Properties

Label 1275.2.g.e.526.9
Level $1275$
Weight $2$
Character 1275.526
Analytic conductor $10.181$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1275,2,Mod(526,1275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1275.526"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1275, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1275 = 3 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1275.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,16,0,0,0,0,-12,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1809262577\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 20x^{10} + 144x^{8} + 452x^{6} + 604x^{4} + 268x^{2} + 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 526.9
Root \(1.74480i\) of defining polynomial
Character \(\chi\) \(=\) 1275.526
Dual form 1275.2.g.e.526.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.74480 q^{2} -1.00000i q^{3} +1.04434 q^{4} -1.74480i q^{6} +4.98357i q^{7} -1.66744 q^{8} -1.00000 q^{9} +2.23877i q^{11} -1.04434i q^{12} -2.92477 q^{13} +8.69535i q^{14} -4.99803 q^{16} +(-3.95816 + 1.15455i) q^{17} -1.74480 q^{18} -1.52050 q^{19} +4.98357 q^{21} +3.90621i q^{22} +1.30964i q^{23} +1.66744i q^{24} -5.10314 q^{26} +1.00000i q^{27} +5.20454i q^{28} +1.82004i q^{29} +1.39136i q^{31} -5.38571 q^{32} +2.23877 q^{33} +(-6.90621 + 2.01446i) q^{34} -1.04434 q^{36} +3.54628i q^{37} -2.65298 q^{38} +2.92477i q^{39} -8.48551i q^{41} +8.69535 q^{42} +9.13105 q^{43} +2.33803i q^{44} +2.28507i q^{46} -0.166519 q^{47} +4.99803i q^{48} -17.8360 q^{49} +(1.15455 + 3.95816i) q^{51} -3.05445 q^{52} +7.58067 q^{53} +1.74480i q^{54} -8.30981i q^{56} +1.52050i q^{57} +3.17561i q^{58} +13.7233 q^{59} -4.50092i q^{61} +2.42765i q^{62} -4.98357i q^{63} +0.599071 q^{64} +3.90621 q^{66} +1.03226 q^{67} +(-4.13366 + 1.20574i) q^{68} +1.30964 q^{69} -1.78218i q^{71} +1.66744 q^{72} +11.6402i q^{73} +6.18756i q^{74} -1.58792 q^{76} -11.1570 q^{77} +5.10314i q^{78} +13.9481i q^{79} +1.00000 q^{81} -14.8055i q^{82} -4.47514 q^{83} +5.20454 q^{84} +15.9319 q^{86} +1.82004 q^{87} -3.73301i q^{88} +14.6490 q^{89} -14.5758i q^{91} +1.36771i q^{92} +1.39136 q^{93} -0.290543 q^{94} +5.38571i q^{96} +14.7821i q^{97} -31.1203 q^{98} -2.23877i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 16 q^{4} - 12 q^{9} - 4 q^{13} + 32 q^{16} + 10 q^{17} - 4 q^{19} - 36 q^{26} - 20 q^{32} - 12 q^{33} - 24 q^{34} - 16 q^{36} - 44 q^{38} + 28 q^{42} + 28 q^{43} - 16 q^{47} - 16 q^{49} + 6 q^{51}+ \cdots - 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1275\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(751\) \(851\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.74480 1.23376 0.616881 0.787056i \(-0.288396\pi\)
0.616881 + 0.787056i \(0.288396\pi\)
\(3\) 1.00000i 0.577350i
\(4\) 1.04434 0.522169
\(5\) 0 0
\(6\) 1.74480i 0.712313i
\(7\) 4.98357i 1.88361i 0.336157 + 0.941806i \(0.390873\pi\)
−0.336157 + 0.941806i \(0.609127\pi\)
\(8\) −1.66744 −0.589529
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 2.23877i 0.675013i 0.941323 + 0.337507i \(0.109584\pi\)
−0.941323 + 0.337507i \(0.890416\pi\)
\(12\) 1.04434i 0.301475i
\(13\) −2.92477 −0.811184 −0.405592 0.914054i \(-0.632935\pi\)
−0.405592 + 0.914054i \(0.632935\pi\)
\(14\) 8.69535i 2.32393i
\(15\) 0 0
\(16\) −4.99803 −1.24951
\(17\) −3.95816 + 1.15455i −0.959994 + 0.280020i
\(18\) −1.74480 −0.411254
\(19\) −1.52050 −0.348827 −0.174413 0.984673i \(-0.555803\pi\)
−0.174413 + 0.984673i \(0.555803\pi\)
\(20\) 0 0
\(21\) 4.98357 1.08750
\(22\) 3.90621i 0.832806i
\(23\) 1.30964i 0.273080i 0.990635 + 0.136540i \(0.0435982\pi\)
−0.990635 + 0.136540i \(0.956402\pi\)
\(24\) 1.66744i 0.340365i
\(25\) 0 0
\(26\) −5.10314 −1.00081
\(27\) 1.00000i 0.192450i
\(28\) 5.20454i 0.983565i
\(29\) 1.82004i 0.337972i 0.985618 + 0.168986i \(0.0540493\pi\)
−0.985618 + 0.168986i \(0.945951\pi\)
\(30\) 0 0
\(31\) 1.39136i 0.249896i 0.992163 + 0.124948i \(0.0398764\pi\)
−0.992163 + 0.124948i \(0.960124\pi\)
\(32\) −5.38571 −0.952067
\(33\) 2.23877 0.389719
\(34\) −6.90621 + 2.01446i −1.18440 + 0.345478i
\(35\) 0 0
\(36\) −1.04434 −0.174056
\(37\) 3.54628i 0.583005i 0.956570 + 0.291503i \(0.0941552\pi\)
−0.956570 + 0.291503i \(0.905845\pi\)
\(38\) −2.65298 −0.430370
\(39\) 2.92477i 0.468337i
\(40\) 0 0
\(41\) 8.48551i 1.32521i −0.748967 0.662607i \(-0.769450\pi\)
0.748967 0.662607i \(-0.230550\pi\)
\(42\) 8.69535 1.34172
\(43\) 9.13105 1.39247 0.696236 0.717813i \(-0.254857\pi\)
0.696236 + 0.717813i \(0.254857\pi\)
\(44\) 2.33803i 0.352471i
\(45\) 0 0
\(46\) 2.28507i 0.336915i
\(47\) −0.166519 −0.0242893 −0.0121446 0.999926i \(-0.503866\pi\)
−0.0121446 + 0.999926i \(0.503866\pi\)
\(48\) 4.99803i 0.721404i
\(49\) −17.8360 −2.54800
\(50\) 0 0
\(51\) 1.15455 + 3.95816i 0.161669 + 0.554253i
\(52\) −3.05445 −0.423576
\(53\) 7.58067 1.04129 0.520643 0.853775i \(-0.325692\pi\)
0.520643 + 0.853775i \(0.325692\pi\)
\(54\) 1.74480i 0.237438i
\(55\) 0 0
\(56\) 8.30981i 1.11044i
\(57\) 1.52050i 0.201395i
\(58\) 3.17561i 0.416978i
