) 1.82004i 0.195128i
\(88\) −3.73301 −0.397940
\(89\) −14.6490 −1.55280 −0.776398 0.630243i \(-0.782955\pi\)
−0.776398 + 0.630243i \(0.782955\pi\)
\(90\) 0 0
\(91\) 14.5758i 1.52796i
\(92\) −1.36771 −0.142594
\(93\) 1.39136i 0.144278i
\(94\) 0.290543 0.0299672
\(95\) 0 0
\(96\) 5.38571i 0.549676i
\(97\) −14.7821 −1.50089 −0.750445 0.660932i \(-0.770161\pi\)
−0.750445 + 0.660932i \(0.770161\pi\)
\(98\) 31.1203i 3.14362i
\(99\) 2.23877i 0.225004i
\(100\) 0 0
\(101\) −9.91167 −0.986248 −0.493124 0.869959i \(-0.664145\pi\)
−0.493124 + 0.869959i \(0.664145\pi\)
\(102\) −6.90621 + 2.01446i −0.683816 + 0.199462i
\(103\) 11.0014i 1.08400i 0.840379 + 0.541999i \(0.182332\pi\)
−0.840379 + 0.541999i \(0.817668\pi\)
\(104\) −4.87687 −0.478217
\(105\) 0 0
\(106\) 13.2268 1.28470
\(107\) 3.68292 0.356041 0.178021 0.984027i \(-0.443031\pi\)
0.178021 + 0.984027i \(0.443031\pi\)
\(108\) 1.04434 0.100492
\(109\) 17.1471i 1.64239i 0.570644 + 0.821197i \(0.306693\pi\)
−0.570644 + 0.821197i \(0.693307\pi\)
\(110\) 0 0
\(111\) 3.54628 0.336598
\(112\) 24.9081 2.35359
\(113\) 16.1338 1.51774 0.758868 0.651245i \(-0.225753\pi\)
0.758868 + 0.651245i \(0.225753\pi\)
\(114\) 2.65298i 0.248474i
\(115\) 0 0
\(116\) 1.90074i 0.176479i
\(117\) 2.92477i 0.270395i
\(118\) 23.9444i 2.20426i
\(119\) 5.75379 + 19.7258i 0.527449 + 1.80826i
\(120\) 0 0
\(121\) 5.98793 0.544357
\(122\) 7.85322 0.710997
\(123\) 8.48551i 0.765113i
\(124\) 1.45305i 0.130488i
\(125\) 0 0
\(126\) 8.69535i 0.774643i
\(127\) 11.6766i 1.03613i 0.855341 + 0.518065i \(0.173348\pi\)
−0.855341 + 0.518065i \(0.826652\pi\)
\(128\) 11.8167i 1.04446i
\(129\) 9.13105i 0.803944i
\(130\) 0 0
\(131\) 8.14138i 0.711315i 0.934616 + 0.355658i \(0.115743\pi\)
−0.934616 + 0.355658i \(0.884257\pi\)
\(132\) 2.33803i 0.203499i
\(133\) −7.57753 −0.657055
\(134\) −1.80110 −0.155591
\(135\) 0 0
\(136\) 6.59999 1.92515i 0.565945 0.165080i
\(137\) 3.47912i 0.297241i −0.988894 0.148621i \(-0.952517\pi\)
0.988894 0.148621i \(-0.0474833\pi\)
\(138\) 2.28507i 0.194518i
\(139\) 9.56541i 0.811328i 0.914022 + 0.405664i \(0.132960\pi\)
−0.914022 + 0.405664i \(0.867040\pi\)
\(140\) 0 0
\(141\) 0.166519i 0.0140234i
\(142\) 3.10956 0.260948
\(143\) −6.54787 −0.547560
\(144\) −4.99803 −0.416503
\(145\) 0 0
\(146\) 20.3098i 1.68085i
\(147\) −17.8360 −1.47109
\(148\) 3.70352 0.304427
\(149\) 14.6107 1.19696 0.598478 0.801139i \(-0.295772\pi\)
0.598478 + 0.801139i \(0.295772\pi\)
\(150\) 0 0
\(151\) −13.6611 −1.11172 −0.555860 0.831276i \(-0.687611\pi\)
−0.555860 + 0.831276i \(0.687611\pi\)
\(152\) 2.53535i 0.205644i
\(153\) −1.15455 3.95816i −0.0933399 0.319998i
\(154\) 19.4669 1.56868
\(155\) 0 0
\(156\) 3.05445i 0.244552i
\(157\) 21.1926i 1.69135i −0.533698 0.845675i \(-0.679198\pi\)
0.533698 0.845675i \(-0.320802\pi\)
\(158\) 24.3367 1.93612
\(159\) 7.58067i 0.601187i
\(160\) 0 0
\(161\) −6.52670 −0.514376
\(162\) 1.74480i 0.137085i
\(163\) 4.86075 0.380724 0.190362 0.981714i \(-0.439034\pi\)
0.190362 + 0.981714i \(0.439034\pi\)
\(164\) 8.86175i 0.691986i
\(165\) 0 0
\(166\) −7.80824 −0.606037
\(167\) −21.1447 −1.63622 −0.818111 0.575060i \(-0.804979\pi\)
−0.818111 + 0.575060i \(0.804979\pi\)
\(168\) 8.30981i 0.641116i
\(169\) 4.44574 0.341980
\(170\) 0 0
\(171\) 1.52050 0.116276
\(172\) 9.53591i 0.727106i
\(173\) −14.8666 −1.13029 −0.565143 0.824993i \(-0.691179\pi\)
−0.565143 + 0.824993i \(0.691179\pi\)
\(174\) −3.17561 −0.240742
\(175\) 0 0
\(176\) 11.1894i 0.843435i
\(177\) 13.7233 1.03150
\(178\) 25.5597i 1.91578i
\(179\) −24.1387 −1.80421 −0.902104 0.431519i \(-0.857978\pi\)
−0.902104 + 0.431519i \(0.857978\pi\)
\(180\) 0 0
\(181\) 20.1402i 1.49701i −0.663128 0.748506i \(-0.730771\pi\)
0.663128 0.748506i \(-0.269229\pi\)
\(182\) 25.4319 1.88514
\(183\) 4.50092i 0.332718i
\(184\) 2.18375i 0.160988i
\(185\) 0 0
\(186\) 2.42765 0.178004
\(187\) 8.86139 2.58477i 0.648009 0.189017i
\(188\) 0.173902i 0.0126831i
\(189\) 4.98357 0.362501
\(190\) 0 0
\(191\) −16.0837 −1.16377 −0.581886 0.813270i \(-0.697685\pi\)
−0.581886 + 0.813270i \(0.697685\pi\)
\(192\) 0.599071 0.0432342
\(193\) 17.6995 1.27404 0.637018 0.770849i \(-0.280168\pi\)
0.637018 + 0.770849i \(0.280168\pi\)
\(194\) 25.7918i 1.85174i
\(195\) 0 0
\(196\) −18.6268 −1.33049
