Properties

Label 1274.2.n.m.753.1
Level $1274$
Weight $2$
Character 1274.753
Analytic conductor $10.173$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1274,2,Mod(753,1274)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1274.753"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1274, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1274 = 2 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1274.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,-2,6,0,0,0,0,-24,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1729412175\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2 x^{11} + 2 x^{10} - 20 x^{9} - 5 x^{8} + 106 x^{7} - 2 x^{6} + 236 x^{5} + 701 x^{4} + \cdots + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 182)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 753.1
Root \(0.465879 - 1.73868i\) of defining polynomial
Character \(\chi\) \(=\) 1274.753
Dual form 1274.2.n.m.961.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(-1.39283 + 2.41246i) q^{3} +(0.500000 - 0.866025i) q^{4} +(2.20456 - 1.27280i) q^{5} -2.78567i q^{6} +1.00000i q^{8} +(-2.37997 - 4.12223i) q^{9} +(-1.27280 + 2.20456i) q^{10} +(2.88497 + 1.66564i) q^{11} +(1.39283 + 2.41246i) q^{12} +(-3.27280 - 1.51286i) q^{13} +7.09122i q^{15} +(-0.500000 - 0.866025i) q^{16} +(3.54561 - 6.14117i) q^{17} +(4.12223 + 2.37997i) q^{18} +(-3.93661 + 2.27280i) q^{19} -2.54561i q^{20} -3.33127 q^{22} +(0.879970 + 1.52415i) q^{23} +(-2.41246 - 1.39283i) q^{24} +(0.740059 - 1.28182i) q^{25} +(3.59076 - 0.326224i) q^{26} +4.90261 q^{27} +7.57133 q^{29} +(-3.54561 - 6.14117i) q^{30} +(2.88497 + 1.66564i) q^{31} +(0.866025 + 0.500000i) q^{32} +(-8.03656 + 4.63991i) q^{33} +7.09122i q^{34} -4.75994 q^{36} +(3.25620 - 1.87997i) q^{37} +(2.27280 - 3.93661i) q^{38} +(8.20819 - 5.78834i) q^{39} +(1.27280 + 2.20456i) q^{40} +4.24006i q^{41} +9.09122 q^{43} +(2.88497 - 1.66564i) q^{44} +(-10.4936 - 6.05847i) q^{45} +(-1.52415 - 0.879970i) q^{46} +(9.81317 - 5.66564i) q^{47} +2.78567 q^{48} +1.48012i q^{50} +(9.87688 + 17.1073i) q^{51} +(-2.94658 + 2.07790i) q^{52} +(3.00000 - 5.19615i) q^{53} +(-4.24578 + 2.45130i) q^{54} +8.48012 q^{55} -12.6625i q^{57} +(-6.55697 + 3.78567i) q^{58} +(-6.98492 - 4.03274i) q^{59} +(6.14117 + 3.54561i) q^{60} +(0.392834 + 0.680408i) q^{61} -3.33127 q^{62} -1.00000 q^{64} +(-9.14067 + 0.830438i) q^{65} +(4.63991 - 8.03656i) q^{66} +(4.98825 + 2.87997i) q^{67} +(-3.54561 - 6.14117i) q^{68} -4.90261 q^{69} +11.1427i q^{71} +(4.12223 - 2.37997i) q^{72} +(8.08112 + 4.66564i) q^{73} +(-1.87997 + 3.25620i) q^{74} +(2.06156 + 3.57072i) q^{75} +4.54561i q^{76} +(-4.21433 + 9.11694i) q^{78} +(-2.42558 - 4.20122i) q^{79} +(-2.20456 - 1.27280i) q^{80} +(0.311393 - 0.539349i) q^{81} +(-2.12003 - 3.67200i) q^{82} +11.2082i q^{83} -18.0515i q^{85} +(-7.87322 + 4.54561i) q^{86} +(-10.5456 + 18.2655i) q^{87} +(-1.66564 + 2.88497i) q^{88} +(-13.0694 + 7.54561i) q^{89} +12.1169 q^{90} +1.75994 q^{92} +(-8.03656 + 4.63991i) q^{93} +(-5.66564 + 9.81317i) q^{94} +(-5.78567 + 10.0211i) q^{95} +(-2.41246 + 1.39283i) q^{96} +7.75994i q^{97} -15.8567i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{3} + 6 q^{4} - 24 q^{9} + 4 q^{10} + 2 q^{12} - 20 q^{13} - 6 q^{16} + 4 q^{17} + 28 q^{22} + 6 q^{23} + 18 q^{25} + 4 q^{26} - 68 q^{27} + 32 q^{29} - 4 q^{30} - 48 q^{36} + 8 q^{38} + 6 q^{39}+ \cdots - 40 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1274\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) −1.39283 + 2.41246i −0.804153 + 1.39283i 0.112709 + 0.993628i \(0.464047\pi\)
−0.916862 + 0.399205i \(0.869286\pi\)
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 2.20456 1.27280i 0.985910 0.569215i 0.0818605 0.996644i \(-0.473914\pi\)
0.904049 + 0.427429i \(0.140580\pi\)
\(6\) 2.78567i 1.13724i
\(7\) 0 0
\(8\) 1.00000i 0.353553i
\(9\) −2.37997 4.12223i −0.793323 1.37408i
\(10\) −1.27280 + 2.20456i −0.402496 + 0.697143i
\(11\) 2.88497 + 1.66564i 0.869851 + 0.502209i 0.867299 0.497788i \(-0.165854\pi\)
0.00255211 + 0.999997i \(0.499188\pi\)
\(12\) 1.39283 + 2.41246i 0.402076 + 0.696417i
\(13\) −3.27280 1.51286i −0.907712 0.419593i
\(14\) 0 0
\(15\) 7.09122i 1.83094i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 3.54561 6.14117i 0.859936 1.48945i −0.0120526 0.999927i \(-0.503837\pi\)
0.871989 0.489526i \(-0.162830\pi\)
\(18\) 4.12223 + 2.37997i 0.971619 + 0.560964i
\(19\) −3.93661 + 2.27280i −0.903121 + 0.521417i −0.878211 0.478273i \(-0.841263\pi\)
−0.0249093 + 0.999690i \(0.507930\pi\)
\(20\) 2.54561i 0.569215i
\(21\) 0 0
\(22\) −3.33127 −0.710230
\(23\) 0.879970 + 1.52415i 0.183487 + 0.317808i 0.943065 0.332607i \(-0.107928\pi\)
−0.759579 + 0.650415i \(0.774595\pi\)
\(24\) −2.41246 1.39283i −0.492441 0.284311i
\(25\) 0.740059 1.28182i 0.148012 0.256364i
\(26\) 3.59076 0.326224i 0.704207 0.0639778i
\(27\) 4.90261 0.943507
\(28\) 0 0
\(29\) 7.57133 1.40596 0.702981 0.711209i \(-0.251852\pi\)
0.702981 + 0.711209i \(0.251852\pi\)
\(30\) −3.54561 6.14117i −0.647336 1.12122i
\(31\) 2.88497 + 1.66564i 0.518156 + 0.299157i 0.736180 0.676786i \(-0.236628\pi\)
−0.218024 + 0.975943i \(0.569961\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) −8.03656 + 4.63991i −1.39899 + 0.807705i
\(34\) 7.09122i 1.21613i
\(35\) 0 0
\(36\) −4.75994 −0.793323
\(37\) 3.25620 1.87997i 0.535317 0.309065i −0.207862 0.978158i \(-0.566651\pi\)
0.743179 + 0.669093i \(0.233317\pi\)
\(38\) 2.27280 3.93661i 0.368697 0.638603i
\(39\) 8.20819 5.78834i 1.31436 0.926876i
\(40\) 1.27280 + 2.20456i 0.201248 + 0.348572i
\(41\) 4.24006i 0.662186i 0.943598 + 0.331093i \(0.107417\pi\)
−0.943598 + 0.331093i \(0.892583\pi\)
\(42\) 0 0
\(43\) 9.09122 1.38640 0.693199 0.720747i \(-0.256201\pi\)
0.693199 + 0.720747i \(0.256201\pi\)