\(59\) 13.7233 1.78662 0.893308 0.449445i \(-0.148378\pi\)
0.893308 + 0.449445i \(0.148378\pi\)
\(60\) 0 0
\(61\) 4.50092i 0.576284i −0.957588 0.288142i \(-0.906962\pi\)
0.957588 0.288142i \(-0.0930375\pi\)
\(62\) 2.42765i 0.308312i
\(63\) 4.98357i 0.627871i
\(64\) 0.599071 0.0748839
\(65\) 0 0
\(66\) 3.90621 0.480821
\(67\) 1.03226 0.126111 0.0630556 0.998010i \(-0.479915\pi\)
0.0630556 + 0.998010i \(0.479915\pi\)
\(68\) −4.13366 + 1.20574i −0.501280 + 0.146218i
\(69\) 1.30964 0.157663
\(70\) 0 0
\(71\) 1.78218i 0.211506i −0.994392 0.105753i \(-0.966275\pi\)
0.994392 0.105753i \(-0.0337253\pi\)
\(72\) 1.66744 0.196510
\(73\) 11.6402i 1.36238i 0.732107 + 0.681189i \(0.238537\pi\)
−0.732107 + 0.681189i \(0.761463\pi\)
\(74\) 6.18756i 0.719290i
\(75\) 0 0
\(76\) −1.58792 −0.182147
\(77\) −11.1570 −1.27146
\(78\) 5.10314i 0.577817i
\(79\) 13.9481i 1.56928i 0.619949 + 0.784642i \(0.287153\pi\)
−0.619949 + 0.784642i \(0.712847\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 14.8055i 1.63500i
\(83\) −4.47514 −0.491211 −0.245605 0.969370i \(-0.578987\pi\)
−0.245605 + 0.969370i \(0.578987\pi\)
\(84\) 5.20454 0.567861
\(85\) 0 0
\(86\) 15.9319 1.71798
\(87\) 1.82004 0.195128
\(88\) 3.73301i 0.397940i
\(89\) 14.6490 1.55280 0.776398 0.630243i \(-0.217045\pi\)
0.776398 + 0.630243i \(0.217045\pi\)
\(90\) 0 0
\(91\) 14.5758i 1.52796i
\(92\) 1.36771i 0.142594i
\(93\) 1.39136 0.144278
\(94\) −0.290543 −0.0299672
\(95\) 0 0
\(96\) 5.38571i 0.549676i
\(97\) 14.7821i 1.50089i 0.660932 + 0.750445i \(0.270161\pi\)
−0.660932 + 0.750445i \(0.729839\pi\)
\(98\) −31.1203 −3.14362
\(99\) 2.23877i 0.225004i
\(100\) 0 0
\(101\) −9.91167 −0.986248 −0.493124 0.869959i \(-0.664145\pi\)
−0.493124 + 0.869959i \(0.664145\pi\)
\(102\) 2.01446 + 6.90621i 0.199462 + 0.683816i
\(103\) −11.0014 −1.08400 −0.541999 0.840379i \(-0.682332\pi\)
−0.541999 + 0.840379i \(0.682332\pi\)
\(104\) 4.87687 0.478217
\(105\) 0 0
\(106\) 13.2268 1.28470
\(107\) 3.68292i 0.356041i −0.984027 0.178021i \(-0.943031\pi\)
0.984027 0.178021i \(-0.0569694\pi\)
\(108\) 1.04434i 0.100492i
\(109\) 17.1471i 1.64239i −0.570644 0.821197i \(-0.693307\pi\)
0.570644 0.821197i \(-0.306693\pi\)
\(110\) 0 0
\(111\) 3.54628 0.336598
\(112\) 24.9081i 2.35359i
\(113\) 16.1338i 1.51774i 0.651245 + 0.758868i \(0.274247\pi\)
−0.651245 + 0.758868i \(0.725753\pi\)
\(114\) 2.65298i 0.248474i
\(115\) 0 0
\(116\) 1.90074i 0.176479i
\(117\) 2.92477 0.270395
\(118\) 23.9444 2.20426
\(119\) −5.75379 19.7258i −0.527449 1.80826i
\(120\) 0 0
\(121\) 5.98793 0.544357
\(122\) 7.85322i 0.710997i
\(123\) −8.48551 −0.765113
\(124\) 1.45305i 0.130488i
\(125\) 0 0
\(126\) 8.69535i 0.774643i
\(127\) 11.6766 1.03613 0.518065 0.855341i \(-0.326652\pi\)
0.518065 + 0.855341i \(0.326652\pi\)
\(128\) 11.8167 1.04446
\(129\) 9.13105i 0.803944i
\(130\) 0 0
\(131\) 8.14138i 0.711315i 0.934616 + 0.355658i \(0.115743\pi\)
−0.934616 + 0.355658i \(0.884257\pi\)
\(132\) 2.33803 0.203499
\(133\) 7.57753i 0.657055i
\(134\) 1.80110 0.155591
\(135\) 0 0
\(136\) 6.59999 1.92515i 0.565945 0.165080i
\(137\) −3.47912 −0.297241 −0.148621 0.988894i \(-0.547483\pi\)
−0.148621 + 0.988894i \(0.547483\pi\)
\(138\) 2.28507 0.194518
\(139\) 9.56541i 0.811328i −0.914022 0.405664i \(-0.867040\pi\)
0.914022 0.405664i \(-0.132960\pi\)
\(140\) 0 0
\(141\) 0.166519i 0.0140234i
\(142\) 3.10956i 0.260948i
\(143\) 6.54787i 0.547560i
\(144\) 4.99803 0.416503
\(145\) 0 0
\(146\) 20.3098i 1.68085i
\(147\) 17.8360i 1.47109i
\(148\) 3.70352i 0.304427i
\(149\) −14.6107 −1.19696 −0.598478 0.801139i \(-0.704228\pi\)
−0.598478 + 0.801139i \(0.704228\pi\)
\(150\) 0 0
\(151\) −13.6611 −1.11172 −0.555860 0.831276i \(-0.687611\pi\)
−0.555860 + 0.831276i \(0.687611\pi\)
\(152\) 2.53535 0.205644
\(153\) 3.95816 1.15455i 0.319998 0.0933399i
\(154\) −19.4669 −1.56868
\(155\) 0 0
\(156\) 3.05445i 0.244552i
\(157\) −21.1926 −1.69135 −0.845675 0.533698i \(-0.820802\pi\)
−0.845675 + 0.533698i \(0.820802\pi\)
\(158\) 24.3367i 1.93612i
\(159\) 7.58067i 0.601187i
\(160\) 0 0
\(161\) −6.52670 −0.514376
\(162\) 1.74480 0.137085
\(163\) 4.86075i 0.380724i 0.981714 + 0.190362i \(0.0609661\pi\)
−0.981714 + 0.190362i \(0.939034\pi\)
\(164\) 8.86175i 0.691986i
\(165\) 0 0
\(166\) −7.80824 −0.606037
\(167\) 21.1447i 1.63622i 0.575060 + 0.818111i \(0.304979\pi\)
−0.575060 + 0.818111i \(0.695021\pi\)
\(168\) −8.30981 −0.641116
\(169\) −4.44574 −0.341980
\(170\) 0 0
\(171\) 1.52050 0.116276
\(172\) 9.53591 0.727106
\(173\) 14.8666i 1.13029i −0.824993 0.565143i \(-0.808821\pi\)
0.824993 0.565143i \(-0.191179\pi\)
\(174\) 3.17561 0.240742
\(175\) 0 0
\(176\) 11.1894i 0.843435i
\(177\) 13.7233i 1.03150i
\(178\) 25.5597 1.91578
\(179\) 24.1387 1.80421 0.902104 0.431519i \(-0.142022\pi\)
0.902104 + 0.431519i \(0.142022\pi\)
\(180\) 0 0
\(181\) 20.1402i 1.49701i −0.663128 0.748506i \(-0.730771\pi\)
0.663128 0.748506i \(-0.269229\pi\)
\(182\) 25.4319i 1.88514i
\(183\) −4.50092 −0.332718
\(184\) 2.18375i 0.160988i
\(185\) 0 0
\(186\) 2.42765 0.178004