\(197\) 3.66995 0.261473 0.130737 0.991417i \(-0.458266\pi\)
0.130737 + 0.991417i \(0.458266\pi\)
\(198\) −3.90621 −0.277602
\(199\) 18.6289i 1.32057i 0.751015 + 0.660286i \(0.229565\pi\)
−0.751015 + 0.660286i \(0.770435\pi\)
\(200\) 0 0
\(201\) 1.03226i 0.0728103i
\(202\) 17.2939i 1.21680i
\(203\) 9.07028i 0.636609i
\(204\) −1.20574 4.13366i −0.0844189 0.289414i
\(205\) 0 0
\(206\) −19.1952 −1.33739
\(207\) 1.30964 0.0910265
\(208\) 14.6181i 1.01358i
\(209\) 3.40405i 0.235463i
\(210\) 0 0
\(211\) 5.66739i 0.390159i 0.980787 + 0.195079i \(0.0624965\pi\)
−0.980787 + 0.195079i \(0.937504\pi\)
\(212\) 7.91679i 0.543728i
\(213\) 1.78218i 0.122113i
\(214\) 6.42597i 0.439270i
\(215\) 0 0
\(216\) 1.66744i 0.113455i
\(217\) 6.93395i 0.470707i
\(218\) −29.9183 −2.02632
\(219\) −11.6402 −0.786570
\(220\) 0 0
\(221\) 11.5767 3.37679i 0.778732 0.227148i
\(222\) 6.18756i 0.415282i
\(223\) 3.65155i 0.244526i 0.992498 + 0.122263i \(0.0390151\pi\)
−0.992498 + 0.122263i \(0.960985\pi\)
\(224\) 26.8400i 1.79333i
\(225\) 0 0
\(226\) 28.1502i 1.87253i
\(227\) −13.7100 −0.909967 −0.454983 0.890500i \(-0.650355\pi\)
−0.454983 + 0.890500i \(0.650355\pi\)
\(228\) 1.58792 0.105163
\(229\) 8.65352 0.571841 0.285920 0.958253i \(-0.407701\pi\)
0.285920 + 0.958253i \(0.407701\pi\)
\(230\) 0 0
\(231\) 11.1570i 0.734080i
\(232\) 3.03480 0.199245
\(233\) −22.0694 −1.44581 −0.722906 0.690947i \(-0.757194\pi\)
−0.722906 + 0.690947i \(0.757194\pi\)
\(234\) −5.10314 −0.333603
\(235\) 0 0
\(236\) 14.3317 0.932916
\(237\) 13.9481i 0.906027i
\(238\) −34.4176 + 10.0392i −2.23096 + 0.650746i
\(239\) −7.58610 −0.490704 −0.245352 0.969434i \(-0.578904\pi\)
−0.245352 + 0.969434i \(0.578904\pi\)
\(240\) 0 0
\(241\) 19.9526i 1.28526i 0.766178 + 0.642628i \(0.222156\pi\)
−0.766178 + 0.642628i \(0.777844\pi\)
\(242\) 10.4478i 0.671607i
\(243\) −1.00000 −0.0641500
\(244\) 4.70049i 0.300918i
\(245\) 0 0
\(246\) −14.8055 −0.943967
\(247\) 4.44711i 0.282963i
\(248\) −2.32001 −0.147321
\(249\) 4.47514i 0.283601i
\(250\) 0 0
\(251\) 10.6807 0.674162 0.337081 0.941476i \(-0.390560\pi\)
0.337081 + 0.941476i \(0.390560\pi\)
\(252\) 5.20454 0.327855
\(253\) 2.93199i 0.184332i
\(254\) −20.3734 −1.27834
\(255\) 0 0
\(256\) 19.4196 1.21373
\(257\) 5.59173i 0.348803i 0.984675 + 0.174401i \(0.0557990\pi\)
−0.984675 + 0.174401i \(0.944201\pi\)
\(258\) −15.9319 −0.991876
\(259\) 17.6731 1.09816
\(260\) 0 0
\(261\) 1.82004i 0.112657i
\(262\) −14.2051 −0.877594
\(263\) 13.8769i 0.855686i −0.903853 0.427843i \(-0.859274\pi\)
0.903853 0.427843i \(-0.140726\pi\)
\(264\) 3.73301 0.229751
\(265\) 0 0
\(266\) 13.2213i 0.810649i
\(267\) 14.6490 0.896507
\(268\) 1.07803i 0.0658514i
\(269\) 30.2465i 1.84416i −0.386997 0.922081i \(-0.626488\pi\)
0.386997 0.922081i \(-0.373512\pi\)
\(270\) 0 0
\(271\) −17.6456 −1.07190 −0.535948 0.844251i \(-0.680046\pi\)
−0.535948 + 0.844251i \(0.680046\pi\)
\(272\) 5.77048 + 19.7830i 0.349887 + 1.19952i
\(273\) 14.5758i 0.882166i
\(274\) 6.07038 0.366725
\(275\) 0 0
\(276\) 1.36771 0.0823266
\(277\) −16.5619 −0.995111 −0.497556 0.867432i \(-0.665769\pi\)
−0.497556 + 0.867432i \(0.665769\pi\)
\(278\) −16.6898 −1.00099
\(279\) 1.39136i 0.0832987i
\(280\) 0 0
\(281\) 8.40360 0.501317 0.250658 0.968076i \(-0.419353\pi\)
0.250658 + 0.968076i \(0.419353\pi\)
\(282\) −0.290543 −0.0173016
\(283\) −16.2345 −0.965038 −0.482519 0.875885i \(-0.660278\pi\)
−0.482519 + 0.875885i \(0.660278\pi\)
\(284\) 1.86120i 0.110442i
\(285\) 0 0
\(286\) 11.4247i 0.675559i
\(287\) 42.2881i 2.49619i
\(288\) 5.38571i 0.317356i
\(289\) −14.3340 + 9.13979i −0.843178 + 0.537635i
\(290\) 0 0
\(291\) 14.7821 0.866540
\(292\) −12.1563 −0.711393
\(293\) 21.3036i 1.24457i −0.782791 0.622284i \(-0.786205\pi\)
0.782791 0.622284i \(-0.213795\pi\)
\(294\) 31.1203i 1.81497i
\(295\) 0 0
\(296\) 5.91321i 0.343699i
\(297\) 2.23877i 0.129906i
\(298\) 25.4928i 1.47676i
\(299\) 3.83040i 0.221518i
\(300\) 0 0
\(301\) 45.5052i 2.62288i
\(302\) 23.8358i 1.37160i
\(303\) 9.91167 0.569411
\(304\) −7.59952 −0.435862
\(305\) 0 0
\(306\) 6.90621 2.01446i 0.394802 0.115159i
\(307\) 23.9979i 1.36963i −0.728715 0.684817i \(-0.759882\pi\)
0.728715 0.684817i \(-0.240118\pi\)
\(308\) 11.6517i 0.663919i
\(309\) 11.0014i 0.625846i
\(310\) 0 0