\(44\) 2.88497 1.66564i 0.434925 0.251104i
\(45\) −10.4936 6.05847i −1.56429 0.903144i
\(46\) −1.52415 0.879970i −0.224724 0.129745i
\(47\) 9.81317 5.66564i 1.43140 0.826418i 0.434171 0.900831i \(-0.357041\pi\)
0.997228 + 0.0744125i \(0.0237081\pi\)
\(48\) 2.78567 0.402076
\(49\) 0 0
\(50\) 1.48012i 0.209320i
\(51\) 9.87688 + 17.1073i 1.38304 + 2.39550i
\(52\) −2.94658 + 2.07790i −0.408617 + 0.288153i
\(53\) 3.00000 5.19615i 0.412082 0.713746i −0.583036 0.812447i \(-0.698135\pi\)
0.995117 + 0.0987002i \(0.0314685\pi\)
\(54\) −4.24578 + 2.45130i −0.577778 + 0.333580i
\(55\) 8.48012 1.14346
\(56\) 0 0
\(57\) 12.6625i 1.67720i
\(58\) −6.55697 + 3.78567i −0.860972 + 0.497082i
\(59\) −6.98492 4.03274i −0.909359 0.525019i −0.0291341 0.999576i \(-0.509275\pi\)
−0.880225 + 0.474557i \(0.842608\pi\)
\(60\) 6.14117 + 3.54561i 0.792822 + 0.457736i
\(61\) 0.392834 + 0.680408i 0.0502972 + 0.0871173i 0.890078 0.455809i \(-0.150650\pi\)
−0.839781 + 0.542926i \(0.817316\pi\)
\(62\) −3.33127 −0.423072
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −9.14067 + 0.830438i −1.13376 + 0.103003i
\(66\) 4.63991 8.03656i 0.571134 0.989232i
\(67\) 4.98825 + 2.87997i 0.609412 + 0.351844i 0.772735 0.634728i \(-0.218888\pi\)
−0.163323 + 0.986573i \(0.552221\pi\)
\(68\) −3.54561 6.14117i −0.429968 0.744727i
\(69\) −4.90261 −0.590205
\(70\) 0 0
\(71\) 11.1427i 1.32239i 0.750213 + 0.661196i \(0.229951\pi\)
−0.750213 + 0.661196i \(0.770049\pi\)
\(72\) 4.12223 2.37997i 0.485809 0.280482i
\(73\) 8.08112 + 4.66564i 0.945824 + 0.546072i 0.891781 0.452467i \(-0.149456\pi\)
0.0540426 + 0.998539i \(0.482789\pi\)
\(74\) −1.87997 + 3.25620i −0.218542 + 0.378526i
\(75\) 2.06156 + 3.57072i 0.238048 + 0.412312i
\(76\) 4.54561i 0.521417i
\(77\) 0 0
\(78\) −4.21433 + 9.11694i −0.477179 + 1.03229i
\(79\) −2.42558 4.20122i −0.272899 0.472675i 0.696704 0.717359i \(-0.254649\pi\)
−0.969603 + 0.244684i \(0.921316\pi\)
\(80\) −2.20456 1.27280i −0.246477 0.142304i
\(81\) 0.311393 0.539349i 0.0345993 0.0599277i
\(82\) −2.12003 3.67200i −0.234118 0.405504i
\(83\) 11.2082i 1.23026i 0.788428 + 0.615128i \(0.210895\pi\)
−0.788428 + 0.615128i \(0.789105\pi\)
\(84\) 0 0
\(85\) 18.0515i 1.95795i
\(86\) −7.87322 + 4.54561i −0.848992 + 0.490165i
\(87\) −10.5456 + 18.2655i −1.13061 + 1.95827i
\(88\) −1.66564 + 2.88497i −0.177558 + 0.307539i
\(89\) −13.0694 + 7.54561i −1.38535 + 0.799833i −0.992787 0.119892i \(-0.961745\pi\)
−0.392564 + 0.919725i \(0.628412\pi\)
\(90\) 12.1169 1.27724
\(91\) 0 0
\(92\) 1.75994 0.183487
\(93\) −8.03656 + 4.63991i −0.833353 + 0.481136i
\(94\) −5.66564 + 9.81317i −0.584366 + 1.01215i
\(95\) −5.78567 + 10.0211i −0.593597 + 1.02814i
\(96\) −2.41246 + 1.39283i −0.246221 + 0.142155i
\(97\) 7.75994i 0.787903i 0.919131 + 0.393951i \(0.128892\pi\)
−0.919131 + 0.393951i \(0.871108\pi\)
\(98\) 0 0
\(99\) 15.8567i 1.59366i
\(100\) −0.740059 1.28182i −0.0740059 0.128182i
\(101\) 1.84723 3.19949i 0.183806 0.318361i −0.759368 0.650662i \(-0.774492\pi\)
0.943173 + 0.332301i \(0.107825\pi\)
\(102\) −17.1073 9.87688i −1.69387 0.977957i
\(103\) −6.54561 11.3373i −0.644958 1.11710i −0.984311 0.176441i \(-0.943542\pi\)
0.339353 0.940659i \(-0.389792\pi\)
\(104\) 1.51286 3.27280i 0.148348 0.320925i
\(105\) 0 0
\(106\) 6.00000i 0.582772i
\(107\) 1.75994 + 3.04831i 0.170140 + 0.294691i 0.938469 0.345364i \(-0.112245\pi\)
−0.768329 + 0.640055i \(0.778911\pi\)
\(108\) 2.45130 4.24578i 0.235877 0.408551i
\(109\) 11.3819 + 6.57133i 1.09019 + 0.629420i 0.933626 0.358249i \(-0.116626\pi\)
0.156561 + 0.987668i \(0.449959\pi\)
\(110\) −7.34400 + 4.24006i −0.700223 + 0.404274i
\(111\) 10.4739i 0.994143i
\(112\) 0 0
\(113\) −1.75994 −0.165561 −0.0827806 0.996568i \(-0.526380\pi\)
−0.0827806 + 0.996568i \(0.526380\pi\)
\(114\) 6.33127 + 10.9661i 0.592978 + 1.02707i
\(115\) 3.87990 + 2.24006i 0.361802 + 0.208887i
\(116\) 3.78567 6.55697i 0.351490 0.608799i
\(117\) 1.55281 + 17.0918i 0.143557 + 1.58014i
\(118\) 8.06549 0.742488
\(119\) 0 0
\(120\) −7.09122 −0.647336
\(121\) 0.0486956 + 0.0843433i 0.00442688 + 0.00766757i
\(122\) −0.680408 0.392834i −0.0616012 0.0355655i
\(123\) −10.2290 5.90570i −0.922315 0.532499i
\(124\) 2.88497 1.66564i 0.259078 0.149579i
\(125\) 8.96024i 0.801428i
\(126\) 0 0
\(127\) −12.9026 −1.14492 −0.572461 0.819932i \(-0.694011\pi\)
−0.572461 + 0.819932i \(0.694011\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) −12.6625 + 21.9322i −1.11488 + 1.93102i
\(130\) 7.50084 5.28952i 0.657867 0.463921i
\(131\) 8.38975 + 14.5315i 0.733015 + 1.26962i 0.955589 + 0.294704i \(0.0952211\pi\)
−0.222573 + 0.974916i \(0.571446\pi\)
\(132\) 9.27982i 0.807705i
\(133\) 0 0
\(134\) −5.75994 −0.497583
\(135\) 10.8081 6.24006i 0.930213 0.537059i
\(136\) 6.14117 + 3.54561i 0.526601 + 0.304033i
\(137\) 9.64983 + 5.57133i 0.824441 + 0.475991i 0.851945 0.523630i \(-0.175423\pi\)
−0.0275046 + 0.999622i \(0.508756\pi\)
\(138\) 4.24578 2.45130i 0.361425 0.208669i
\(139\) 4.54561 0.385553 0.192777 0.981243i \(-0.438251\pi\)
0.192777 + 0.981243i \(0.438251\pi\)
\(140\) 0 0
\(141\) 31.5652i 2.65827i
\(142\) −5.57133 9.64983i −0.467536 0.809796i
\(143\) −6.92205 9.81587i −0.578851 0.820844i
\(144\) −2.37997 + 4.12223i −0.198331 + 0.343519i
\(145\) 16.6915 9.63682i 1.38615 0.800295i
\(146\) −9.33127 −0.772262
\(147\) 0 0
\(148\) 3.75994i 0.309065i
\(149\) −5.03281 + 2.90570i −0.412304 + 0.238044i −0.691779 0.722109i \(-0.743173\pi\)
0.279475 + 0.960153i \(0.409840\pi\)
\(150\) −3.57072 2.06156i −0.291548 0.168326i
\(151\) −2.67707 1.54561i −0.217857 0.125780i 0.387101 0.922037i \(-0.373477\pi\)
−0.604958 + 0.796258i \(0.706810\pi\)
\(152\) −2.27280 3.93661i −0.184349 0.319301i
\(153\) −33.7538 −2.72883
\(154\) 0 0
\(155\) 8.48012 0.681140
\(156\) −0.908751 10.0027i −0.0727583 0.800855i