\(187\) −2.58477 8.86139i −0.189017 0.648009i
\(188\) −0.173902 −0.0126831
\(189\) −4.98357 −0.362501
\(190\) 0 0
\(191\) −16.0837 −1.16377 −0.581886 0.813270i \(-0.697685\pi\)
−0.581886 + 0.813270i \(0.697685\pi\)
\(192\) 0.599071i 0.0432342i
\(193\) 17.6995i 1.27404i 0.770849 + 0.637018i \(0.219832\pi\)
−0.770849 + 0.637018i \(0.780168\pi\)
\(194\) 25.7918i 1.85174i
\(195\) 0 0
\(196\) −18.6268 −1.33049
\(197\) 3.66995i 0.261473i −0.991417 0.130737i \(-0.958266\pi\)
0.991417 0.130737i \(-0.0417342\pi\)
\(198\) 3.90621i 0.277602i
\(199\) 18.6289i 1.32057i −0.751015 0.660286i \(-0.770435\pi\)
0.751015 0.660286i \(-0.229565\pi\)
\(200\) 0 0
\(201\) 1.03226i 0.0728103i
\(202\) −17.2939 −1.21680
\(203\) −9.07028 −0.636609
\(204\) 1.20574 + 4.13366i 0.0844189 + 0.289414i
\(205\) 0 0
\(206\) −19.1952 −1.33739
\(207\) 1.30964i 0.0910265i
\(208\) 14.6181 1.01358
\(209\) 3.40405i 0.235463i
\(210\) 0 0
\(211\) 5.66739i 0.390159i 0.980787 + 0.195079i \(0.0624965\pi\)
−0.980787 + 0.195079i \(0.937504\pi\)
\(212\) 7.91679 0.543728
\(213\) −1.78218 −0.122113
\(214\) 6.42597i 0.439270i
\(215\) 0 0
\(216\) 1.66744i 0.113455i
\(217\) −6.93395 −0.470707
\(218\) 29.9183i 2.02632i
\(219\) 11.6402 0.786570
\(220\) 0 0
\(221\) 11.5767 3.37679i 0.778732 0.227148i
\(222\) 6.18756 0.415282
\(223\) −3.65155 −0.244526 −0.122263 0.992498i \(-0.539015\pi\)
−0.122263 + 0.992498i \(0.539015\pi\)
\(224\) 26.8400i 1.79333i
\(225\) 0 0
\(226\) 28.1502i 1.87253i
\(227\) 13.7100i 0.909967i 0.890500 + 0.454983i \(0.150355\pi\)
−0.890500 + 0.454983i \(0.849645\pi\)
\(228\) 1.58792i 0.105163i
\(229\) −8.65352 −0.571841 −0.285920 0.958253i \(-0.592299\pi\)
−0.285920 + 0.958253i \(0.592299\pi\)
\(230\) 0 0
\(231\) 11.1570i 0.734080i
\(232\) 3.03480i 0.199245i
\(233\) 22.0694i 1.44581i −0.690947 0.722906i \(-0.742806\pi\)
0.690947 0.722906i \(-0.257194\pi\)
\(234\) 5.10314 0.333603
\(235\) 0 0
\(236\) 14.3317 0.932916
\(237\) 13.9481 0.906027
\(238\) −10.0392 34.4176i −0.650746 2.23096i
\(239\) 7.58610 0.490704 0.245352 0.969434i \(-0.421096\pi\)
0.245352 + 0.969434i \(0.421096\pi\)
\(240\) 0 0
\(241\) 19.9526i 1.28526i 0.766178 + 0.642628i \(0.222156\pi\)
−0.766178 + 0.642628i \(0.777844\pi\)
\(242\) 10.4478 0.671607
\(243\) 1.00000i 0.0641500i
\(244\) 4.70049i 0.300918i
\(245\) 0 0
\(246\) −14.8055 −0.943967
\(247\) 4.44711 0.282963
\(248\) 2.32001i 0.147321i
\(249\) 4.47514i 0.283601i
\(250\) 0 0
\(251\) 10.6807 0.674162 0.337081 0.941476i \(-0.390560\pi\)
0.337081 + 0.941476i \(0.390560\pi\)
\(252\) 5.20454i 0.327855i
\(253\) −2.93199 −0.184332
\(254\) 20.3734 1.27834
\(255\) 0 0
\(256\) 19.4196 1.21373
\(257\) 5.59173 0.348803 0.174401 0.984675i \(-0.444201\pi\)
0.174401 + 0.984675i \(0.444201\pi\)
\(258\) 15.9319i 0.991876i
\(259\) −17.6731 −1.09816
\(260\) 0 0
\(261\) 1.82004i 0.112657i
\(262\) 14.2051i 0.877594i
\(263\) 13.8769 0.855686 0.427843 0.903853i \(-0.359274\pi\)
0.427843 + 0.903853i \(0.359274\pi\)
\(264\) −3.73301 −0.229751
\(265\) 0 0
\(266\) 13.2213i 0.810649i
\(267\) 14.6490i 0.896507i
\(268\) 1.07803 0.0658514
\(269\) 30.2465i 1.84416i 0.386997 + 0.922081i \(0.373512\pi\)
−0.386997 + 0.922081i \(0.626488\pi\)
\(270\) 0 0
\(271\) −17.6456 −1.07190 −0.535948 0.844251i \(-0.680046\pi\)
−0.535948 + 0.844251i \(0.680046\pi\)
\(272\) 19.7830 5.77048i 1.19952 0.349887i
\(273\) −14.5758 −0.882166
\(274\) −6.07038 −0.366725
\(275\) 0 0
\(276\) 1.36771 0.0823266
\(277\) 16.5619i 0.995111i 0.867432 + 0.497556i \(0.165769\pi\)
−0.867432 + 0.497556i \(0.834231\pi\)
\(278\) 16.6898i 1.00099i
\(279\) 1.39136i 0.0832987i
\(280\) 0 0
\(281\) 8.40360 0.501317 0.250658 0.968076i \(-0.419353\pi\)
0.250658 + 0.968076i \(0.419353\pi\)
\(282\) 0.290543i 0.0173016i
\(283\) 16.2345i 0.965038i −0.875885 0.482519i \(-0.839722\pi\)
0.875885 0.482519i \(-0.160278\pi\)
\(284\) 1.86120i 0.110442i
\(285\) 0 0
\(286\) 11.4247i 0.675559i
\(287\) 42.2881 2.49619
\(288\) 5.38571 0.317356
\(289\) 14.3340 9.13979i 0.843178 0.537635i
\(290\) 0 0
\(291\) 14.7821 0.866540
\(292\) 12.1563i 0.711393i
\(293\) 21.3036 1.24457 0.622284 0.782791i \(-0.286205\pi\)
0.622284 + 0.782791i \(0.286205\pi\)
\(294\) 31.1203i 1.81497i
\(295\) 0 0
\(296\) 5.91321i 0.343699i
\(297\) −2.23877 −0.129906
\(298\) −25.4928 −1.47676
\(299\) 3.83040i 0.221518i
\(300\) 0 0
\(301\) 45.5052i 2.62288i
\(302\) −23.8358 −1.37160
\(303\) 9.91167i 0.569411i
\(304\) 7.59952 0.435862
\(305\) 0 0
\(306\) 6.90621 2.01446i 0.394802 0.115159i
\(307\) −23.9979 −1.36963 −0.684817 0.728715i \(-0.740118\pi\)
−0.684817 + 0.728715i \(0.740118\pi\)
\(308\) −11.6517 −0.663919
\(309\) 11.0014i 0.625846i
\(310\) 0 0
\(311\) 1.60781i 0.0911708i 0.998960 + 0.0455854i \(0.0145153\pi\)
−0.998960 + 0.0455854i \(0.985485\pi\)
\(312\) 4.87687i 0.276099i
\(313\) 10.5247i 0.594893i 0.954738 + 0.297447i \(0.0961350\pi\)
−0.954738 + 0.297447i \(0.903865\pi\)
\(314\) −36.9768 −2.08672
\(315\) 0 0
\(316\) 14.5665i 0.819432i
\(317\) 21.3111i 1.19695i 0.801142 + 0.598475i \(0.204226\pi\)
−0.801142 + 0.598475i \(0.795774\pi\)