\(311\) 1.60781i 0.0911708i 0.998960 + 0.0455854i \(0.0145153\pi\)
−0.998960 + 0.0455854i \(0.985485\pi\)
\(312\) 4.87687 0.276099
\(313\) 10.5247 0.594893 0.297447 0.954738i \(-0.403865\pi\)
0.297447 + 0.954738i \(0.403865\pi\)
\(314\) 36.9768 2.08672
\(315\) 0 0
\(316\) 14.5665i 0.819432i
\(317\) −21.3111 −1.19695 −0.598475 0.801142i \(-0.704226\pi\)
−0.598475 + 0.801142i \(0.704226\pi\)
\(318\) −13.2268 −0.741721
\(319\) 4.07464 0.228136
\(320\) 0 0
\(321\) −3.68292 −0.205560
\(322\) 11.3878i 0.634618i
\(323\) −1.75550 6.01838i −0.0976784 0.334872i
\(324\) −1.04434 −0.0580188
\(325\) 0 0
\(326\) 8.48106i 0.469722i
\(327\) 17.1471i 0.948237i
\(328\) 14.1491 0.781253
\(329\) 0.829858i 0.0457515i
\(330\) 0 0
\(331\) −0.393709 −0.0216402 −0.0108201 0.999941i \(-0.503444\pi\)
−0.0108201 + 0.999941i \(0.503444\pi\)
\(332\) 4.67357i 0.256495i
\(333\) −3.54628 −0.194335
\(334\) 36.8933i 2.01871i
\(335\) 0 0
\(336\) −24.9081 −1.35885
\(337\) 3.90176 0.212542 0.106271 0.994337i \(-0.466109\pi\)
0.106271 + 0.994337i \(0.466109\pi\)
\(338\) 7.75695i 0.421922i
\(339\) −16.1338 −0.876265
\(340\) 0 0
\(341\) −3.11494 −0.168683
\(342\) 2.65298i 0.143457i
\(343\) −54.0018 −2.91582
\(344\) 15.2255 0.820903
\(345\) 0 0
\(346\) 25.9393i 1.39451i
\(347\) −3.96587 −0.212899 −0.106449 0.994318i \(-0.533948\pi\)
−0.106449 + 0.994318i \(0.533948\pi\)
\(348\) 1.90074i 0.101890i
\(349\) −32.5572 −1.74275 −0.871374 0.490620i \(-0.836770\pi\)
−0.871374 + 0.490620i \(0.836770\pi\)
\(350\) 0 0
\(351\) 2.92477i 0.156112i
\(352\) 12.0573 0.642658
\(353\) 18.6270i 0.991416i −0.868489 0.495708i \(-0.834909\pi\)
0.868489 0.495708i \(-0.165091\pi\)
\(354\) 23.9444i 1.27263i
\(355\) 0 0
\(356\) 15.2986 0.810822
\(357\) −5.75379 19.7258i −0.304523 1.04400i
\(358\) 42.1172i 2.22596i
\(359\) 16.2989 0.860221 0.430111 0.902776i \(-0.358475\pi\)
0.430111 + 0.902776i \(0.358475\pi\)
\(360\) 0 0
\(361\) −16.6881 −0.878320
\(362\) 35.1408 1.84696
\(363\) −5.98793 −0.314285
\(364\) 15.2221i 0.797852i
\(365\) 0 0
\(366\) −7.85322 −0.410495
\(367\) 25.8123 1.34739 0.673696 0.739009i \(-0.264706\pi\)
0.673696 + 0.739009i \(0.264706\pi\)
\(368\) −6.54564 −0.341215
\(369\) 8.48551i 0.441738i
\(370\) 0 0
\(371\) 37.7788i 1.96138i
\(372\) 1.45305i 0.0753373i
\(373\) 2.29788i 0.118980i 0.998229 + 0.0594900i \(0.0189474\pi\)
−0.998229 + 0.0594900i \(0.981053\pi\)
\(374\) 4.50991 + 15.4614i 0.233202 + 0.799489i
\(375\) 0 0
\(376\) 0.277660 0.0143192
\(377\) 5.32318 0.274158
\(378\) 8.69535i 0.447241i
\(379\) 25.0126i 1.28481i −0.766365 0.642405i \(-0.777937\pi\)
0.766365 0.642405i \(-0.222063\pi\)
\(380\) 0 0
\(381\) 11.6766i 0.598210i
\(382\) 28.0628i 1.43582i
\(383\) 8.85151i 0.452291i −0.974094 0.226145i \(-0.927388\pi\)
0.974094 0.226145i \(-0.0726124\pi\)
\(384\) 11.8167i 0.603017i
\(385\) 0 0
\(386\) 30.8821i 1.57186i
\(387\) 9.13105i 0.464157i
\(388\) 15.4375 0.783719
\(389\) −8.05651 −0.408481 −0.204241 0.978921i \(-0.565472\pi\)
−0.204241 + 0.978921i \(0.565472\pi\)
\(390\) 0 0
\(391\) −1.51205 5.18378i −0.0764677 0.262155i
\(392\) 29.7404i 1.50212i
\(393\) 8.14138i 0.410678i
\(394\) 6.40334i 0.322596i
\(395\) 0 0
\(396\) 2.33803i 0.117490i
\(397\) −30.6558 −1.53857 −0.769286 0.638904i \(-0.779388\pi\)
−0.769286 + 0.638904i \(0.779388\pi\)
\(398\) −32.5039 −1.62927
\(399\) 7.57753 0.379351
\(400\) 0 0
\(401\) 23.1614i 1.15663i 0.815815 + 0.578313i \(0.196289\pi\)
−0.815815 + 0.578313i \(0.803711\pi\)
\(402\) 1.80110 0.0898306
\(403\) −4.06941 −0.202712
\(404\) 10.3511 0.514989
\(405\) 0 0
\(406\) −15.8259 −0.785424
\(407\) 7.93929i 0.393536i
\(408\) −6.59999 + 1.92515i −0.326748 + 0.0953089i
\(409\) 10.9627 0.542072 0.271036 0.962569i \(-0.412634\pi\)
0.271036 + 0.962569i \(0.412634\pi\)
\(410\) 0 0
\(411\) 3.47912i 0.171612i
\(412\) 11.4892i 0.566030i
\(413\) 68.3908 3.36529
\(414\) 2.28507i 0.112305i
\(415\) 0 0
\(416\) 15.7519 0.772302
\(417\) 9.56541i 0.468420i
\(418\) −5.93939 −0.290505
\(419\) 14.7089i 0.718576i −0.933227 0.359288i \(-0.883020\pi\)
0.933227 0.359288i \(-0.116980\pi\)
\(420\) 0 0
\(421\) 1.85001 0.0901638 0.0450819 0.998983i \(-0.485645\pi\)
0.0450819 + 0.998983i \(0.485645\pi\)
\(422\) −9.88848 −0.481363
\(423\) 0.166519i 0.00809642i
\(424\) 12.6403 0.613868
\(425\) 0 0
\(426\) −3.10956 −0.150659