\(157\) 3.96417 6.86614i 0.316375 0.547978i −0.663354 0.748306i \(-0.730868\pi\)
0.979729 + 0.200328i \(0.0642009\pi\)
\(158\) 4.20122 + 2.42558i 0.334231 + 0.192969i
\(159\) 8.35700 + 14.4748i 0.662753 + 1.14792i
\(160\) 2.54561 0.201248
\(161\) 0 0
\(162\) 0.622787i 0.0489307i
\(163\) 8.70481 5.02573i 0.681814 0.393645i −0.118724 0.992927i \(-0.537881\pi\)
0.800538 + 0.599282i \(0.204547\pi\)
\(164\) 3.67200 + 2.12003i 0.286735 + 0.165547i
\(165\) −11.8114 + 20.4579i −0.919516 + 1.59265i
\(166\) −5.60408 9.70655i −0.434961 0.753374i
\(167\) 24.2339i 1.87527i −0.347616 0.937637i \(-0.613009\pi\)
0.347616 0.937637i \(-0.386991\pi\)
\(168\) 0 0
\(169\) 8.42249 + 9.90261i 0.647884 + 0.761739i
\(170\) 9.02573 + 15.6330i 0.692242 + 1.19900i
\(171\) 18.7380 + 10.8184i 1.43293 + 0.827305i
\(172\) 4.54561 7.87322i 0.346599 0.600328i
\(173\) −10.2985 17.8376i −0.782983 1.35617i −0.930197 0.367061i \(-0.880364\pi\)
0.147214 0.989105i \(-0.452969\pi\)
\(174\) 21.0912i 1.59892i
\(175\) 0 0
\(176\) 3.33127i 0.251104i
\(177\) 19.4577 11.2339i 1.46253 0.844390i
\(178\) 7.54561 13.0694i 0.565567 0.979591i
\(179\) −8.66255 + 15.0040i −0.647469 + 1.12145i 0.336256 + 0.941771i \(0.390839\pi\)
−0.983725 + 0.179679i \(0.942494\pi\)
\(180\) −10.4936 + 6.05847i −0.782145 + 0.451572i
\(181\) −16.9166 −1.25740 −0.628702 0.777646i \(-0.716414\pi\)
−0.628702 + 0.777646i \(0.716414\pi\)
\(182\) 0 0
\(183\) −2.18861 −0.161786
\(184\) −1.52415 + 0.879970i −0.112362 + 0.0648723i
\(185\) 4.78567 8.28902i 0.351849 0.609421i
\(186\) 4.63991 8.03656i 0.340215 0.589269i
\(187\) 20.4579 11.8114i 1.49603 0.863735i
\(188\) 11.3313i 0.826418i
\(189\) 0 0
\(190\) 11.5713i 0.839473i
\(191\) −2.21433 3.83534i −0.160224 0.277515i 0.774725 0.632298i \(-0.217888\pi\)
−0.934949 + 0.354783i \(0.884555\pi\)
\(192\) 1.39283 2.41246i 0.100519 0.174104i
\(193\) −2.14785 1.24006i −0.154605 0.0892614i 0.420701 0.907199i \(-0.361784\pi\)
−0.575307 + 0.817938i \(0.695117\pi\)
\(194\) −3.87997 6.72031i −0.278566 0.482490i
\(195\) 10.7280 23.2082i 0.768251 1.66197i
\(196\) 0 0
\(197\) 8.85116i 0.630619i −0.948989 0.315309i \(-0.897892\pi\)
0.948989 0.315309i \(-0.102108\pi\)
\(198\) 7.92834 + 13.7323i 0.563442 + 0.975911i
\(199\) −0.545608 + 0.945020i −0.0386771 + 0.0669907i −0.884716 0.466131i \(-0.845648\pi\)
0.846039 + 0.533121i \(0.178981\pi\)
\(200\) 1.28182 + 0.740059i 0.0906384 + 0.0523301i
\(201\) −13.8956 + 8.02264i −0.980121 + 0.565873i
\(202\) 3.69445i 0.259941i
\(203\) 0 0
\(204\) 19.7538 1.38304
\(205\) 5.39676 + 9.34747i 0.376926 + 0.652856i
\(206\) 11.3373 + 6.54561i 0.789909 + 0.456054i
\(207\) 4.18861 7.25488i 0.291128 0.504249i
\(208\) 0.326224 + 3.59076i 0.0226196 + 0.248975i
\(209\) −15.1427 −1.04744
\(210\) 0 0
\(211\) 15.0398 1.03538 0.517690 0.855568i \(-0.326792\pi\)
0.517690 + 0.855568i \(0.326792\pi\)
\(212\) −3.00000 5.19615i −0.206041 0.356873i
\(213\) −26.8812 15.5199i −1.84187 1.06340i
\(214\) −3.04831 1.75994i −0.208378 0.120307i
\(215\) 20.0421 11.5713i 1.36686 0.789158i
\(216\) 4.90261i 0.333580i
\(217\) 0 0
\(218\) −13.1427 −0.890134
\(219\) −22.5113 + 12.9969i −1.52117 + 0.878250i
\(220\) 4.24006 7.34400i 0.285865 0.495132i
\(221\) −20.8948 + 14.7348i −1.40554 + 0.991172i
\(222\) −5.23697 9.07070i −0.351483 0.608786i
\(223\) 12.9026i 0.864023i −0.901868 0.432011i \(-0.857804\pi\)
0.901868 0.432011i \(-0.142196\pi\)
\(224\) 0 0
\(225\) −7.04528 −0.469685
\(226\) 1.52415 0.879970i 0.101385 0.0585348i
\(227\) −7.81651 4.51286i −0.518800 0.299529i 0.217644 0.976028i \(-0.430163\pi\)
−0.736443 + 0.676499i \(0.763496\pi\)
\(228\) −10.9661 6.33127i −0.726247 0.419299i
\(229\) 12.2702 7.08420i 0.810837 0.468137i −0.0364095 0.999337i \(-0.511592\pi\)
0.847246 + 0.531200i \(0.178259\pi\)
\(230\) −4.48012 −0.295410
\(231\) 0 0
\(232\) 7.57133i 0.497082i
\(233\) 3.69136 + 6.39363i 0.241829 + 0.418861i 0.961235 0.275729i \(-0.0889193\pi\)
−0.719406 + 0.694590i \(0.755586\pi\)
\(234\) −9.89068 14.0255i −0.646574 0.916879i
\(235\) 14.4225 24.9805i 0.940820 1.62955i
\(236\) −6.98492 + 4.03274i −0.454679 + 0.262509i
\(237\) 13.5137 0.877810
\(238\) 0 0
\(239\) 6.13098i 0.396580i 0.980143 + 0.198290i \(0.0635388\pi\)
−0.980143 + 0.198290i \(0.936461\pi\)
\(240\) 6.14117 3.54561i 0.396411 0.228868i
\(241\) 23.6642 + 13.6625i 1.52435 + 0.880082i 0.999584 + 0.0288337i \(0.00917932\pi\)
0.524763 + 0.851248i \(0.324154\pi\)
\(242\) −0.0843433 0.0486956i −0.00542179 0.00313027i
\(243\) 8.22135 + 14.2398i 0.527400 + 0.913483i
\(244\) 0.785667 0.0502972
\(245\) 0 0
\(246\) 11.8114 0.753067
\(247\) 16.3222 1.48289i 1.03856 0.0943538i
\(248\) −1.66564 + 2.88497i −0.105768 + 0.183196i
\(249\) −27.0392 15.6111i −1.71354 0.989313i
\(250\) −4.48012 7.75979i −0.283348 0.490772i
\(251\) 16.4880 1.04071 0.520356 0.853949i \(-0.325799\pi\)
0.520356 + 0.853949i \(0.325799\pi\)
\(252\) 0 0
\(253\) 5.86285i 0.368594i
\(254\) 11.1740 6.45130i 0.701118 0.404791i
\(255\) 43.5484 + 25.1427i 2.72711 + 1.57449i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 0.571334 + 0.989580i 0.0356388 + 0.0617283i 0.883295 0.468818i \(-0.155320\pi\)
−0.847656 + 0.530547i \(0.821987\pi\)
\(258\) 25.3251i 1.57667i
\(259\) 0 0
\(260\) −3.85116 + 8.33127i −0.238839 + 0.516684i
\(261\) −18.0196 31.2108i −1.11538 1.93190i
\(262\) −14.5315 8.38975i −0.897757 0.518320i
\(263\) 5.30555 9.18948i 0.327154 0.566648i −0.654792 0.755809i \(-0.727244\pi\)
0.981946 + 0.189162i \(0.0605770\pi\)
\(264\) −4.63991 8.03656i −0.285567 0.494616i
\(265\) 15.2736i 0.938253i
\(266\) 0 0
\(267\) 42.0391i 2.57275i
\(268\) 4.98825 2.87997i 0.304706 0.175922i
\(269\) 6.02966 10.4437i 0.367635 0.636762i −0.621561 0.783366i \(-0.713501\pi\)
0.989195 + 0.146604i \(0.0468344\pi\)
\(270\) −6.24006 + 10.8081i −0.379758 + 0.657760i