\(318\) 13.2268i 0.741721i
\(319\) −4.07464 −0.228136
\(320\) 0 0
\(321\) −3.68292 −0.205560
\(322\) −11.3878 −0.634618
\(323\) 6.01838 1.75550i 0.334872 0.0976784i
\(324\) 1.04434 0.0580188
\(325\) 0 0
\(326\) 8.48106i 0.469722i
\(327\) −17.1471 −0.948237
\(328\) 14.1491i 0.781253i
\(329\) 0.829858i 0.0457515i
\(330\) 0 0
\(331\) −0.393709 −0.0216402 −0.0108201 0.999941i \(-0.503444\pi\)
−0.0108201 + 0.999941i \(0.503444\pi\)
\(332\) −4.67357 −0.256495
\(333\) 3.54628i 0.194335i
\(334\) 36.8933i 2.01871i
\(335\) 0 0
\(336\) −24.9081 −1.35885
\(337\) 3.90176i 0.212542i −0.994337 0.106271i \(-0.966109\pi\)
0.994337 0.106271i \(-0.0338911\pi\)
\(338\) −7.75695 −0.421922
\(339\) 16.1338 0.876265
\(340\) 0 0
\(341\) −3.11494 −0.168683
\(342\) 2.65298 0.143457
\(343\) 54.0018i 2.91582i
\(344\) −15.2255 −0.820903
\(345\) 0 0
\(346\) 25.9393i 1.39451i
\(347\) 3.96587i 0.212899i 0.994318 + 0.106449i \(0.0339482\pi\)
−0.994318 + 0.106449i \(0.966052\pi\)
\(348\) 1.90074 0.101890
\(349\) 32.5572 1.74275 0.871374 0.490620i \(-0.163230\pi\)
0.871374 + 0.490620i \(0.163230\pi\)
\(350\) 0 0
\(351\) 2.92477i 0.156112i
\(352\) 12.0573i 0.642658i
\(353\) 18.6270 0.991416 0.495708 0.868489i \(-0.334909\pi\)
0.495708 + 0.868489i \(0.334909\pi\)
\(354\) 23.9444i 1.27263i
\(355\) 0 0
\(356\) 15.2986 0.810822
\(357\) −19.7258 + 5.75379i −1.04400 + 0.304523i
\(358\) 42.1172 2.22596
\(359\) −16.2989 −0.860221 −0.430111 0.902776i \(-0.641525\pi\)
−0.430111 + 0.902776i \(0.641525\pi\)
\(360\) 0 0
\(361\) −16.6881 −0.878320
\(362\) 35.1408i 1.84696i
\(363\) 5.98793i 0.314285i
\(364\) 15.2221i 0.797852i
\(365\) 0 0
\(366\) −7.85322 −0.410495
\(367\) 25.8123i 1.34739i −0.739009 0.673696i \(-0.764706\pi\)
0.739009 0.673696i \(-0.235294\pi\)
\(368\) 6.54564i 0.341215i
\(369\) 8.48551i 0.441738i
\(370\) 0 0
\(371\) 37.7788i 1.96138i
\(372\) 1.45305 0.0753373
\(373\) −2.29788 −0.118980 −0.0594900 0.998229i \(-0.518947\pi\)
−0.0594900 + 0.998229i \(0.518947\pi\)
\(374\) −4.50991 15.4614i −0.233202 0.799489i
\(375\) 0 0
\(376\) 0.277660 0.0143192
\(377\) 5.32318i 0.274158i
\(378\) −8.69535 −0.447241
\(379\) 25.0126i 1.28481i 0.766365 + 0.642405i \(0.222063\pi\)
−0.766365 + 0.642405i \(0.777937\pi\)
\(380\) 0 0
\(381\) 11.6766i 0.598210i
\(382\) −28.0628 −1.43582
\(383\) 8.85151 0.452291 0.226145 0.974094i \(-0.427388\pi\)
0.226145 + 0.974094i \(0.427388\pi\)
\(384\) 11.8167i 0.603017i
\(385\) 0 0
\(386\) 30.8821i 1.57186i
\(387\) −9.13105 −0.464157
\(388\) 15.4375i 0.783719i
\(389\) 8.05651 0.408481 0.204241 0.978921i \(-0.434528\pi\)
0.204241 + 0.978921i \(0.434528\pi\)
\(390\) 0 0
\(391\) −1.51205 5.18378i −0.0764677 0.262155i
\(392\) 29.7404 1.50212
\(393\) 8.14138 0.410678
\(394\) 6.40334i 0.322596i
\(395\) 0 0
\(396\) 2.33803i 0.117490i
\(397\) 30.6558i 1.53857i 0.638904 + 0.769286i \(0.279388\pi\)
−0.638904 + 0.769286i \(0.720612\pi\)
\(398\) 32.5039i 1.62927i
\(399\) −7.57753 −0.379351
\(400\) 0 0
\(401\) 23.1614i 1.15663i 0.815815 + 0.578313i \(0.196289\pi\)
−0.815815 + 0.578313i \(0.803711\pi\)
\(402\) 1.80110i 0.0898306i
\(403\) 4.06941i 0.202712i
\(404\) −10.3511 −0.514989
\(405\) 0 0
\(406\) −15.8259 −0.785424
\(407\) −7.93929 −0.393536
\(408\) −1.92515 6.59999i −0.0953089 0.326748i
\(409\) −10.9627 −0.542072 −0.271036 0.962569i \(-0.587366\pi\)
−0.271036 + 0.962569i \(0.587366\pi\)
\(410\) 0 0
\(411\) 3.47912i 0.171612i
\(412\) −11.4892 −0.566030
\(413\) 68.3908i 3.36529i
\(414\) 2.28507i 0.112305i
\(415\) 0 0
\(416\) 15.7519 0.772302
\(417\) −9.56541 −0.468420
\(418\) 5.93939i 0.290505i
\(419\) 14.7089i 0.718576i 0.933227 + 0.359288i \(0.116980\pi\)
−0.933227 + 0.359288i \(0.883020\pi\)
\(420\) 0 0
\(421\) 1.85001 0.0901638 0.0450819 0.998983i \(-0.485645\pi\)
0.0450819 + 0.998983i \(0.485645\pi\)
\(422\) 9.88848i 0.481363i
\(423\) 0.166519 0.00809642
\(424\) −12.6403 −0.613868
\(425\) 0 0
\(426\) −3.10956 −0.150659
\(427\) 22.4307 1.08550
\(428\) 3.84622i 0.185914i
\(429\) −6.54787 −0.316134
\(430\) 0 0
\(431\) 7.41116i 0.356983i −0.983941 0.178491i \(-0.942878\pi\)
0.983941 0.178491i \(-0.0571217\pi\)
\(432\) 4.99803i 0.240468i
\(433\) −5.01269 −0.240894 −0.120447 0.992720i \(-0.538433\pi\)
−0.120447 + 0.992720i \(0.538433\pi\)
\(434\) −12.0984 −0.580741
\(435\) 0 0
\(436\) 17.9074i 0.857608i
\(437\) 1.99132i 0.0952575i
\(438\) 20.3098 0.970440
\(439\) 21.2169i 1.01263i −0.862349 0.506315i \(-0.831007\pi\)
0.862349 0.506315i \(-0.168993\pi\)
\(440\) 0 0
\(441\) 17.8360 0.849332
\(442\) 20.1990 5.89184i 0.960770 0.280246i
\(443\) 22.8512 1.08569 0.542846 0.839832i \(-0.317347\pi\)
0.542846 + 0.839832i \(0.317347\pi\)
\(444\) 3.70352 0.175761
\(445\) 0 0
\(446\) −6.37124 −0.301687
\(447\) 14.6107i 0.691063i
\(448\) 2.98551i 0.141052i
\(449\) 20.1999i 0.953294i 0.879095 + 0.476647i \(0.158148\pi\)
−0.879095 + 0.476647i \(0.841852\pi\)
\(450\) 0 0
\(451\) 18.9971 0.894537
\(452\) 16.8491i 0.792515i
\(453\) 13.6611i 0.641852i
\(454\) 23.9213i 1.12268i
\(455\) 0 0
\(456\) 2.53535i 0.118728i
\(457\) 27.4808 1.28550 0.642749 0.766077i \(-0.277794\pi\)