\(427\) 22.4307i 1.08550i
\(428\) −3.84622 −0.185914
\(429\) 6.54787 0.316134
\(430\) 0 0
\(431\) 7.41116i 0.356983i −0.983941 0.178491i \(-0.942878\pi\)
0.983941 0.178491i \(-0.0571217\pi\)
\(432\) 4.99803 0.240468
\(433\) 5.01269i 0.240894i 0.992720 + 0.120447i \(0.0384328\pi\)
−0.992720 + 0.120447i \(0.961567\pi\)
\(434\) 12.0984 0.580741
\(435\) 0 0
\(436\) 17.9074i 0.857608i
\(437\) 1.99132 0.0952575
\(438\) 20.3098i 0.970440i
\(439\) 21.2169i 1.01263i 0.862349 + 0.506315i \(0.168993\pi\)
−0.862349 + 0.506315i \(0.831007\pi\)
\(440\) 0 0
\(441\) 17.8360 0.849332
\(442\) 5.89184 + 20.1990i 0.280246 + 0.960770i
\(443\) 22.8512i 1.08569i −0.839832 0.542846i \(-0.817347\pi\)
0.839832 0.542846i \(-0.182653\pi\)
\(444\) −3.70352 −0.175761
\(445\) 0 0
\(446\) −6.37124 −0.301687
\(447\) −14.6107 −0.691063
\(448\) 2.98551 0.141052
\(449\) 20.1999i 0.953294i −0.879095 0.476647i \(-0.841852\pi\)
0.879095 0.476647i \(-0.158148\pi\)
\(450\) 0 0
\(451\) 18.9971 0.894537
\(452\) −16.8491 −0.792515
\(453\) 13.6611 0.641852
\(454\) 23.9213i 1.12268i
\(455\) 0 0
\(456\) 2.53535i 0.118728i
\(457\) 27.4808i 1.28550i 0.766077 + 0.642749i \(0.222206\pi\)
−0.766077 + 0.642749i \(0.777794\pi\)
\(458\) 15.0987i 0.705515i
\(459\) 1.15455 + 3.95816i 0.0538898 + 0.184751i
\(460\) 0 0
\(461\) 27.5990 1.28541 0.642706 0.766113i \(-0.277812\pi\)
0.642706 + 0.766113i \(0.277812\pi\)
\(462\) −19.4669 −0.905680
\(463\) 20.5387i 0.954516i 0.878763 + 0.477258i \(0.158369\pi\)
−0.878763 + 0.477258i \(0.841631\pi\)
\(464\) 9.09661i 0.422299i
\(465\) 0 0
\(466\) 38.5067i 1.78379i
\(467\) 12.6544i 0.585576i −0.956177 0.292788i \(-0.905417\pi\)
0.956177 0.292788i \(-0.0945831\pi\)
\(468\) 3.05445i 0.141192i
\(469\) 5.14436i 0.237545i
\(470\) 0 0
\(471\) 21.1926i 0.976501i
\(472\) 22.8827i 1.05326i
\(473\) 20.4423 0.939937
\(474\) −24.3367 −1.11782
\(475\) 0 0
\(476\) −6.00890 20.6004i −0.275418 0.944217i
\(477\) 7.58067i 0.347095i
\(478\) 13.2363i 0.605412i
\(479\) 25.6921i 1.17390i 0.809622 + 0.586952i \(0.199672\pi\)
−0.809622 + 0.586952i \(0.800328\pi\)
\(480\) 0 0
\(481\) 10.3720i 0.472924i
\(482\) −34.8133 −1.58570
\(483\) 6.52670 0.296975
\(484\) −6.25342 −0.284247
\(485\) 0 0
\(486\) 1.74480i 0.0791459i
\(487\) 7.98736 0.361942 0.180971 0.983488i \(-0.442076\pi\)
0.180971 + 0.983488i \(0.442076\pi\)
\(488\) 7.50502 0.339736
\(489\) −4.86075 −0.219811
\(490\) 0 0
\(491\) 23.4535 1.05844 0.529221 0.848484i \(-0.322484\pi\)
0.529221 + 0.848484i \(0.322484\pi\)
\(492\) 8.86175i 0.399519i
\(493\) −7.20399 + 2.10133i −0.324452 + 0.0946389i
\(494\) −7.75934 −0.349109
\(495\) 0 0
\(496\) 6.95408i 0.312247i
\(497\) 8.88163i 0.398396i
\(498\) 7.80824 0.349896
\(499\) 2.55509i 0.114381i 0.998363 + 0.0571907i \(0.0182143\pi\)
−0.998363 + 0.0571907i \(0.981786\pi\)
\(500\) 0 0
\(501\) 21.1447 0.944674
\(502\) 18.6358i 0.831756i
\(503\) −22.5894 −1.00721 −0.503605 0.863934i \(-0.667993\pi\)
−0.503605 + 0.863934i \(0.667993\pi\)
\(504\) 8.30981i 0.370148i
\(505\) 0 0
\(506\) −5.11574 −0.227422
\(507\) −4.44574 −0.197442
\(508\) 12.1943i 0.541036i
\(509\) −12.4294 −0.550921 −0.275461 0.961312i \(-0.588830\pi\)
−0.275461 + 0.961312i \(0.588830\pi\)
\(510\) 0 0
\(511\) −58.0096 −2.56619
\(512\) 10.2501i 0.452994i
\(513\) −1.52050 −0.0671318
\(514\) −9.75647 −0.430340
\(515\) 0 0
\(516\) 9.53591i 0.419795i
\(517\) 0.372797 0.0163956
\(518\) 30.8362i 1.35486i
\(519\) 14.8666 0.652571
\(520\) 0 0
\(521\) 15.6804i 0.686969i −0.939158 0.343485i \(-0.888393\pi\)
0.939158 0.343485i \(-0.111607\pi\)
\(522\) 3.17561 0.138993
\(523\) 9.60165i 0.419851i −0.977717 0.209925i \(-0.932678\pi\)
0.977717 0.209925i \(-0.0673221\pi\)
\(524\) 8.50236i 0.371427i
\(525\) 0 0
\(526\) 24.2125 1.05571
\(527\) 5.50723 1.60640i 0.239899 0.0699758i
\(528\) 11.1894i 0.486957i
\(529\) −21.2848 −0.925428
\(530\) 0 0
\(531\) −13.7233 −0.595539
\(532\) 7.91350 0.343094
\(533\) 24.8181 1.07499
\(534\) 25.5597i 1.10608i
\(535\) 0 0
\(536\) −1.72124 −0.0743462
\(537\) 24.1387 1.04166
\(538\) 52.7742 2.27526
\(539\) 39.9306i 1.71993i
\(540\) 0 0
\(541\) 32.9544i 1.41682i 0.705801 + 0.708410i \(0.250587\pi\)
−0.705801 + 0.708410i \(0.749413\pi\)
\(542\) 30.7882i 1.32247i
\(543\) 20.1402i 0.864300i
\(544\) −21.3175 + 6.21807i −0.913979 + 0.266598i