\(271\) −1.19748 + 0.691364i −0.0727415 + 0.0419974i −0.535930 0.844263i \(-0.680039\pi\)
0.463188 + 0.886260i \(0.346705\pi\)
\(272\) −7.09122 −0.429968
\(273\) 0 0
\(274\) −11.1427 −0.673153
\(275\) 4.27010 2.46534i 0.257496 0.148666i
\(276\) −2.45130 + 4.24578i −0.147551 + 0.255566i
\(277\) −0.571334 + 0.989580i −0.0343281 + 0.0594581i −0.882679 0.469976i \(-0.844262\pi\)
0.848351 + 0.529434i \(0.177596\pi\)
\(278\) −3.93661 + 2.27280i −0.236102 + 0.136314i
\(279\) 15.8567i 0.949314i
\(280\) 0 0
\(281\) 7.14267i 0.426096i −0.977042 0.213048i \(-0.931661\pi\)
0.977042 0.213048i \(-0.0683390\pi\)
\(282\) −15.7826 27.3362i −0.939839 1.62785i
\(283\) 2.41856 4.18907i 0.143768 0.249014i −0.785144 0.619313i \(-0.787411\pi\)
0.928913 + 0.370299i \(0.120745\pi\)
\(284\) 9.64983 + 5.57133i 0.572612 + 0.330598i
\(285\) −16.1169 27.9154i −0.954685 1.65356i
\(286\) 10.9026 + 5.03976i 0.644685 + 0.298007i
\(287\) 0 0
\(288\) 4.75994i 0.280482i
\(289\) −16.6427 28.8259i −0.978980 1.69564i
\(290\) −9.63682 + 16.6915i −0.565894 + 0.980157i
\(291\) −18.7205 10.8083i −1.09742 0.633594i
\(292\) 8.08112 4.66564i 0.472912 0.273036i
\(293\) 7.63682i 0.446148i 0.974802 + 0.223074i \(0.0716092\pi\)
−0.974802 + 0.223074i \(0.928391\pi\)
\(294\) 0 0
\(295\) −20.5316 −1.19539
\(296\) 1.87997 + 3.25620i 0.109271 + 0.189263i
\(297\) 14.1439 + 8.16597i 0.820711 + 0.473838i
\(298\) 2.90570 5.03281i 0.168322 0.291543i
\(299\) −0.574135 6.31953i −0.0332031 0.365468i
\(300\) 4.12312 0.238048
\(301\) 0 0
\(302\) 3.09122 0.177879
\(303\) 5.14576 + 8.91271i 0.295616 + 0.512022i
\(304\) 3.93661 + 2.27280i 0.225780 + 0.130354i
\(305\) 1.73205 + 1.00000i 0.0991769 + 0.0572598i
\(306\) 29.2316 16.8769i 1.67106 0.964787i
\(307\) 14.3508i 0.819045i 0.912300 + 0.409522i \(0.134305\pi\)
−0.912300 + 0.409522i \(0.865695\pi\)
\(308\) 0 0
\(309\) 36.4678 2.07458
\(310\) −7.34400 + 4.24006i −0.417111 + 0.240819i
\(311\) −1.09122 + 1.89004i −0.0618771 + 0.107174i −0.895304 0.445455i \(-0.853042\pi\)
0.833427 + 0.552629i \(0.186375\pi\)
\(312\) 5.78834 + 8.20819i 0.327700 + 0.464697i
\(313\) −7.78567 13.4852i −0.440072 0.762227i 0.557622 0.830095i \(-0.311714\pi\)
−0.997694 + 0.0678678i \(0.978380\pi\)
\(314\) 7.92834i 0.447422i
\(315\) 0 0
\(316\) −4.85116 −0.272899
\(317\) 12.2877 7.09430i 0.690146 0.398456i −0.113521 0.993536i \(-0.536213\pi\)
0.803667 + 0.595080i \(0.202880\pi\)
\(318\) −14.4748 8.35700i −0.811704 0.468637i
\(319\) 21.8431 + 12.6111i 1.22298 + 0.706086i
\(320\) −2.20456 + 1.27280i −0.123239 + 0.0711519i
\(321\) −9.80522 −0.547274
\(322\) 0 0
\(323\) 32.2339i 1.79354i
\(324\) −0.311393 0.539349i −0.0172996 0.0299638i
\(325\) −4.36129 + 3.07554i −0.241921 + 0.170600i
\(326\) −5.02573 + 8.70481i −0.278349 + 0.482115i
\(327\) −31.7061 + 18.3055i −1.75335 + 1.01230i
\(328\) −4.24006 −0.234118
\(329\) 0 0
\(330\) 23.6228i 1.30039i
\(331\) −2.46917 + 1.42558i −0.135718 + 0.0783569i −0.566322 0.824184i \(-0.691634\pi\)
0.430604 + 0.902541i \(0.358301\pi\)
\(332\) 9.70655 + 5.60408i 0.532716 + 0.307564i
\(333\) −15.4993 8.94855i −0.849359 0.490377i
\(334\) 12.1169 + 20.9872i 0.663010 + 1.14837i
\(335\) 14.6625 0.801101
\(336\) 0 0
\(337\) −32.5254 −1.77177 −0.885886 0.463904i \(-0.846448\pi\)
−0.885886 + 0.463904i \(0.846448\pi\)
\(338\) −12.2454 4.36467i −0.666062 0.237407i
\(339\) 2.45130 4.24578i 0.133137 0.230599i
\(340\) −15.6330 9.02573i −0.847819 0.489489i
\(341\) 5.54870 + 9.61062i 0.300479 + 0.520444i
\(342\) −21.6368 −1.16999
\(343\) 0 0
\(344\) 9.09122i 0.490165i
\(345\) −10.8081 + 6.24006i −0.581889 + 0.335953i
\(346\) 17.8376 + 10.2985i 0.958954 + 0.553652i
\(347\) −2.97427 + 5.15159i −0.159667 + 0.276552i −0.934749 0.355309i \(-0.884376\pi\)
0.775081 + 0.631861i \(0.217709\pi\)
\(348\) 10.5456 + 18.2655i 0.565304 + 0.979135i
\(349\) 32.9619i 1.76441i 0.470864 + 0.882206i \(0.343942\pi\)
−0.470864 + 0.882206i \(0.656058\pi\)
\(350\) 0 0
\(351\) −16.0453 7.41698i −0.856434 0.395889i
\(352\) 1.66564 + 2.88497i 0.0887788 + 0.153769i
\(353\) 0.737123 + 0.425578i 0.0392331 + 0.0226512i 0.519488 0.854478i \(-0.326123\pi\)
−0.480255 + 0.877129i \(0.659456\pi\)
\(354\) −11.2339 + 19.4577i −0.597074 + 1.03416i
\(355\) 14.1824 + 24.5647i 0.752725 + 1.30376i
\(356\) 15.0912i 0.799833i
\(357\) 0 0
\(358\) 17.3251i 0.915660i
\(359\) −24.1935 + 13.9681i −1.27688 + 0.737208i −0.976274 0.216540i \(-0.930523\pi\)
−0.300608 + 0.953748i \(0.597190\pi\)
\(360\) 6.05847 10.4936i 0.319309 0.553060i
\(361\) 0.831275 1.43981i 0.0437513 0.0757795i
\(362\) 14.6502 8.45832i 0.770000 0.444560i
\(363\) −0.271300 −0.0142395
\(364\) 0 0
\(365\) 23.7538 1.24333
\(366\) 1.89539 1.09430i 0.0990736 0.0572002i
\(367\) 3.57133 6.18573i 0.186422 0.322893i −0.757633 0.652681i \(-0.773644\pi\)
0.944055 + 0.329789i \(0.106977\pi\)
\(368\) 0.879970 1.52415i 0.0458716 0.0794520i
\(369\) 17.4785 10.0912i 0.909894 0.525328i
\(370\) 9.57133i 0.497590i
\(371\) 0 0
\(372\) 9.27982i 0.481136i
\(373\) 16.5713 + 28.7024i 0.858031 + 1.48615i 0.873804 + 0.486278i \(0.161646\pi\)
−0.0157730 + 0.999876i \(0.505021\pi\)
\(374\) −11.8114 + 20.4579i −0.610753 + 1.05785i
\(375\) −21.6162 12.4801i −1.11626 0.644471i
\(376\) 5.66564 + 9.81317i 0.292183 + 0.506076i
\(377\) −24.7795 11.4544i −1.27621 0.589931i
\(378\) 0 0
\(379\) 35.2736i 1.81189i −0.423400 0.905943i \(-0.639164\pi\)
0.423400 0.905943i \(-0.360836\pi\)
\(380\) 5.78567 + 10.0211i 0.296798 + 0.514070i
\(381\) 17.9712 31.1270i 0.920692 1.59468i
\(382\) 3.83534 + 2.21433i 0.196233 + 0.113295i
\(383\) −6.02239 + 3.47703i −0.307730 + 0.177668i −0.645910 0.763413i \(-0.723522\pi\)
0.338180 + 0.941081i \(0.390189\pi\)
\(384\) 2.78567i 0.142155i
\(385\) 0 0
\(386\) 2.48012 0.126235
\(387\) −21.6368 37.4761i −1.09986 1.90502i