0.642749 + 0.766077i \(0.277794\pi\)
\(458\) −15.0987 −0.705515
\(459\) −1.15455 3.95816i −0.0538898 0.184751i
\(460\) 0 0
\(461\) 27.5990 1.28541 0.642706 0.766113i \(-0.277812\pi\)
0.642706 + 0.766113i \(0.277812\pi\)
\(462\) 19.4669i 0.905680i
\(463\) −20.5387 −0.954516 −0.477258 0.878763i \(-0.658369\pi\)
−0.477258 + 0.878763i \(0.658369\pi\)
\(464\) 9.09661i 0.422299i
\(465\) 0 0
\(466\) 38.5067i 1.78379i
\(467\) −12.6544 −0.585576 −0.292788 0.956177i \(-0.594583\pi\)
−0.292788 + 0.956177i \(0.594583\pi\)
\(468\) 3.05445 0.141192
\(469\) 5.14436i 0.237545i
\(470\) 0 0
\(471\) 21.1926i 0.976501i
\(472\) −22.8827 −1.05326
\(473\) 20.4423i 0.939937i
\(474\) 24.3367 1.11782
\(475\) 0 0
\(476\) −6.00890 20.6004i −0.275418 0.944217i
\(477\) −7.58067 −0.347095
\(478\) 13.2363 0.605412
\(479\) 25.6921i 1.17390i −0.809622 0.586952i \(-0.800328\pi\)
0.809622 0.586952i \(-0.199672\pi\)
\(480\) 0 0
\(481\) 10.3720i 0.472924i
\(482\) 34.8133i 1.58570i
\(483\) 6.52670i 0.296975i
\(484\) 6.25342 0.284247
\(485\) 0 0
\(486\) 1.74480i 0.0791459i
\(487\) 7.98736i 0.361942i −0.983488 0.180971i \(-0.942076\pi\)
0.983488 0.180971i \(-0.0579240\pi\)
\(488\) 7.50502i 0.339736i
\(489\) 4.86075 0.219811
\(490\) 0 0
\(491\) 23.4535 1.05844 0.529221 0.848484i \(-0.322484\pi\)
0.529221 + 0.848484i \(0.322484\pi\)
\(492\) −8.86175 −0.399519
\(493\) −2.10133 7.20399i −0.0946389 0.324452i
\(494\) 7.75934 0.349109
\(495\) 0 0
\(496\) 6.95408i 0.312247i
\(497\) 8.88163 0.398396
\(498\) 7.80824i 0.349896i
\(499\) 2.55509i 0.114381i −0.998363 0.0571907i \(-0.981786\pi\)
0.998363 0.0571907i \(-0.0182143\pi\)
\(500\) 0 0
\(501\) 21.1447 0.944674
\(502\) 18.6358 0.831756
\(503\) 22.5894i 1.00721i −0.863934 0.503605i \(-0.832007\pi\)
0.863934 0.503605i \(-0.167993\pi\)
\(504\) 8.30981i 0.370148i
\(505\) 0 0
\(506\) −5.11574 −0.227422
\(507\) 4.44574i 0.197442i
\(508\) 12.1943 0.541036
\(509\) 12.4294 0.550921 0.275461 0.961312i \(-0.411170\pi\)
0.275461 + 0.961312i \(0.411170\pi\)
\(510\) 0 0
\(511\) −58.0096 −2.56619
\(512\) 10.2501 0.452994
\(513\) 1.52050i 0.0671318i
\(514\) 9.75647 0.430340
\(515\) 0 0
\(516\) 9.53591i 0.419795i
\(517\) 0.372797i 0.0163956i
\(518\) −30.8362 −1.35486
\(519\) −14.8666 −0.652571
\(520\) 0 0
\(521\) 15.6804i 0.686969i −0.939158 0.343485i \(-0.888393\pi\)
0.939158 0.343485i \(-0.111607\pi\)
\(522\) 3.17561i 0.138993i
\(523\) 9.60165 0.419851 0.209925 0.977717i \(-0.432678\pi\)
0.209925 + 0.977717i \(0.432678\pi\)
\(524\) 8.50236i 0.371427i
\(525\) 0 0
\(526\) 24.2125 1.05571
\(527\) −1.60640 5.50723i −0.0699758 0.239899i
\(528\) −11.1894 −0.486957
\(529\) 21.2848 0.925428
\(530\) 0 0
\(531\) −13.7233 −0.595539
\(532\) 7.91350i 0.343094i
\(533\) 24.8181i 1.07499i
\(534\) 25.5597i 1.10608i
\(535\) 0 0
\(536\) −1.72124 −0.0743462
\(537\) 24.1387i 1.04166i
\(538\) 52.7742i 2.27526i
\(539\) 39.9306i 1.71993i
\(540\) 0 0
\(541\) 32.9544i 1.41682i 0.705801 + 0.708410i \(0.250587\pi\)
−0.705801 + 0.708410i \(0.749413\pi\)
\(542\) −30.7882 −1.32247
\(543\) −20.1402 −0.864300
\(544\) 21.3175 6.21807i 0.913979 0.266598i
\(545\) 0 0
\(546\) −25.4319 −1.08838
\(547\) 18.9841i 0.811701i −0.913940 0.405850i \(-0.866975\pi\)
0.913940 0.405850i \(-0.133025\pi\)
\(548\) −3.63338 −0.155210
\(549\) 4.50092i 0.192095i
\(550\) 0 0
\(551\) 2.76737i 0.117894i
\(552\) −2.18375 −0.0929467
\(553\) −69.5113 −2.95592
\(554\) 28.8973i 1.22773i
\(555\) 0 0
\(556\) 9.98953i 0.423651i
\(557\) 44.5929 1.88946 0.944731 0.327847i \(-0.106323\pi\)
0.944731 + 0.327847i \(0.106323\pi\)
\(558\) 2.42765i 0.102771i
\(559\) −26.7062 −1.12955
\(560\) 0 0
\(561\) −8.86139 + 2.58477i −0.374128 + 0.109129i
\(562\) 14.6626 0.618506
\(563\) −4.26474 −0.179737 −0.0898686 0.995954i \(-0.528645\pi\)
−0.0898686 + 0.995954i \(0.528645\pi\)
\(564\) 0.173902i 0.00732260i
\(565\) 0 0
\(566\) 28.3259i 1.19063i
\(567\) 4.98357i 0.209290i
\(568\) 2.97168i 0.124689i
\(569\) 5.81934 0.243959 0.121980 0.992533i \(-0.461076\pi\)
0.121980 + 0.992533i \(0.461076\pi\)
\(570\) 0 0
\(571\) 10.0595i 0.420976i 0.977596 + 0.210488i \(0.0675053\pi\)
−0.977596 + 0.210488i \(0.932495\pi\)
\(572\) 6.83819i 0.285919i
\(573\) 16.0837i 0.671905i
\(574\) 73.7845 3.07971
\(575\) 0 0
\(576\) −0.599071 −0.0249613
\(577\) −15.7300 −0.654847 −0.327423 0.944878i \(-0.606180\pi\)
−0.327423 + 0.944878i \(0.606180\pi\)
\(578\) 25.0101 15.9471i 1.04028 0.663313i
\(579\) 17.6995 0.735566
\(580\) 0 0
\(581\) 22.3022i 0.925250i
\(582\) 25.7918 1.06910
\(583\) 16.9714i 0.702882i
\(584\) 19.4093i 0.803162i
\(585\) 0 0
\(586\) 37.1706 1.53550
\(587\) −30.6657 −1.26571 −0.632854 0.774271i \(-0.718117\pi\)
−0.632854 + 0.774271i \(0.718117\pi\)
\(588\) 18.6268i 0.768156i
\(589\) 2.11557i 0.0871705i
\(590\) 0 0
\(591\) −3.66995 −0.150962
\(592\) 17.7244i 0.728470i
\(593\) −9.22665 −0.378893 −0.189447 0.981891i \(-0.560669\pi\)
−0.189447 + 0.981891i \(0.560669\pi\)
\(594\) −3.90621 −0.160274
\(595\) 0 0
\(596\) −15.2585 −0.625014
\(597\) −18.6289 −0.762432