\(545\) 0 0
\(546\) −25.4319 −1.08838
\(547\) 18.9841 0.811701 0.405850 0.913940i \(-0.366975\pi\)
0.405850 + 0.913940i \(0.366975\pi\)
\(548\) 3.63338i 0.155210i
\(549\) 4.50092i 0.192095i
\(550\) 0 0
\(551\) 2.76737i 0.117894i
\(552\) 2.18375i 0.0929467i
\(553\) 69.5113i 2.95592i
\(554\) 28.8973i 1.22773i
\(555\) 0 0
\(556\) 9.98953i 0.423651i
\(557\) 44.5929i 1.88946i 0.327847 + 0.944731i \(0.393677\pi\)
−0.327847 + 0.944731i \(0.606323\pi\)
\(558\) −2.42765 −0.102771
\(559\) 26.7062 1.12955
\(560\) 0 0
\(561\) −8.86139 + 2.58477i −0.374128 + 0.109129i
\(562\) 14.6626i 0.618506i
\(563\) 4.26474i 0.179737i 0.995954 + 0.0898686i \(0.0286447\pi\)
−0.995954 + 0.0898686i \(0.971355\pi\)
\(564\) 0.173902i 0.00732260i
\(565\) 0 0
\(566\) 28.3259i 1.19063i
\(567\) −4.98357 −0.209290
\(568\) 2.97168 0.124689
\(569\) −5.81934 −0.243959 −0.121980 0.992533i \(-0.538924\pi\)
−0.121980 + 0.992533i \(0.538924\pi\)
\(570\) 0 0
\(571\) 10.0595i 0.420976i 0.977596 + 0.210488i \(0.0675053\pi\)
−0.977596 + 0.210488i \(0.932495\pi\)
\(572\) 6.83819 0.285919
\(573\) 16.0837 0.671905
\(574\) −73.7845 −3.07971
\(575\) 0 0
\(576\) −0.599071 −0.0249613
\(577\) 15.7300i 0.654847i −0.944878 0.327423i \(-0.893820\pi\)
0.944878 0.327423i \(-0.106180\pi\)
\(578\) −15.9471 25.0101i −0.663313 1.04028i
\(579\) −17.6995 −0.735566
\(580\) 0 0
\(581\) 22.3022i 0.925250i
\(582\) 25.7918i 1.06910i
\(583\) 16.9714 0.702882
\(584\) 19.4093i 0.803162i
\(585\) 0 0
\(586\) 37.1706 1.53550
\(587\) 30.6657i 1.26571i −0.774271 0.632854i \(-0.781883\pi\)
0.774271 0.632854i \(-0.218117\pi\)
\(588\) 18.6268 0.768156
\(589\) 2.11557i 0.0871705i
\(590\) 0 0
\(591\) −3.66995 −0.150962
\(592\) 17.7244 0.728470
\(593\) 9.22665i 0.378893i 0.981891 + 0.189447i \(0.0606694\pi\)
−0.981891 + 0.189447i \(0.939331\pi\)
\(594\) 3.90621 0.160274
\(595\) 0 0
\(596\) −15.2585 −0.625014
\(597\) 18.6289i 0.762432i
\(598\) −6.68330 −0.273300
\(599\) −12.2310 −0.499745 −0.249873 0.968279i \(-0.580389\pi\)
−0.249873 + 0.968279i \(0.580389\pi\)
\(600\) 0 0
\(601\) 36.4552i 1.48704i −0.668715 0.743519i \(-0.733155\pi\)
0.668715 0.743519i \(-0.266845\pi\)
\(602\) −79.3977 −3.23601
\(603\) 1.03226i 0.0420371i
\(604\) 14.2668 0.580507
\(605\) 0 0
\(606\) 17.2939i 0.702517i
\(607\) 35.4434 1.43860 0.719302 0.694697i \(-0.244462\pi\)
0.719302 + 0.694697i \(0.244462\pi\)
\(608\) 8.18897i 0.332107i
\(609\) 9.07028i 0.367546i
\(610\) 0 0
\(611\) 0.487029 0.0197031
\(612\) 1.20574 + 4.13366i 0.0487393 + 0.167093i
\(613\) 31.2013i 1.26021i 0.776511 + 0.630104i \(0.216988\pi\)
−0.776511 + 0.630104i \(0.783012\pi\)
\(614\) 41.8716 1.68980
\(615\) 0 0
\(616\) 18.6037 0.749565
\(617\) 19.2867 0.776452 0.388226 0.921564i \(-0.373088\pi\)
0.388226 + 0.921564i \(0.373088\pi\)
\(618\) 19.1952 0.772145
\(619\) 5.51660i 0.221731i 0.993835 + 0.110865i \(0.0353622\pi\)
−0.993835 + 0.110865i \(0.964638\pi\)
\(620\) 0 0
\(621\) −1.30964 −0.0525542
\(622\) −2.80532 −0.112483
\(623\) 73.0045 2.92486
\(624\) 14.6181i 0.585192i
\(625\) 0 0
\(626\) 18.3636i 0.733957i
\(627\) 3.40405i 0.135945i
\(628\) 22.1322i 0.883171i
\(629\) 4.09436 + 14.0367i 0.163253 + 0.559681i
\(630\) 0 0
\(631\) −2.66900 −0.106251 −0.0531257 0.998588i \(-0.516918\pi\)
−0.0531257 + 0.998588i \(0.516918\pi\)
\(632\) 23.2576 0.925139
\(633\) 5.66739i 0.225258i
\(634\) 37.1837i 1.47675i
\(635\) 0 0
\(636\) 7.91679i 0.313921i
\(637\) 52.1660i 2.06689i
\(638\) 7.10944i 0.281465i
\(639\) 1.78218i 0.0705021i
\(640\) 0 0
\(641\) 22.4010i 0.884787i −0.896821 0.442393i \(-0.854129\pi\)
0.896821 0.442393i \(-0.145871\pi\)
\(642\) 6.42597i 0.253613i
\(643\) −9.24620 −0.364635 −0.182317 0.983240i \(-0.558360\pi\)
−0.182317 + 0.983240i \(0.558360\pi\)
\(644\) 6.81609 0.268592
\(645\) 0 0
\(646\) 10.5009 3.06300i 0.413152 0.120512i
\(647\) 34.6465i 1.36209i 0.732239 + 0.681047i \(0.238475\pi\)
−0.732239 + 0.681047i \(0.761525\pi\)
\(648\) 1.66744i 0.0655033i
\(649\) 30.7232i 1.20599i
\(650\) 0 0
\(651\) 6.93395i 0.271763i
\(652\) −5.07627 −0.198802
\(653\) −0.981384 −0.0384045 −0.0192023 0.999816i \(-0.506113\pi\)
−0.0192023 + 0.999816i \(0.506113\pi\)
\(654\) 29.9183 1.16990
\(655\) 0 0
\(656\) 42.4109i 1.65587i
\(657\) 11.6402 0.454126
\(658\) −1.44794 −0.0564465