\(388\) 6.72031 + 3.87997i 0.341172 + 0.196976i
\(389\) 2.63682 4.56711i 0.133692 0.231562i −0.791405 0.611292i \(-0.790650\pi\)
0.925097 + 0.379731i \(0.123983\pi\)
\(390\) 2.31332 + 25.4629i 0.117140 + 1.28936i
\(391\) 12.4801 0.631147
\(392\) 0 0
\(393\) −46.7421 −2.35783
\(394\) 4.42558 + 7.66533i 0.222957 + 0.386174i
\(395\) −10.6947 6.17457i −0.538107 0.310676i
\(396\) −13.7323 7.92834i −0.690073 0.398414i
\(397\) 16.1744 9.33829i 0.811770 0.468675i −0.0358003 0.999359i \(-0.511398\pi\)
0.847570 + 0.530683i \(0.178065\pi\)
\(398\) 1.09122i 0.0546977i
\(399\) 0 0
\(400\) −1.48012 −0.0740059
\(401\) −18.6368 + 10.7599i −0.930676 + 0.537326i −0.887025 0.461721i \(-0.847232\pi\)
−0.0436504 + 0.999047i \(0.513899\pi\)
\(402\) 8.02264 13.8956i 0.400133 0.693050i
\(403\) −6.92205 9.81587i −0.344812 0.488963i
\(404\) −1.84723 3.19949i −0.0919029 0.159181i
\(405\) 1.58537i 0.0787777i
\(406\) 0 0
\(407\) 12.5254 0.620861
\(408\) −17.1073 + 9.87688i −0.846936 + 0.488979i
\(409\) −16.7360 9.66255i −0.827543 0.477782i 0.0254675 0.999676i \(-0.491893\pi\)
−0.853011 + 0.521893i \(0.825226\pi\)
\(410\) −9.34747 5.39676i −0.461639 0.266527i
\(411\) −26.8812 + 15.5199i −1.32595 + 0.765539i
\(412\) −13.0912 −0.644958
\(413\) 0 0
\(414\) 8.37721i 0.411718i
\(415\) 14.2658 + 24.7091i 0.700280 + 1.21292i
\(416\) −2.07790 2.94658i −0.101877 0.144468i
\(417\) −6.33127 + 10.9661i −0.310044 + 0.537012i
\(418\) 13.1139 7.57133i 0.641424 0.370326i
\(419\) 12.8371 0.627134 0.313567 0.949566i \(-0.398476\pi\)
0.313567 + 0.949566i \(0.398476\pi\)
\(420\) 0 0
\(421\) 21.3313i 1.03962i −0.854281 0.519811i \(-0.826002\pi\)
0.854281 0.519811i \(-0.173998\pi\)
\(422\) −13.0248 + 7.51988i −0.634038 + 0.366062i
\(423\) −46.7101 26.9681i −2.27112 1.31123i
\(424\) 5.19615 + 3.00000i 0.252347 + 0.145693i
\(425\) −5.24792 9.08966i −0.254562 0.440913i
\(426\) 31.0398 1.50388
\(427\) 0 0
\(428\) 3.51988 0.170140
\(429\) 33.3216 3.02730i 1.60878 0.146159i
\(430\) −11.5713 + 20.0421i −0.558019 + 0.966518i
\(431\) −10.0211 5.78567i −0.482698 0.278686i 0.238842 0.971058i \(-0.423232\pi\)
−0.721540 + 0.692373i \(0.756565\pi\)
\(432\) −2.45130 4.24578i −0.117938 0.204275i
\(433\) 29.3766 1.41175 0.705873 0.708338i \(-0.250555\pi\)
0.705873 + 0.708338i \(0.250555\pi\)
\(434\) 0 0
\(435\) 53.6900i 2.57424i
\(436\) 11.3819 6.57133i 0.545093 0.314710i
\(437\) −6.92820 4.00000i −0.331421 0.191346i
\(438\) 12.9969 22.5113i 0.621016 1.07563i
\(439\) −0.0514526 0.0891186i −0.00245570 0.00425340i 0.864795 0.502125i \(-0.167448\pi\)
−0.867251 + 0.497872i \(0.834115\pi\)
\(440\) 8.48012i 0.404274i
\(441\) 0 0
\(442\) 10.7280 23.2082i 0.510281 1.10390i
\(443\) −13.5713 23.5062i −0.644794 1.11682i −0.984349 0.176229i \(-0.943610\pi\)
0.339556 0.940586i \(-0.389723\pi\)
\(444\) 9.07070 + 5.23697i 0.430476 + 0.248536i
\(445\) −19.2082 + 33.2695i −0.910554 + 1.57713i
\(446\) 6.45130 + 11.1740i 0.305478 + 0.529104i
\(447\) 16.1886i 0.765695i
\(448\) 0 0
\(449\) 9.70231i 0.457880i 0.973440 + 0.228940i \(0.0735260\pi\)
−0.973440 + 0.228940i \(0.926474\pi\)
\(450\) 6.10139 3.52264i 0.287622 0.166059i
\(451\) −7.06240 + 12.2324i −0.332555 + 0.576003i
\(452\) −0.879970 + 1.52415i −0.0413903 + 0.0716901i
\(453\) 7.45743 4.30555i 0.350381 0.202292i
\(454\) 9.02573 0.423598
\(455\) 0 0
\(456\) 12.6625 0.592978
\(457\) −31.3242 + 18.0850i −1.46528 + 0.845982i −0.999248 0.0387828i \(-0.987652\pi\)
−0.466037 + 0.884765i \(0.654319\pi\)
\(458\) −7.08420 + 12.2702i −0.331023 + 0.573348i
\(459\) 17.3827 30.1078i 0.811356 1.40531i
\(460\) 3.87990 2.24006i 0.180901 0.104443i
\(461\) 20.9743i 0.976869i −0.872600 0.488435i \(-0.837568\pi\)
0.872600 0.488435i \(-0.162432\pi\)
\(462\) 0 0
\(463\) 24.8450i 1.15464i −0.816517 0.577322i \(-0.804098\pi\)
0.816517 0.577322i \(-0.195902\pi\)
\(464\) −3.78567 6.55697i −0.175745 0.304400i
\(465\) −11.8114 + 20.4579i −0.547740 + 0.948714i
\(466\) −6.39363 3.69136i −0.296179 0.170999i
\(467\) −0.635981 1.10155i −0.0294297 0.0509737i 0.850935 0.525270i \(-0.176036\pi\)
−0.880365 + 0.474297i \(0.842702\pi\)
\(468\) 15.5784 + 7.20114i 0.720110 + 0.332873i
\(469\) 0 0
\(470\) 28.8450i 1.33052i
\(471\) 11.0429 + 19.1268i 0.508828 + 0.881315i
\(472\) 4.03274 6.98492i 0.185622 0.321507i
\(473\) 26.2279 + 15.1427i 1.20596 + 0.696261i
\(474\) −11.7032 + 6.75685i −0.537546 + 0.310353i
\(475\) 6.72804i 0.308704i
\(476\) 0 0
\(477\) −28.5596 −1.30766
\(478\) −3.06549 5.30958i −0.140212 0.242855i
\(479\) 19.0971 + 11.0257i 0.872570 + 0.503778i 0.868201 0.496212i \(-0.165276\pi\)
0.00436831 + 0.999990i \(0.498610\pi\)
\(480\) −3.54561 + 6.14117i −0.161834 + 0.280305i
\(481\) −13.5011 + 1.22658i −0.615595 + 0.0559274i
\(482\) −27.3251 −1.24462
\(483\) 0 0
\(484\) 0.0973913 0.00442688
\(485\) 9.87688 + 17.1073i 0.448486 + 0.776801i
\(486\) −14.2398 8.22135i −0.645930 0.372928i
\(487\) −3.83534 2.21433i −0.173796 0.100341i 0.410579 0.911825i \(-0.365327\pi\)
−0.584374 + 0.811484i \(0.698660\pi\)
\(488\) −0.680408 + 0.392834i −0.0308006 + 0.0177827i
\(489\) 28.0000i 1.26620i
\(490\) 0 0
\(491\) −31.0274 −1.40025 −0.700124 0.714022i \(-0.746872\pi\)
−0.700124 + 0.714022i \(0.746872\pi\)
\(492\) −10.2290 + 5.90570i −0.461157 + 0.266249i
\(493\) 26.8450 46.4969i 1.20904 2.09411i
\(494\) −13.3940 + 9.44532i −0.602624 + 0.424965i
\(495\) −20.1824 34.9570i −0.907133 1.57120i
\(496\) 3.33127i 0.149579i
\(497\) 0 0
\(498\) 31.2222 1.39910
\(499\) 19.9922 11.5425i 0.894975 0.516714i 0.0194086 0.999812i \(-0.493822\pi\)
0.875567 + 0.483097i \(0.160488\pi\)
\(500\) 7.75979 + 4.48012i 0.347028 + 0.200357i
\(501\) 58.4632 + 33.7538i 2.61194 + 1.50801i
\(502\) −14.2790 + 8.24399i −0.637303 + 0.367947i
\(503\) −17.7023 −0.789307 −0.394654 0.918830i \(-0.629135\pi\)
−0.394654 + 0.918830i \(0.629135\pi\)