\(598\) 6.68330i 0.273300i
\(599\) 12.2310 0.499745 0.249873 0.968279i \(-0.419611\pi\)
0.249873 + 0.968279i \(0.419611\pi\)
\(600\) 0 0
\(601\) 36.4552i 1.48704i −0.668715 0.743519i \(-0.733155\pi\)
0.668715 0.743519i \(-0.266845\pi\)
\(602\) 79.3977i 3.23601i
\(603\) −1.03226 −0.0420371
\(604\) −14.2668 −0.580507
\(605\) 0 0
\(606\) 17.2939i 0.702517i
\(607\) 35.4434i 1.43860i −0.694697 0.719302i \(-0.744462\pi\)
0.694697 0.719302i \(-0.255538\pi\)
\(608\) 8.18897 0.332107
\(609\) 9.07028i 0.367546i
\(610\) 0 0
\(611\) 0.487029 0.0197031
\(612\) 4.13366 1.20574i 0.167093 0.0487393i
\(613\) −31.2013 −1.26021 −0.630104 0.776511i \(-0.716988\pi\)
−0.630104 + 0.776511i \(0.716988\pi\)
\(614\) −41.8716 −1.68980
\(615\) 0 0
\(616\) 18.6037 0.749565
\(617\) 19.2867i 0.776452i −0.921564 0.388226i \(-0.873088\pi\)
0.921564 0.388226i \(-0.126912\pi\)
\(618\) 19.1952i 0.772145i
\(619\) 5.51660i 0.221731i −0.993835 0.110865i \(-0.964638\pi\)
0.993835 0.110865i \(-0.0353622\pi\)
\(620\) 0 0
\(621\) −1.30964 −0.0525542
\(622\) 2.80532i 0.112483i
\(623\) 73.0045i 2.92486i
\(624\) 14.6181i 0.585192i
\(625\) 0 0
\(626\) 18.3636i 0.733957i
\(627\) −3.40405 −0.135945
\(628\) −22.1322 −0.883171
\(629\) −4.09436 14.0367i −0.163253 0.559681i
\(630\) 0 0
\(631\) −2.66900 −0.106251 −0.0531257 0.998588i \(-0.516918\pi\)
−0.0531257 + 0.998588i \(0.516918\pi\)
\(632\) 23.2576i 0.925139i
\(633\) 5.66739 0.225258
\(634\) 37.1837i 1.47675i
\(635\) 0 0
\(636\) 7.91679i 0.313921i
\(637\) 52.1660 2.06689
\(638\) −7.10944 −0.281465
\(639\) 1.78218i 0.0705021i
\(640\) 0 0
\(641\) 22.4010i 0.884787i −0.896821 0.442393i \(-0.854129\pi\)
0.896821 0.442393i \(-0.145871\pi\)
\(642\) −6.42597 −0.253613
\(643\) 9.24620i 0.364635i −0.983240 0.182317i \(-0.941640\pi\)
0.983240 0.182317i \(-0.0583598\pi\)
\(644\) −6.81609 −0.268592
\(645\) 0 0
\(646\) 10.5009 3.06300i 0.413152 0.120512i
\(647\) 34.6465 1.36209 0.681047 0.732239i \(-0.261525\pi\)
0.681047 + 0.732239i \(0.261525\pi\)
\(648\) −1.66744 −0.0655033
\(649\) 30.7232i 1.20599i
\(650\) 0 0
\(651\) 6.93395i 0.271763i
\(652\) 5.07627i 0.198802i
\(653\) 0.981384i 0.0384045i −0.999816 0.0192023i \(-0.993887\pi\)
0.999816 0.0192023i \(-0.00611265\pi\)
\(654\) −29.9183 −1.16990
\(655\) 0 0
\(656\) 42.4109i 1.65587i
\(657\) 11.6402i 0.454126i
\(658\) 1.44794i 0.0564465i
\(659\) −18.3247 −0.713828 −0.356914 0.934137i \(-0.616171\pi\)
−0.356914 + 0.934137i \(0.616171\pi\)
\(660\) 0 0
\(661\) −22.4177 −0.871946 −0.435973 0.899960i \(-0.643596\pi\)
−0.435973 + 0.899960i \(0.643596\pi\)
\(662\) −0.686944 −0.0266989
\(663\) −3.37679 11.5767i −0.131144 0.449601i
\(664\) 7.46203 0.289583
\(665\) 0 0
\(666\) 6.18756i 0.239763i
\(667\) −2.38360 −0.0922934
\(668\) 22.0822i 0.854386i
\(669\) 3.65155i 0.141177i
\(670\) 0 0
\(671\) 10.0765 0.388999
\(672\) −26.8400 −1.03538
\(673\) 50.8202i 1.95898i 0.201504 + 0.979488i \(0.435417\pi\)
−0.201504 + 0.979488i \(0.564583\pi\)
\(674\) 6.80780i 0.262227i
\(675\) 0 0
\(676\) −4.64286 −0.178572
\(677\) 5.48996i 0.210996i −0.994419 0.105498i \(-0.966356\pi\)
0.994419 0.105498i \(-0.0336437\pi\)
\(678\) 28.1502 1.08110
\(679\) −73.6674 −2.82710
\(680\) 0 0
\(681\) 13.7100 0.525370
\(682\) −5.43495 −0.208115
\(683\) 23.8590i 0.912940i −0.889739 0.456470i \(-0.849114\pi\)
0.889739 0.456470i \(-0.150886\pi\)
\(684\) 1.58792 0.0607156
\(685\) 0 0
\(686\) 94.2225i 3.59743i
\(687\) 8.65352i 0.330152i
\(688\) −45.6373 −1.73991
\(689\) −22.1717 −0.844675
\(690\) 0 0
\(691\) 11.9837i 0.455882i 0.973675 + 0.227941i \(0.0731993\pi\)
−0.973675 + 0.227941i \(0.926801\pi\)
\(692\) 15.5258i 0.590201i
\(693\) 11.1570 0.423821
\(694\) 6.91966i 0.262667i
\(695\) 0 0
\(696\) −3.03480 −0.115034
\(697\) 9.79696 + 33.5870i 0.371086 + 1.27220i
\(698\) 56.8059 2.15014
\(699\) −22.0694 −0.834740
\(700\) 0 0
\(701\) −21.9970 −0.830816 −0.415408 0.909635i \(-0.636361\pi\)
−0.415408 + 0.909635i \(0.636361\pi\)
\(702\) 5.10314i 0.192606i
\(703\) 5.39213i 0.203368i
\(704\) 1.34118i 0.0505476i
\(705\) 0 0
\(706\) 32.5005 1.22317
\(707\) 49.3955i 1.85771i
\(708\) 14.3317i 0.538619i
\(709\) 13.6855i 0.513969i −0.966416 0.256984i \(-0.917271\pi\)
0.966416 0.256984i \(-0.0827289\pi\)
\(710\) 0 0
\(711\) 13.9481i 0.523095i
\(712\) −24.4264 −0.915419
\(713\) −1.82219 −0.0682415
\(714\) −34.4176 + 10.0392i −1.28804 + 0.375709i
\(715\) 0 0
\(716\) 25.2089 0.942102
\(717\) 7.58610i 0.283308i
\(718\) −28.4383 −1.06131
\(719\) 22.9414i 0.855568i 0.903881 + 0.427784i \(0.140706\pi\)
−0.903881 + 0.427784i \(0.859294\pi\)
\(720\) 0 0
\(721\) 54.8261i 2.04183i
\(722\) −29.1174 −1.08364
\(723\) 19.9526 0.742043
\(724\) 21.0332i 0.781694i
\(725\) 0 0
\(726\) 10.4478i 0.387752i
\(727\) 30.6381 1.13630 0.568152 0.822923i \(-0.307658\pi\)
0.568152 + 0.822923i \(0.307658\pi\)
\(728\) 24.3042i 0.900775i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −36.1421 + 10.5423i −1.33677 + 0.389920i
\(732\) −4.70049 −0.173735
\(733\) −30.3471 −1.12090 −0.560449 0.828189i \(-0.689371\pi\)
−0.560449 + 0.828189i \(0.689371\pi\)