\(659\) 18.3247 0.713828 0.356914 0.934137i \(-0.383829\pi\)
0.356914 + 0.934137i \(0.383829\pi\)
\(660\) 0 0
\(661\) −22.4177 −0.871946 −0.435973 0.899960i \(-0.643596\pi\)
−0.435973 + 0.899960i \(0.643596\pi\)
\(662\) 0.686944i 0.0266989i
\(663\) −11.5767 + 3.37679i −0.449601 + 0.131144i
\(664\) −7.46203 −0.289583
\(665\) 0 0
\(666\) 6.18756i 0.239763i
\(667\) 2.38360i 0.0922934i
\(668\) 22.0822 0.854386
\(669\) 3.65155i 0.141177i
\(670\) 0 0
\(671\) 10.0765 0.388999
\(672\) 26.8400i 1.03538i
\(673\) 50.8202 1.95898 0.979488 0.201504i \(-0.0645828\pi\)
0.979488 + 0.201504i \(0.0645828\pi\)
\(674\) 6.80780i 0.262227i
\(675\) 0 0
\(676\) −4.64286 −0.178572
\(677\) 5.48996 0.210996 0.105498 0.994419i \(-0.466356\pi\)
0.105498 + 0.994419i \(0.466356\pi\)
\(678\) 28.1502i 1.08110i
\(679\) 73.6674 2.82710
\(680\) 0 0
\(681\) 13.7100 0.525370
\(682\) 5.43495i 0.208115i
\(683\) −23.8590 −0.912940 −0.456470 0.889739i \(-0.650886\pi\)
−0.456470 + 0.889739i \(0.650886\pi\)
\(684\) −1.58792 −0.0607156
\(685\) 0 0
\(686\) 94.2225i 3.59743i
\(687\) −8.65352 −0.330152
\(688\) 45.6373i 1.73991i
\(689\) 22.1717 0.844675
\(690\) 0 0
\(691\) 11.9837i 0.455882i 0.973675 + 0.227941i \(0.0731993\pi\)
−0.973675 + 0.227941i \(0.926801\pi\)
\(692\) 15.5258 0.590201
\(693\) 11.1570i 0.423821i
\(694\) 6.91966i 0.262667i
\(695\) 0 0
\(696\) −3.03480 −0.115034
\(697\) −33.5870 + 9.79696i −1.27220 + 0.371086i
\(698\) 56.8059i 2.15014i
\(699\) 22.0694 0.834740
\(700\) 0 0
\(701\) −21.9970 −0.830816 −0.415408 0.909635i \(-0.636361\pi\)
−0.415408 + 0.909635i \(0.636361\pi\)
\(702\) 5.10314 0.192606
\(703\) −5.39213 −0.203368
\(704\) 1.34118i 0.0505476i
\(705\) 0 0
\(706\) 32.5005 1.22317
\(707\) 49.3955 1.85771
\(708\) −14.3317 −0.538619
\(709\) 13.6855i 0.513969i 0.966416 + 0.256984i \(0.0827289\pi\)
−0.966416 + 0.256984i \(0.917271\pi\)
\(710\) 0 0
\(711\) 13.9481i 0.523095i
\(712\) 24.4264i 0.915419i
\(713\) 1.82219i 0.0682415i
\(714\) 34.4176 10.0392i 1.28804 0.375709i
\(715\) 0 0
\(716\) 25.2089 0.942102
\(717\) 7.58610 0.283308
\(718\) 28.4383i 1.06131i
\(719\) 22.9414i 0.855568i −0.903881 0.427784i \(-0.859294\pi\)
0.903881 0.427784i \(-0.140706\pi\)
\(720\) 0 0
\(721\) 54.8261i 2.04183i
\(722\) 29.1174i 1.08364i
\(723\) 19.9526i 0.742043i
\(724\) 21.0332i 0.781694i
\(725\) 0 0
\(726\) 10.4478i 0.387752i
\(727\) 30.6381i 1.13630i 0.822923 + 0.568152i \(0.192342\pi\)
−0.822923 + 0.568152i \(0.807658\pi\)
\(728\) 24.3042 0.900775
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −36.1421 + 10.5423i −1.33677 + 0.389920i
\(732\) 4.70049i 0.173735i
\(733\) 30.3471i 1.12090i 0.828189 + 0.560449i \(0.189371\pi\)
−0.828189 + 0.560449i \(0.810629\pi\)
\(734\) 45.0374i 1.66236i
\(735\) 0 0
\(736\) 7.05336i 0.259990i
\(737\) −2.31100 −0.0851267
\(738\) 14.8055 0.545000
\(739\) −17.7291 −0.652174 −0.326087 0.945340i \(-0.605730\pi\)
−0.326087 + 0.945340i \(0.605730\pi\)
\(740\) 0 0
\(741\) 4.44711i 0.163369i
\(742\) −65.9166 −2.41988
\(743\) −11.0856 −0.406693 −0.203346 0.979107i \(-0.565182\pi\)
−0.203346 + 0.979107i \(0.565182\pi\)
\(744\) 2.32001 0.0850559
\(745\) 0 0
\(746\) −4.00936 −0.146793
\(747\) 4.47514i 0.163737i
\(748\) −9.25429 + 2.69938i −0.338371 + 0.0986989i
\(749\) −18.3541 −0.670644
\(750\) 0 0
\(751\) 10.3719i 0.378474i 0.981931 + 0.189237i \(0.0606015\pi\)
−0.981931 + 0.189237i \(0.939399\pi\)
\(752\) 0.832267i 0.0303496i
\(753\) −10.6807 −0.389228
\(754\) 9.28791i 0.338246i
\(755\) 0 0
\(756\) −5.20454 −0.189287
\(757\) 5.08248i 0.184726i 0.995725 + 0.0923629i \(0.0294420\pi\)
−0.995725 + 0.0923629i \(0.970558\pi\)
\(758\) 43.6421 1.58515
\(759\) 2.93199i 0.106424i
\(760\) 0 0
\(761\) 25.5981 0.927931 0.463965 0.885853i \(-0.346426\pi\)
0.463965 + 0.885853i \(0.346426\pi\)
\(762\) 20.3734 0.738049
\(763\) 85.4538i 3.09363i
\(764\) 16.7968 0.607687
\(765\) 0 0
\(766\) 15.4441 0.558019
\(767\) 40.1373i 1.44927i
\(768\) −19.4196 −0.700745
\(769\) −15.0057 −0.541121 −0.270560 0.962703i \(-0.587209\pi\)
−0.270560 + 0.962703i \(0.587209\pi\)
\(770\) 0 0
\(771\) 5.59173i 0.201381i
\(772\) −18.4843 −0.665263
\(773\) 39.0295i 1.40379i 0.712278 + 0.701897i \(0.247664\pi\)
−0.712278 + 0.701897i \(0.752336\pi\)
\(774\) 15.9319 0.572660
\(775\) 0 0
\(776\) 24.6482i 0.884819i