\(504\) 0 0
\(505\) 9.40462i 0.418500i
\(506\) −2.93142 5.07737i −0.130318 0.225717i
\(507\) −35.6208 + 6.52622i −1.58197 + 0.289840i
\(508\) −6.45130 + 11.1740i −0.286230 + 0.495766i
\(509\) −21.4151 + 12.3640i −0.949208 + 0.548026i −0.892835 0.450384i \(-0.851287\pi\)
−0.0563732 + 0.998410i \(0.517954\pi\)
\(510\) −50.2853 −2.22667
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) −19.2997 + 11.1427i −0.852101 + 0.491961i
\(514\) −0.989580 0.571334i −0.0436485 0.0252005i
\(515\) −28.8604 16.6625i −1.27174 0.734240i
\(516\) 12.6625 + 21.9322i 0.557438 + 0.965510i
\(517\) 37.7476 1.66014
\(518\) 0 0
\(519\) 57.3766 2.51855
\(520\) −0.830438 9.14067i −0.0364171 0.400845i
\(521\) 10.2143 17.6917i 0.447498 0.775089i −0.550724 0.834687i \(-0.685648\pi\)
0.998222 + 0.0595978i \(0.0189818\pi\)
\(522\) 31.2108 + 18.0196i 1.36606 + 0.788694i
\(523\) −12.9127 22.3655i −0.564634 0.977974i −0.997084 0.0763162i \(-0.975684\pi\)
0.432450 0.901658i \(-0.357649\pi\)
\(524\) 16.7795 0.733015
\(525\) 0 0
\(526\) 10.6111i 0.462666i
\(527\) 20.4579 11.8114i 0.891162 0.514512i
\(528\) 8.03656 + 4.63991i 0.349746 + 0.201926i
\(529\) 9.95130 17.2362i 0.432665 0.749398i
\(530\) 7.63682 + 13.2274i 0.331722 + 0.574560i
\(531\) 38.3912i 1.66604i
\(532\) 0 0
\(533\) 6.41463 13.8769i 0.277848 0.601075i
\(534\) 21.0196 + 36.4069i 0.909605 + 1.57548i
\(535\) 7.75979 + 4.48012i 0.335485 + 0.193692i
\(536\) −2.87997 + 4.98825i −0.124396 + 0.215460i
\(537\) −24.1310 41.7961i −1.04133 1.80363i
\(538\) 12.0593i 0.519914i
\(539\) 0 0
\(540\) 12.4801i 0.537059i
\(541\) 24.5201 14.1567i 1.05420 0.608644i 0.130380 0.991464i \(-0.458380\pi\)
0.923823 + 0.382820i \(0.125047\pi\)
\(542\) 0.691364 1.19748i 0.0296966 0.0514360i
\(543\) 23.5621 40.8107i 1.01115 1.75135i
\(544\) 6.14117 3.54561i 0.263301 0.152017i
\(545\) 33.4561 1.43310
\(546\) 0 0
\(547\) 25.5713 1.09335 0.546676 0.837344i \(-0.315893\pi\)
0.546676 + 0.837344i \(0.315893\pi\)
\(548\) 9.64983 5.57133i 0.412220 0.237996i
\(549\) 1.86986 3.23870i 0.0798039 0.138224i
\(550\) −2.46534 + 4.27010i −0.105122 + 0.182077i
\(551\) −29.8054 + 17.2082i −1.26975 + 0.733092i
\(552\) 4.90261i 0.208669i
\(553\) 0 0
\(554\) 1.14267i 0.0485473i
\(555\) 13.3313 + 23.0904i 0.565881 + 0.980135i
\(556\) 2.27280 3.93661i 0.0963884 0.166950i
\(557\) −3.45875 1.99691i −0.146552 0.0846119i 0.424931 0.905226i \(-0.360298\pi\)
−0.571483 + 0.820614i \(0.693632\pi\)
\(558\) 7.92834 + 13.7323i 0.335633 + 0.581334i
\(559\) −29.7538 13.7538i −1.25845 0.581722i
\(560\) 0 0
\(561\) 65.8052i 2.77830i
\(562\) 3.57133 + 6.18573i 0.150648 + 0.260929i
\(563\) −21.7498 + 37.6718i −0.916646 + 1.58768i −0.112173 + 0.993689i \(0.535781\pi\)
−0.804473 + 0.593989i \(0.797552\pi\)
\(564\) 27.3362 + 15.7826i 1.15106 + 0.664566i
\(565\) −3.87990 + 2.24006i −0.163228 + 0.0942400i
\(566\) 4.83712i 0.203319i
\(567\) 0 0
\(568\) −11.1427 −0.467536
\(569\) −20.6337 35.7387i −0.865011 1.49824i −0.867036 0.498245i \(-0.833978\pi\)
0.00202490 0.999998i \(-0.499355\pi\)
\(570\) 27.9154 + 16.1169i 1.16925 + 0.675064i
\(571\) −6.96810 + 12.0691i −0.291606 + 0.505076i −0.974190 0.225731i \(-0.927523\pi\)
0.682584 + 0.730807i \(0.260856\pi\)
\(572\) −11.9618 + 1.08674i −0.500149 + 0.0454390i
\(573\) 12.3368 0.515377
\(574\) 0 0
\(575\) 2.60492 0.108633
\(576\) 2.37997 + 4.12223i 0.0991654 + 0.171760i
\(577\) −28.0734 16.2082i −1.16871 0.674754i −0.215333 0.976541i \(-0.569084\pi\)
−0.953376 + 0.301786i \(0.902417\pi\)
\(578\) 28.8259 + 16.6427i 1.19900 + 0.692244i
\(579\) 5.98318 3.45439i 0.248653 0.143560i
\(580\) 19.2736i 0.800295i
\(581\) 0 0
\(582\) 21.6166 0.896037
\(583\) 17.3098 9.99382i 0.716899 0.413902i
\(584\) −4.66564 + 8.08112i −0.193065 + 0.334399i
\(585\) 25.1778 + 35.7035i 1.04097 + 1.47616i
\(586\) −3.81841 6.61368i −0.157737 0.273209i
\(587\) 4.03742i 0.166642i −0.996523 0.0833210i \(-0.973447\pi\)
0.996523 0.0833210i \(-0.0265527\pi\)
\(588\) 0 0
\(589\) −15.1427 −0.623943
\(590\) 17.7809 10.2658i 0.732027 0.422636i
\(591\) 21.3530 + 12.3282i 0.878347 + 0.507114i
\(592\) −3.25620 1.87997i −0.133829 0.0772663i
\(593\) 17.6810 10.2082i 0.726074 0.419199i −0.0909105 0.995859i \(-0.528978\pi\)
0.816984 + 0.576660i \(0.195644\pi\)
\(594\) −16.3319 −0.670107
\(595\) 0 0
\(596\) 5.81139i 0.238044i
\(597\) −1.51988 2.63251i −0.0622046 0.107742i
\(598\) 3.65698 + 5.18581i 0.149545 + 0.212063i
\(599\) 4.05454 7.02267i 0.165664 0.286939i −0.771227 0.636560i \(-0.780357\pi\)
0.936891 + 0.349622i \(0.113690\pi\)
\(600\) −3.57072 + 2.06156i −0.145774 + 0.0841628i
\(601\) −7.70231 −0.314184 −0.157092 0.987584i \(-0.550212\pi\)
−0.157092 + 0.987584i \(0.550212\pi\)
\(602\) 0 0
\(603\) 27.4170i 1.11651i
\(604\) −2.67707 + 1.54561i −0.108928 + 0.0628899i
\(605\) 0.214705 + 0.123960i 0.00872900 + 0.00503969i
\(606\) −8.91271 5.14576i −0.362054 0.209032i
\(607\) 16.8512 + 29.1871i 0.683967 + 1.18467i 0.973760 + 0.227577i \(0.0730803\pi\)
−0.289793 + 0.957089i \(0.593586\pi\)
\(608\) −4.54561 −0.184349
\(609\) 0 0
\(610\) −2.00000 −0.0809776
\(611\) −40.6879 + 3.69653i −1.64606 + 0.149546i
\(612\) −16.8769 + 29.2316i −0.682208 + 1.18162i
\(613\) −20.1502 11.6337i −0.813860 0.469882i 0.0344347 0.999407i \(-0.489037\pi\)
−0.848294 + 0.529525i \(0.822370\pi\)
\(614\) −7.17541 12.4282i −0.289576 0.501560i
\(615\) −30.0672 −1.21243
\(616\) 0 0
\(617\) 1.51988i 0.0611881i −0.999532 0.0305941i \(-0.990260\pi\)
0.999532 0.0305941i \(-0.00973991\pi\)
\(618\) −31.5820 + 18.2339i −1.27041 + 0.733474i
\(619\) −0.675059 0.389746i −0.0271329 0.0156652i 0.486372 0.873752i \(-0.338320\pi\)
−0.513505 + 0.858087i \(0.671653\pi\)
\(620\) 4.24006 7.34400i 0.170285 0.294942i
\(621\) 4.31415 + 7.47233i 0.173121 + 0.299854i
\(622\) 2.18243i 0.0875075i
\(623\) 0 0