\(734\) 45.0374i 1.66236i
\(735\) 0 0
\(736\) 7.05336i 0.259990i
\(737\) 2.31100i 0.0851267i
\(738\) 14.8055i 0.545000i
\(739\) 17.7291 0.652174 0.326087 0.945340i \(-0.394270\pi\)
0.326087 + 0.945340i \(0.394270\pi\)
\(740\) 0 0
\(741\) 4.44711i 0.163369i
\(742\) 65.9166i 2.41988i
\(743\) 11.0856i 0.406693i −0.979107 0.203346i \(-0.934818\pi\)
0.979107 0.203346i \(-0.0651818\pi\)
\(744\) −2.32001 −0.0850559
\(745\) 0 0
\(746\) −4.00936 −0.146793
\(747\) 4.47514 0.163737
\(748\) −2.69938 9.25429i −0.0986989 0.338371i
\(749\) 18.3541 0.670644
\(750\) 0 0
\(751\) 10.3719i 0.378474i 0.981931 + 0.189237i \(0.0606015\pi\)
−0.981931 + 0.189237i \(0.939399\pi\)
\(752\) 0.832267 0.0303496
\(753\) 10.6807i 0.389228i
\(754\) 9.28791i 0.338246i
\(755\) 0 0
\(756\) −5.20454 −0.189287
\(757\) 5.08248 0.184726 0.0923629 0.995725i \(-0.470558\pi\)
0.0923629 + 0.995725i \(0.470558\pi\)
\(758\) 43.6421i 1.58515i
\(759\) 2.93199i 0.106424i
\(760\) 0 0
\(761\) 25.5981 0.927931 0.463965 0.885853i \(-0.346426\pi\)
0.463965 + 0.885853i \(0.346426\pi\)
\(762\) 20.3734i 0.738049i
\(763\) 85.4538 3.09363
\(764\) −16.7968 −0.607687
\(765\) 0 0
\(766\) 15.4441 0.558019
\(767\) −40.1373 −1.44927
\(768\) 19.4196i 0.700745i
\(769\) 15.0057 0.541121 0.270560 0.962703i \(-0.412791\pi\)
0.270560 + 0.962703i \(0.412791\pi\)
\(770\) 0 0
\(771\) 5.59173i 0.201381i
\(772\) 18.4843i 0.665263i
\(773\) −39.0295 −1.40379 −0.701897 0.712278i \(-0.747664\pi\)
−0.701897 + 0.712278i \(0.747664\pi\)
\(774\) −15.9319 −0.572660
\(775\) 0 0
\(776\) 24.6482i 0.884819i
\(777\) 17.6731i 0.634020i
\(778\) 14.0570 0.503969
\(779\) 12.9022i 0.462271i
\(780\) 0 0
\(781\) 3.98989 0.142770
\(782\) −2.63823 9.04467i −0.0943429 0.323437i
\(783\) −1.82004 −0.0650428
\(784\) 89.1448 3.18374
\(785\) 0 0
\(786\) 14.2051 0.506679
\(787\) 21.7701i 0.776020i −0.921655 0.388010i \(-0.873163\pi\)
0.921655 0.388010i \(-0.126837\pi\)
\(788\) 3.83267i 0.136533i
\(789\) 13.8769i 0.494031i
\(790\) 0 0
\(791\) −80.4037 −2.85883
\(792\) 3.73301i 0.132647i
\(793\) 13.1641i 0.467472i
\(794\) 53.4884i 1.89823i
\(795\) 0 0
\(796\) 19.4549i 0.689562i
\(797\) −40.0932 −1.42017 −0.710087 0.704114i \(-0.751344\pi\)
−0.710087 + 0.704114i \(0.751344\pi\)
\(798\) −13.2213 −0.468029
\(799\) 0.659108 0.192254i 0.0233175 0.00680147i
\(800\) 0 0
\(801\) −14.6490 −0.517599
\(802\) 40.4122i 1.42700i
\(803\) −26.0596 −0.919624
\(804\) 1.07803i 0.0380193i
\(805\) 0 0
\(806\) 7.10032i 0.250098i
\(807\) 30.2465 1.06473
\(808\) 16.5271 0.581422
\(809\) 33.2747i 1.16988i 0.811078 + 0.584938i \(0.198881\pi\)
−0.811078 + 0.584938i \(0.801119\pi\)
\(810\) 0 0
\(811\) 1.18314i 0.0415456i 0.999784 + 0.0207728i \(0.00661266\pi\)
−0.999784 + 0.0207728i \(0.993387\pi\)
\(812\) −9.47245 −0.332418
\(813\) 17.6456i 0.618860i
\(814\) −13.8525 −0.485530
\(815\) 0 0
\(816\) −5.77048 19.7830i −0.202007 0.692544i
\(817\) −13.8838 −0.485732
\(818\) −19.1278 −0.668788
\(819\) 14.5758i 0.509319i
\(820\) 0 0
\(821\) 50.4742i 1.76156i 0.473525 + 0.880780i \(0.342981\pi\)
−0.473525 + 0.880780i \(0.657019\pi\)
\(822\) 6.07038i 0.211729i
\(823\) 19.7606i 0.688810i −0.938821 0.344405i \(-0.888081\pi\)
0.938821 0.344405i \(-0.111919\pi\)
\(824\) 18.3441 0.639048
\(825\) 0 0
\(826\) 119.329i 4.15197i
\(827\) 50.1878i 1.74520i −0.488434 0.872601i \(-0.662432\pi\)
0.488434 0.872601i \(-0.337568\pi\)
\(828\) 1.36771i 0.0475313i
\(829\) 43.5230 1.51162 0.755809 0.654793i \(-0.227244\pi\)
0.755809 + 0.654793i \(0.227244\pi\)
\(830\) 0 0
\(831\) 16.5619 0.574528
\(832\) −1.75214 −0.0607446
\(833\) 70.5976 20.5925i 2.44606 0.713489i
\(834\) −16.6898 −0.577919
\(835\) 0 0
\(836\) 3.55498i 0.122952i
\(837\) −1.39136 −0.0480925
\(838\) 25.6641i 0.886552i
\(839\) 36.9007i 1.27395i 0.770884 + 0.636976i \(0.219815\pi\)
−0.770884 + 0.636976i \(0.780185\pi\)
\(840\) 0 0
\(841\) 25.6875 0.885775
\(842\) 3.22790 0.111241
\(843\) 8.40360i 0.289435i
\(844\) 5.91867i 0.203729i
\(845\) 0 0
\(846\) 0.290543 0.00998906
\(847\) 29.8412i 1.02536i
\(848\) −37.8885 −1.30110
\(849\) −16.2345 −0.557165
\(850\) 0 0
\(851\) −4.64437 −0.159207
\(852\) −1.86120 −0.0637638
\(853\) 29.8013i 1.02038i −0.860062 0.510189i \(-0.829575\pi\)
0.860062 0.510189i \(-0.170425\pi\)
\(854\) 39.1371 1.33924
\(855\) 0 0
\(856\) 6.14105i 0.209897i
\(857\) 5.32427i 0.181874i 0.995857 + 0.0909368i \(0.0289861\pi\)
−0.995857 + 0.0909368i \(0.971014\pi\)
\(858\) −11.4247 −0.390034
\(859\) 24.3062 0.829316 0.414658 0.909977i \(-0.363901\pi\)
0.414658 + 0.909977i \(0.363901\pi\)
\(860\) 0 0
\(861\) 42.2881i 1.44118i
\(862\) 12.9310i 0.440432i
\(863\) 25.1361 0.855642 0.427821 0.903863i \(-0.359281\pi\)
0.427821 + 0.903863i \(0.359281\pi\)
\(864\) 5.38571i 0.183225i
\(865\) 0 0
\(866\) −8.74615 −0.297206
\(867\) −9.13979 14.3340i −0.310404 0.486809i
\(868\) −7.24140 −0.245789
\(869\) −31.2265 −1.05929
\(870\) 0 0
\(871\) −3.01913 −0.102299
\(872\) 28.5918i 0.968240i
\(873\) 14.7821i 0.500297i
\(874\) 3.47445i 0.117525i
\(875\) 0 0
\(876\) 12.1563 0.410723