\(777\) −17.6731 −0.634020
\(778\) 14.0570i 0.503969i
\(779\) 12.9022i 0.462271i
\(780\) 0 0
\(781\) 3.98989 0.142770
\(782\) 9.04467 2.63823i 0.323437 0.0943429i
\(783\) 1.82004i 0.0650428i
\(784\) −89.1448 −3.18374
\(785\) 0 0
\(786\) 14.2051 0.506679
\(787\) 21.7701 0.776020 0.388010 0.921655i \(-0.373163\pi\)
0.388010 + 0.921655i \(0.373163\pi\)
\(788\) −3.83267 −0.136533
\(789\) 13.8769i 0.494031i
\(790\) 0 0
\(791\) −80.4037 −2.85883
\(792\) −3.73301 −0.132647
\(793\) 13.1641 0.467472
\(794\) 53.4884i 1.89823i
\(795\) 0 0
\(796\) 19.4549i 0.689562i
\(797\) 40.0932i 1.42017i −0.704114 0.710087i \(-0.748656\pi\)
0.704114 0.710087i \(-0.251344\pi\)
\(798\) 13.2213i 0.468029i
\(799\) −0.659108 + 0.192254i −0.0233175 + 0.00680147i
\(800\) 0 0
\(801\) −14.6490 −0.517599
\(802\) −40.4122 −1.42700
\(803\) 26.0596i 0.919624i
\(804\) 1.07803i 0.0380193i
\(805\) 0 0
\(806\) 7.10032i 0.250098i
\(807\) 30.2465i 1.06473i
\(808\) 16.5271i 0.581422i
\(809\) 33.2747i 1.16988i −0.811078 0.584938i \(-0.801119\pi\)
0.811078 0.584938i \(-0.198881\pi\)
\(810\) 0 0
\(811\) 1.18314i 0.0415456i 0.999784 + 0.0207728i \(0.00661266\pi\)
−0.999784 + 0.0207728i \(0.993387\pi\)
\(812\) 9.47245i 0.332418i
\(813\) 17.6456 0.618860
\(814\) 13.8525 0.485530
\(815\) 0 0
\(816\) −5.77048 19.7830i −0.202007 0.692544i
\(817\) 13.8838i 0.485732i
\(818\) 19.1278i 0.668788i
\(819\) 14.5758i 0.509319i
\(820\) 0 0
\(821\) 50.4742i 1.76156i 0.473525 + 0.880780i \(0.342981\pi\)
−0.473525 + 0.880780i \(0.657019\pi\)
\(822\) −6.07038 −0.211729
\(823\) −19.7606 −0.688810 −0.344405 0.938821i \(-0.611919\pi\)
−0.344405 + 0.938821i \(0.611919\pi\)
\(824\) −18.3441 −0.639048
\(825\) 0 0
\(826\) 119.329i 4.15197i
\(827\) 50.1878 1.74520 0.872601 0.488434i \(-0.162432\pi\)
0.872601 + 0.488434i \(0.162432\pi\)
\(828\) −1.36771 −0.0475313
\(829\) −43.5230 −1.51162 −0.755809 0.654793i \(-0.772756\pi\)
−0.755809 + 0.654793i \(0.772756\pi\)
\(830\) 0 0
\(831\) 16.5619 0.574528
\(832\) 1.75214i 0.0607446i
\(833\) −20.5925 70.5976i −0.713489 2.44606i
\(834\) 16.6898 0.577919
\(835\) 0 0
\(836\) 3.55498i 0.122952i
\(837\) 1.39136i 0.0480925i
\(838\) 25.6641 0.886552
\(839\) 36.9007i 1.27395i −0.770884 0.636976i \(-0.780185\pi\)
0.770884 0.636976i \(-0.219815\pi\)
\(840\) 0 0
\(841\) 25.6875 0.885775
\(842\) 3.22790i 0.111241i
\(843\) −8.40360 −0.289435
\(844\) 5.91867i 0.203729i
\(845\) 0 0
\(846\) 0.290543 0.00998906
\(847\) −29.8412 −1.02536
\(848\) 37.8885i 1.30110i
\(849\) 16.2345 0.557165
\(850\) 0 0
\(851\) −4.64437 −0.159207
\(852\) 1.86120i 0.0637638i
\(853\) −29.8013 −1.02038 −0.510189 0.860062i \(-0.670425\pi\)
−0.510189 + 0.860062i \(0.670425\pi\)
\(854\) −39.1371 −1.33924
\(855\) 0 0
\(856\) 6.14105i 0.209897i
\(857\) −5.32427 −0.181874 −0.0909368 0.995857i \(-0.528986\pi\)
−0.0909368 + 0.995857i \(0.528986\pi\)
\(858\) 11.4247i 0.390034i
\(859\) −24.3062 −0.829316 −0.414658 0.909977i \(-0.636099\pi\)
−0.414658 + 0.909977i \(0.636099\pi\)
\(860\) 0 0
\(861\) 42.2881i 1.44118i
\(862\) 12.9310 0.440432
\(863\) 25.1361i 0.855642i −0.903863 0.427821i \(-0.859281\pi\)
0.903863 0.427821i \(-0.140719\pi\)
\(864\) 5.38571i 0.183225i
\(865\) 0 0
\(866\) −8.74615 −0.297206
\(867\) 14.3340 9.13979i 0.486809 0.310404i
\(868\) 7.24140i 0.245789i
\(869\) 31.2265 1.05929
\(870\) 0 0
\(871\) −3.01913 −0.102299
\(872\) −28.5918 −0.968240
\(873\) −14.7821 −0.500297
\(874\) 3.47445i 0.117525i
\(875\) 0 0
\(876\) 12.1563 0.410723
\(877\) −25.5005 −0.861090 −0.430545 0.902569i \(-0.641679\pi\)
−0.430545 + 0.902569i \(0.641679\pi\)
\(878\) −37.0194 −1.24934
\(879\) 21.3036i 0.718552i
\(880\) 0 0
\(881\) 46.7352i 1.57455i −0.616603 0.787274i \(-0.711492\pi\)
0.616603 0.787274i \(-0.288508\pi\)
\(882\) 31.1203i 1.04787i
\(883\) 11.2968i 0.380166i 0.981768 + 0.190083i \(0.0608757\pi\)
−0.981768 + 0.190083i \(0.939124\pi\)
\(884\) −12.0900 + 3.52651i −0.406630 + 0.118610i
\(885\) 0 0
\(886\) 39.8708 1.33949
\(887\) 1.07297 0.0360266 0.0180133 0.999838i \(-0.494266\pi\)
0.0180133 + 0.999838i \(0.494266\pi\)
\(888\) 5.91321i 0.198434i
\(889\) 58.1911i 1.95167i
\(890\) 0 0
\(891\) 2.23877i 0.0750015i
\(892\) 3.81346i 0.127684i
\(893\) 0.253192i 0.00847275i
\(894\) 25.4928i 0.852607i
\(895\) 0 0
\(896\) 58.8892i 1.96735i