\(624\) −9.11694 4.21433i −0.364970 0.168708i
\(625\) 15.1049 + 26.1625i 0.604197 + 1.04650i
\(626\) 13.4852 + 7.78567i 0.538976 + 0.311178i
\(627\) 21.0912 36.5311i 0.842302 1.45891i
\(628\) −3.96417 6.86614i −0.158188 0.273989i
\(629\) 26.6625i 1.06311i
\(630\) 0 0
\(631\) 32.4678i 1.29252i 0.763117 + 0.646261i \(0.223668\pi\)
−0.763117 + 0.646261i \(0.776332\pi\)
\(632\) 4.20122 2.42558i 0.167116 0.0964843i
\(633\) −20.9479 + 36.2828i −0.832604 + 1.44211i
\(634\) −7.09430 + 12.2877i −0.281751 + 0.488007i
\(635\) −28.4446 + 16.4225i −1.12879 + 0.651707i
\(636\) 16.7140 0.662753
\(637\) 0 0
\(638\) −25.2222 −0.998556
\(639\) 45.9326 26.5192i 1.81707 1.04908i
\(640\) 1.27280 2.20456i 0.0503120 0.0871429i
\(641\) 21.1139 36.5703i 0.833947 1.44444i −0.0609377 0.998142i \(-0.519409\pi\)
0.894885 0.446297i \(-0.147258\pi\)
\(642\) 8.49157 4.90261i 0.335135 0.193491i
\(643\) 6.84330i 0.269873i 0.990854 + 0.134937i \(0.0430831\pi\)
−0.990854 + 0.134937i \(0.956917\pi\)
\(644\) 0 0
\(645\) 64.4678i 2.53842i
\(646\) −16.1169 27.9154i −0.634113 1.09832i
\(647\) 1.87688 3.25086i 0.0737879 0.127804i −0.826771 0.562539i \(-0.809825\pi\)
0.900559 + 0.434735i \(0.143158\pi\)
\(648\) 0.539349 + 0.311393i 0.0211876 + 0.0122327i
\(649\) −13.4342 23.2687i −0.527338 0.913376i
\(650\) 2.23922 4.84414i 0.0878293 0.190003i
\(651\) 0 0
\(652\) 10.0515i 0.393645i
\(653\) −11.9166 20.6402i −0.466334 0.807715i 0.532926 0.846162i \(-0.321092\pi\)
−0.999261 + 0.0384469i \(0.987759\pi\)
\(654\) 18.3055 31.7061i 0.715804 1.23981i
\(655\) 36.9914 + 21.3570i 1.44537 + 0.834487i
\(656\) 3.67200 2.12003i 0.143367 0.0827733i
\(657\) 44.4163i 1.73285i
\(658\) 0 0
\(659\) −21.0912 −0.821597 −0.410799 0.911726i \(-0.634750\pi\)
−0.410799 + 0.911726i \(0.634750\pi\)
\(660\) 11.8114 + 20.4579i 0.459758 + 0.796324i
\(661\) 29.7932 + 17.2011i 1.15882 + 0.669047i 0.951022 0.309124i \(-0.100036\pi\)
0.207801 + 0.978171i \(0.433369\pi\)
\(662\) 1.42558 2.46917i 0.0554067 0.0959672i
\(663\) −6.44415 70.9311i −0.250270 2.75474i
\(664\) −11.2082 −0.434961
\(665\) 0 0
\(666\) 17.8971 0.693498
\(667\) 6.66255 + 11.5399i 0.257975 + 0.446826i
\(668\) −20.9872 12.1169i −0.812018 0.468819i
\(669\) 31.1270 + 17.9712i 1.20344 + 0.694806i
\(670\) −12.6981 + 7.33127i −0.490572 + 0.283232i
\(671\) 2.61727i 0.101039i
\(672\) 0 0
\(673\) 10.7997 0.416298 0.208149 0.978097i \(-0.433256\pi\)
0.208149 + 0.978097i \(0.433256\pi\)
\(674\) 28.1678 16.2627i 1.08498 0.626416i
\(675\) 3.62822 6.28426i 0.139650 0.241881i
\(676\) 12.7872 2.34279i 0.491814 0.0901072i
\(677\) 16.8668 + 29.2141i 0.648243 + 1.12279i 0.983542 + 0.180678i \(0.0578292\pi\)
−0.335299 + 0.942112i \(0.608837\pi\)
\(678\) 4.90261i 0.188284i
\(679\) 0 0
\(680\) 18.0515 0.692242
\(681\) 21.7742 12.5713i 0.834389 0.481735i
\(682\) −9.61062 5.54870i −0.368010 0.212471i
\(683\) −18.9338 10.9314i −0.724481 0.418279i 0.0919188 0.995767i \(-0.470700\pi\)
−0.816400 + 0.577487i \(0.804033\pi\)
\(684\) 18.7380 10.8184i 0.716467 0.413652i
\(685\) 28.3649 1.08377
\(686\) 0 0
\(687\) 39.4684i 1.50581i
\(688\) −4.54561 7.87322i −0.173300 0.300164i
\(689\) −17.6795 + 12.4674i −0.673535 + 0.474970i
\(690\) 6.24006 10.8081i 0.237555 0.411457i
\(691\) 9.30145 5.37020i 0.353844 0.204292i −0.312533 0.949907i \(-0.601178\pi\)
0.666377 + 0.745615i \(0.267844\pi\)
\(692\) −20.5971 −0.782983
\(693\) 0 0
\(694\) 5.94855i 0.225804i
\(695\) 10.0211 5.78567i 0.380121 0.219463i
\(696\) −18.2655 10.5456i −0.692353 0.399730i
\(697\) 26.0389 + 15.0336i 0.986295 + 0.569438i
\(698\) −16.4810 28.5459i −0.623814 1.08048i
\(699\) −20.5658 −0.777871
\(700\) 0 0
\(701\) −11.1941 −0.422796 −0.211398 0.977400i \(-0.567802\pi\)
−0.211398 + 0.977400i \(0.567802\pi\)
\(702\) 17.6041 1.59935i 0.664424 0.0603635i
\(703\) −8.54561 + 14.8014i −0.322304 + 0.558246i
\(704\) −2.88497 1.66564i −0.108731 0.0627761i
\(705\) 40.1763 + 69.5873i 1.51313 + 2.62081i
\(706\) −0.851156 −0.0320337
\(707\) 0 0
\(708\) 22.4678i 0.844390i
\(709\) 4.50359 2.60015i 0.169136 0.0976506i −0.413042 0.910712i \(-0.635534\pi\)
0.582178 + 0.813061i \(0.302201\pi\)
\(710\) −24.5647 14.1824i −0.921896 0.532257i
\(711\) −11.5456 + 19.9976i −0.432994 + 0.749968i
\(712\) −7.54561 13.0694i −0.282784 0.489796i
\(713\) 5.86285i 0.219565i
\(714\) 0 0
\(715\) −27.7538 12.8293i −1.03793 0.479787i
\(716\) 8.66255 + 15.0040i 0.323735 + 0.560725i
\(717\) −14.7907 8.53943i −0.552370 0.318911i
\(718\) 13.9681 24.1935i 0.521285 0.902892i
\(719\) 19.0257 + 32.9535i 0.709540 + 1.22896i 0.965028 + 0.262147i \(0.0844305\pi\)
−0.255488 + 0.966812i \(0.582236\pi\)
\(720\) 12.1169i 0.451572i
\(721\) 0 0
\(722\) 1.66255i 0.0618737i
\(723\) −65.9207 + 38.0593i −2.45162 + 1.41544i
\(724\) −8.45832 + 14.6502i −0.314351 + 0.544472i
\(725\) 5.60324 9.70509i 0.208099 0.360438i
\(726\) 0.234952 0.135650i 0.00871990 0.00503444i
\(727\) −28.6111 −1.06113 −0.530563 0.847645i \(-0.678020\pi\)
−0.530563 + 0.847645i \(0.678020\pi\)
\(728\) 0 0
\(729\) −43.9355 −1.62724
\(730\) −20.5714 + 11.8769i −0.761380 + 0.439583i
\(731\) 32.2339 55.8307i 1.19221 2.06497i
\(732\) −1.09430 + 1.89539i −0.0404466 + 0.0700556i
\(733\) −7.11860 + 4.10992i −0.262931 + 0.151803i −0.625671 0.780087i \(-0.715175\pi\)
0.362740 + 0.931891i \(0.381841\pi\)
\(734\) 7.14267i 0.263641i
\(735\) 0 0
\(736\) 1.75994i 0.0648723i
\(737\) 9.59397 + 16.6172i 0.353399 + 0.612104i
\(738\) −10.0912 + 17.4785i −0.371463 + 0.643392i
\(739\) −1.37151 0.791843i −0.0504519 0.0291284i 0.474562 0.880222i \(-0.342607\pi\)
−0.525014 + 0.851094i \(0.675940\pi\)
\(740\) −4.78567 8.28902i −0.175925 0.304710i
\(741\) −19.1567 + 41.4420i −0.703739 + 1.52241i
\(742\) 0 0
\(743\) 11.9485i 0.438350i 0.975686 + 0.219175i \(0.0703365\pi\)
−0.975686 + 0.219175i \(0.929663\pi\)