\(877\) 25.5005i 0.861090i 0.902569 + 0.430545i \(0.141679\pi\)
−0.902569 + 0.430545i \(0.858321\pi\)
\(878\) 37.0194i 1.24934i
\(879\) 21.3036i 0.718552i
\(880\) 0 0
\(881\) 46.7352i 1.57455i −0.616603 0.787274i \(-0.711492\pi\)
0.616603 0.787274i \(-0.288508\pi\)
\(882\) 31.1203 1.04787
\(883\) −11.2968 −0.380166 −0.190083 0.981768i \(-0.560876\pi\)
−0.190083 + 0.981768i \(0.560876\pi\)
\(884\) 12.0900 3.52651i 0.406630 0.118610i
\(885\) 0 0
\(886\) 39.8708 1.33949
\(887\) 1.07297i 0.0360266i −0.999838 0.0180133i \(-0.994266\pi\)
0.999838 0.0180133i \(-0.00573413\pi\)
\(888\) −5.91321 −0.198434
\(889\) 58.1911i 1.95167i
\(890\) 0 0
\(891\) 2.23877i 0.0750015i
\(892\) −3.81346 −0.127684
\(893\) 0.253192 0.00847275
\(894\) 25.4928i 0.852607i
\(895\) 0 0
\(896\) 58.8892i 1.96735i
\(897\) −3.83040 −0.127893
\(898\) 35.2449i 1.17614i
\(899\) −2.53233 −0.0844580
\(900\) 0 0
\(901\) −30.0055 + 8.75228i −0.999628 + 0.291581i
\(902\) 33.1462 1.10365
\(903\) 45.5052 1.51432
\(904\) 26.9021i 0.894750i
\(905\) 0 0
\(906\) 23.8358i 0.791893i
\(907\) 46.6720i 1.54972i 0.632133 + 0.774860i \(0.282180\pi\)
−0.632133 + 0.774860i \(0.717820\pi\)
\(908\) 14.3179i 0.475157i
\(909\) 9.91167 0.328749
\(910\) 0 0
\(911\) 8.14382i 0.269817i 0.990858 + 0.134908i \(0.0430740\pi\)
−0.990858 + 0.134908i \(0.956926\pi\)
\(912\) 7.59952i 0.251645i
\(913\) 10.0188i 0.331574i
\(914\) 47.9486 1.58600
\(915\) 0 0
\(916\) −9.03721 −0.298598
\(917\) −40.5731 −1.33984
\(918\) −2.01446 6.90621i −0.0664872 0.227939i
\(919\) 3.96126 0.130670 0.0653350 0.997863i \(-0.479188\pi\)
0.0653350 + 0.997863i \(0.479188\pi\)
\(920\) 0 0
\(921\) 23.9979i 0.790758i
\(922\) 48.1548 1.58589
\(923\) 5.21247i 0.171571i
\(924\) 11.6517i 0.383314i
\(925\) 0 0
\(926\) −35.8360 −1.17765
\(927\) 11.0014 0.361332
\(928\) 9.80218i 0.321772i
\(929\) 32.9616i 1.08143i 0.841205 + 0.540717i \(0.181847\pi\)
−0.841205 + 0.540717i \(0.818153\pi\)
\(930\) 0 0
\(931\) 27.1196 0.888809
\(932\) 23.0479i 0.754959i
\(933\) 1.60781 0.0526375
\(934\) −22.0795 −0.722462
\(935\) 0 0
\(936\) −4.87687 −0.159406
\(937\) 49.6837 1.62310 0.811548 0.584285i \(-0.198625\pi\)
0.811548 + 0.584285i \(0.198625\pi\)
\(938\) 8.97590i 0.293074i
\(939\) 10.5247 0.343462
\(940\) 0 0
\(941\) 28.8461i 0.940356i 0.882572 + 0.470178i \(0.155810\pi\)
−0.882572 + 0.470178i \(0.844190\pi\)
\(942\) 36.9768i 1.20477i
\(943\) 11.1130 0.361889
\(944\) −68.5893 −2.23239
\(945\) 0 0
\(946\) 35.6678i 1.15966i
\(947\) 49.1958i 1.59865i 0.600900 + 0.799324i \(0.294809\pi\)
−0.600900 + 0.799324i \(0.705191\pi\)
\(948\) 14.5665 0.473099
\(949\) 34.0448i 1.10514i
\(950\) 0 0
\(951\) 21.3111 0.691059
\(952\) 9.59410 + 32.8915i 0.310946 + 1.06602i
\(953\) −44.1137 −1.42898 −0.714492 0.699644i \(-0.753342\pi\)
−0.714492 + 0.699644i \(0.753342\pi\)
\(954\) −13.2268 −0.428233
\(955\) 0 0
\(956\) 7.92246 0.256231
\(957\) 4.07464i 0.131714i
\(958\) 44.8277i 1.44832i
\(959\) 17.3384i 0.559887i
\(960\) 0 0
\(961\) 29.0641 0.937552
\(962\) 18.0972i 0.583476i
\(963\) 3.68292i 0.118680i
\(964\) 20.8372i 0.671122i
\(965\) 0 0
\(966\) 11.3878i 0.366397i
\(967\) −49.7270 −1.59911 −0.799557 0.600591i \(-0.794932\pi\)
−0.799557 + 0.600591i \(0.794932\pi\)
\(968\) −9.98451 −0.320914
\(969\) −1.75550 6.01838i −0.0563947 0.193338i
\(970\) 0 0
\(971\) 37.0067 1.18760 0.593801 0.804612i \(-0.297627\pi\)
0.593801 + 0.804612i \(0.297627\pi\)
\(972\) 1.04434i 0.0334972i
\(973\) 47.6699 1.52823
\(974\) 13.9364i 0.446550i
\(975\) 0 0
\(976\) 22.4958i 0.720072i
\(977\) −28.1018 −0.899056 −0.449528 0.893266i \(-0.648408\pi\)
−0.449528 + 0.893266i \(0.648408\pi\)
\(978\) 8.48106 0.271194
\(979\) 32.7958i 1.04816i
\(980\) 0 0
\(981\) 17.1471i 0.547465i
\(982\) 40.9218 1.30587
\(983\) 57.8272i 1.84440i −0.386714 0.922200i \(-0.626390\pi\)
0.386714 0.922200i \(-0.373610\pi\)
\(984\) 14.1491 0.451056
\(985\) 0 0
\(986\) −3.66640 12.5696i −0.116762 0.400296i
\(987\) −0.829858 −0.0264147
\(988\) 4.64429 0.147755
\(989\) 11.9584i 0.380256i
\(990\) 0 0
\(991\) 24.8426i 0.789151i −0.918863 0.394576i \(-0.870892\pi\)
0.918863 0.394576i \(-0.129108\pi\)
\(992\) 7.49347i 0.237918i
\(993\) 0.393709i 0.0124940i
\(994\) 15.4967 0.491526
\(995\) 0 0
\(996\) 4.67357i 0.148088i
\(997\) 15.3101i 0.484877i 0.970167 + 0.242438i \(0.0779472\pi\)
−0.970167 + 0.242438i \(0.922053\pi\)
\(998\) 4.45813i 0.141119i
\(999\) −3.54628 −0.112199
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1275.2.g.e.526.9 12
5.2 odd 4 1275.2.d.i.424.10 12
5.3 odd 4 1275.2.d.j.424.3 12
5.4 even 2 1275.2.g.f.526.4 yes 12
17.16 even 2 inner 1275.2.g.e.526.10 yes 12
85.33 odd 4 1275.2.d.i.424.3 12
85.67 odd 4 1275.2.d.j.424.10 12
85.84 even 2 1275.2.g.f.526.3 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1275.2.d.i.424.3 12 85.33 odd 4
1275.2.d.i.424.10 12 5.2 odd 4
1275.2.d.j.424.3 12 5.3 odd 4
1275.2.d.j.424.10 12 85.67 odd 4
1275.2.g.e.526.9 12 1.1 even 1 trivial
1275.2.g.e.526.10 yes 12 17.16 even 2 inner
1275.2.g.f.526.3 yes 12 85.84 even 2
1275.2.g.f.526.4 yes 12 5.4 even 2