\(897\) 3.83040i 0.127893i
\(898\) 35.2449 1.17614
\(899\) 2.53233 0.0844580
\(900\) 0 0
\(901\) −30.0055 + 8.75228i −0.999628 + 0.291581i
\(902\) 33.1462i 1.10365i
\(903\) 45.5052i 1.51432i
\(904\) 26.9021i 0.894750i
\(905\) 0 0
\(906\) 23.8358i 0.791893i
\(907\) −46.6720 −1.54972 −0.774860 0.632133i \(-0.782180\pi\)
−0.774860 + 0.632133i \(0.782180\pi\)
\(908\) 14.3179 0.475157
\(909\) −9.91167 −0.328749
\(910\) 0 0
\(911\) 8.14382i 0.269817i 0.990858 + 0.134908i \(0.0430740\pi\)
−0.990858 + 0.134908i \(0.956926\pi\)
\(912\) 7.59952 0.251645
\(913\) −10.0188 −0.331574
\(914\) −47.9486 −1.58600
\(915\) 0 0
\(916\) −9.03721 −0.298598
\(917\) 40.5731i 1.33984i
\(918\) −6.90621 + 2.01446i −0.227939 + 0.0664872i
\(919\) −3.96126 −0.130670 −0.0653350 0.997863i \(-0.520812\pi\)
−0.0653350 + 0.997863i \(0.520812\pi\)
\(920\) 0 0
\(921\) 23.9979i 0.790758i
\(922\) 48.1548i 1.58589i
\(923\) 5.21247 0.171571
\(924\) 11.6517i 0.383314i
\(925\) 0 0
\(926\) −35.8360 −1.17765
\(927\) 11.0014i 0.361332i
\(928\) −9.80218 −0.321772
\(929\) 32.9616i 1.08143i −0.841205 0.540717i \(-0.818153\pi\)
0.841205 0.540717i \(-0.181847\pi\)
\(930\) 0 0
\(931\) 27.1196 0.888809
\(932\) 23.0479 0.754959
\(933\) 1.60781i 0.0526375i
\(934\) 22.0795 0.722462
\(935\) 0 0
\(936\) −4.87687 −0.159406
\(937\) 49.6837i 1.62310i 0.584285 + 0.811548i \(0.301375\pi\)
−0.584285 + 0.811548i \(0.698625\pi\)
\(938\) 8.97590 0.293074
\(939\) −10.5247 −0.343462
\(940\) 0 0
\(941\) 28.8461i 0.940356i 0.882572 + 0.470178i \(0.155810\pi\)
−0.882572 + 0.470178i \(0.844190\pi\)
\(942\) −36.9768 −1.20477
\(943\) 11.1130i 0.361889i
\(944\) 68.5893 2.23239
\(945\) 0 0
\(946\) 35.6678i 1.15966i
\(947\) −49.1958 −1.59865 −0.799324 0.600900i \(-0.794809\pi\)
−0.799324 + 0.600900i \(0.794809\pi\)
\(948\) 14.5665i 0.473099i
\(949\) 34.0448i 1.10514i
\(950\) 0 0
\(951\) 21.3111 0.691059
\(952\) −32.8915 + 9.59410i −1.06602 + 0.310946i
\(953\) 44.1137i 1.42898i 0.699644 + 0.714492i \(0.253342\pi\)
−0.699644 + 0.714492i \(0.746658\pi\)
\(954\) 13.2268 0.428233
\(955\) 0 0
\(956\) 7.92246 0.256231
\(957\) −4.07464 −0.131714
\(958\) −44.8277 −1.44832
\(959\) 17.3384i 0.559887i
\(960\) 0 0
\(961\) 29.0641 0.937552
\(962\) 18.0972 0.583476
\(963\) 3.68292 0.118680
\(964\) 20.8372i 0.671122i
\(965\) 0 0
\(966\) 11.3878i 0.366397i
\(967\) 49.7270i 1.59911i −0.600591 0.799557i \(-0.705068\pi\)
0.600591 0.799557i \(-0.294932\pi\)
\(968\) 9.98451i 0.320914i
\(969\) 1.75550 + 6.01838i 0.0563947 + 0.193338i
\(970\) 0 0
\(971\) 37.0067 1.18760 0.593801 0.804612i \(-0.297627\pi\)
0.593801 + 0.804612i \(0.297627\pi\)
\(972\) 1.04434 0.0334972
\(973\) 47.6699i 1.52823i
\(974\) 13.9364i 0.446550i
\(975\) 0 0
\(976\) 22.4958i 0.720072i
\(977\) 28.1018i 0.899056i −0.893266 0.449528i \(-0.851592\pi\)
0.893266 0.449528i \(-0.148408\pi\)
\(978\) 8.48106i 0.271194i
\(979\) 32.7958i 1.04816i
\(980\) 0 0
\(981\) 17.1471i 0.547465i
\(982\) 40.9218i 1.30587i
\(983\) −57.8272 −1.84440 −0.922200 0.386714i \(-0.873610\pi\)
−0.922200 + 0.386714i \(0.873610\pi\)
\(984\) −14.1491 −0.451056
\(985\) 0 0
\(986\) −3.66640 12.5696i −0.116762 0.400296i
\(987\) 0.829858i 0.0264147i
\(988\) 4.64429i 0.147755i
\(989\) 11.9584i 0.380256i
\(990\) 0 0
\(991\) 24.8426i 0.789151i −0.918863 0.394576i \(-0.870892\pi\)
0.918863 0.394576i \(-0.129108\pi\)
\(992\) 7.49347 0.237918
\(993\) 0.393709 0.0124940
\(994\) −15.4967 −0.491526
\(995\) 0 0
\(996\) 4.67357i 0.148088i
\(997\) −15.3101 −0.484877 −0.242438 0.970167i \(-0.577947\pi\)
−0.242438 + 0.970167i \(0.577947\pi\)
\(998\) −4.45813 −0.141119
\(999\) 3.54628 0.112199
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1275.2.d.i.424.10 12
5.2 odd 4 1275.2.g.f.526.4 yes 12
5.3 odd 4 1275.2.g.e.526.9 12
5.4 even 2 1275.2.d.j.424.3 12
17.16 even 2 1275.2.d.j.424.10 12
85.33 odd 4 1275.2.g.e.526.10 yes 12
85.67 odd 4 1275.2.g.f.526.3 yes 12
85.84 even 2 inner 1275.2.d.i.424.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1275.2.d.i.424.3 12 85.84 even 2 inner
1275.2.d.i.424.10 12 1.1 even 1 trivial
1275.2.d.j.424.3 12 5.4 even 2
1275.2.d.j.424.10 12 17.16 even 2
1275.2.g.e.526.9 12 5.3 odd 4
1275.2.g.e.526.10 yes 12 85.33 odd 4
1275.2.g.f.526.3 yes 12 85.67 odd 4
1275.2.g.f.526.4 yes 12 5.2 odd 4