\(744\) −4.63991 8.03656i −0.170107 0.294635i
\(745\) −7.39676 + 12.8116i −0.270996 + 0.469380i
\(746\) −28.7024 16.5713i −1.05087 0.606720i
\(747\) 46.2026 26.6751i 1.69046 0.975990i
\(748\) 23.6228i 0.863735i
\(749\) 0 0
\(750\) 24.9602 0.911419
\(751\) −13.7826 23.8721i −0.502933 0.871106i −0.999994 0.00339058i \(-0.998921\pi\)
0.497061 0.867716i \(-0.334413\pi\)
\(752\) −9.81317 5.66564i −0.357850 0.206605i
\(753\) −22.9650 + 39.7766i −0.836891 + 1.44954i
\(754\) 27.1869 2.46995i 0.990087 0.0899503i
\(755\) −7.86902 −0.286383
\(756\) 0 0
\(757\) −38.2339 −1.38963 −0.694817 0.719187i \(-0.744515\pi\)
−0.694817 + 0.719187i \(0.744515\pi\)
\(758\) 17.6368 + 30.5479i 0.640598 + 1.10955i
\(759\) −14.1439 8.16597i −0.513390 0.296406i
\(760\) −10.0211 5.78567i −0.363502 0.209868i
\(761\) −44.8147 + 25.8738i −1.62453 + 0.937924i −0.638846 + 0.769334i \(0.720588\pi\)
−0.985686 + 0.168590i \(0.946079\pi\)
\(762\) 35.9424i 1.30205i
\(763\) 0 0
\(764\) −4.42867 −0.160224
\(765\) −74.4122 + 42.9619i −2.69038 + 1.55329i
\(766\) 3.47703 6.02239i 0.125630 0.217598i
\(767\) 16.7593 + 23.7656i 0.605142 + 0.858126i
\(768\) −1.39283 2.41246i −0.0502595 0.0870521i
\(769\) 24.2401i 0.874119i 0.899433 + 0.437059i \(0.143980\pi\)
−0.899433 + 0.437059i \(0.856020\pi\)
\(770\) 0 0
\(771\) −3.18309 −0.114636
\(772\) −2.14785 + 1.24006i −0.0773027 + 0.0446307i
\(773\) −14.3735 8.29853i −0.516978 0.298477i 0.218719 0.975788i \(-0.429812\pi\)
−0.735697 + 0.677310i \(0.763145\pi\)
\(774\) 37.4761 + 21.6368i 1.34705 + 0.777720i
\(775\) 4.27010 2.46534i 0.153386 0.0885577i
\(776\) −7.75994 −0.278566
\(777\) 0 0
\(778\) 5.27365i 0.189069i
\(779\) −9.63682 16.6915i −0.345275 0.598034i
\(780\) −14.7348 20.8948i −0.527592 0.748155i
\(781\) −18.5596 + 32.1462i −0.664116 + 1.15028i
\(782\) −10.8081 + 6.24006i −0.386497 + 0.223144i
\(783\) 37.1193 1.32654
\(784\) 0 0
\(785\) 20.1824i 0.720342i
\(786\) 40.4798 23.3710i 1.44387 0.833617i
\(787\) −7.19816 4.15586i −0.256587 0.148140i 0.366190 0.930540i \(-0.380662\pi\)
−0.622777 + 0.782400i \(0.713995\pi\)
\(788\) −7.66533 4.42558i −0.273066 0.157655i
\(789\) 14.7795 + 25.5988i 0.526164 + 0.911342i
\(790\) 12.3491 0.439363
\(791\) 0 0
\(792\) 15.8567 0.563442
\(793\) −0.256303 2.82114i −0.00910160 0.100182i
\(794\) −9.33829 + 16.1744i −0.331404 + 0.574008i
\(795\) 36.8470 + 21.2736i 1.30683 + 0.754498i
\(796\) 0.545608 + 0.945020i 0.0193386 + 0.0334954i
\(797\) 24.3055 0.860947 0.430473 0.902603i \(-0.358347\pi\)
0.430473 + 0.902603i \(0.358347\pi\)
\(798\) 0 0
\(799\) 80.3525i 2.84267i
\(800\) 1.28182 0.740059i 0.0453192 0.0261650i
\(801\) 62.2095 + 35.9166i 2.19806 + 1.26905i
\(802\) 10.7599 18.6368i 0.379947 0.658087i
\(803\) 15.5425 + 26.9204i 0.548484 + 0.950001i
\(804\) 16.0453i 0.565873i
\(805\) 0 0
\(806\) 10.9026 + 5.03976i 0.384028 + 0.177518i
\(807\) 16.7966 + 29.0926i 0.591269 + 1.02411i
\(808\) 3.19949 + 1.84723i 0.112558 + 0.0649852i
\(809\) 7.99382 13.8457i 0.281048 0.486789i −0.690595 0.723241i \(-0.742651\pi\)
0.971643 + 0.236452i \(0.0759847\pi\)
\(810\) 0.792685 + 1.37297i 0.0278521 + 0.0482413i
\(811\) 19.7163i 0.692335i 0.938173 + 0.346167i \(0.112517\pi\)
−0.938173 + 0.346167i \(0.887483\pi\)
\(812\) 0 0
\(813\) 3.85182i 0.135089i
\(814\) −10.8473 + 6.26270i −0.380198 + 0.219507i
\(815\) 12.7935 22.1590i 0.448138 0.776197i
\(816\) 9.87688 17.1073i 0.345760 0.598874i
\(817\) −35.7886 + 20.6625i −1.25208 + 0.722891i
\(818\) 19.3251 0.675686
\(819\) 0 0
\(820\) 10.7935 0.376926
\(821\) 13.8118 7.97427i 0.482037 0.278304i −0.239228 0.970963i \(-0.576894\pi\)
0.721265 + 0.692659i \(0.243561\pi\)
\(822\) 15.5199 26.8812i 0.541318 0.937590i
\(823\) −11.9969 + 20.7793i −0.418186 + 0.724320i −0.995757 0.0920209i \(-0.970667\pi\)
0.577571 + 0.816340i \(0.304001\pi\)
\(824\) 11.3373 6.54561i 0.394954 0.228027i
\(825\) 13.7352i 0.478200i
\(826\) 0 0
\(827\) 49.4280i 1.71878i 0.511321 + 0.859390i \(0.329156\pi\)
−0.511321 + 0.859390i \(0.670844\pi\)
\(828\) −4.18861 7.25488i −0.145564 0.252124i
\(829\) 5.88390 10.1912i 0.204356 0.353956i −0.745571 0.666426i \(-0.767823\pi\)
0.949927 + 0.312471i \(0.101157\pi\)
\(830\) −24.7091 14.2658i −0.857664 0.495173i
\(831\) −1.59155 2.75664i −0.0552101 0.0956268i
\(832\) 3.27280 + 1.51286i 0.113464 + 0.0524491i
\(833\) 0 0
\(834\) 12.6625i 0.438468i
\(835\) −30.8450 53.4251i −1.06743 1.84885i
\(836\) −7.57133 + 13.1139i −0.261860 + 0.453555i
\(837\) 14.1439 + 8.16597i 0.488884 + 0.282257i
\(838\) −11.1173 + 6.41856i −0.384040 + 0.221725i
\(839\) 16.6687i 0.575468i 0.957710 + 0.287734i \(0.0929020\pi\)
−0.957710 + 0.287734i \(0.907098\pi\)
\(840\) 0 0
\(841\) 28.3251 0.976728
\(842\) 10.6656 + 18.4734i 0.367562 + 0.636636i
\(843\) 17.2314 + 9.94855i 0.593481 + 0.342646i
\(844\) 7.51988 13.0248i 0.258845 0.448333i
\(845\) 31.1720 + 11.1107i 1.07235 + 0.382221i
\(846\) 53.9362 1.85436
\(847\) 0 0
\(848\) −6.00000 −0.206041
\(849\) 6.73730 + 11.6693i 0.231224 + 0.400491i
\(850\) 9.08966 + 5.24792i 0.311773 + 0.180002i
\(851\) 5.73073 + 3.30864i 0.196447 + 0.113419i
\(852\) −26.8812 + 15.5199i −0.920936 + 0.531702i
\(853\) 23.1286i 0.791909i −0.918270 0.395955i \(-0.870414\pi\)
0.918270 0.395955i \(-0.129586\pi\)
\(854\) 0 0
\(855\) 55.0789 1.88366
\(856\) −3.04831 + 1.75994i −0.104189 + 0.0601535i
\(857\) −6.82543 + 11.8220i −0.233152 + 0.403832i −0.958734 0.284304i \(-0.908237\pi\)
0.725582 + 0.688136i \(0.241571\pi\)
\(858\) −27.3437 + 19.2825i −0.933500 + 0.658295i
\(859\) 6.41856 + 11.1173i 0.218998 + 0.379316i 0.954502 0.298204i \(-0.0963877\pi\)
−0.735504 + 0.677521i \(0.763054\pi\)
\(860\) 23.1427i 0.789158i
\(861\) 0 0
\(862\) 11.5713 0.394121
\(863\) −34.3143 + 19.8114i −1.16807 + 0.674388i −0.953226 0.302260i \(-0.902259\pi\)
−0.214848 + 0.976647i \(0.568926\pi\)
\(864\) 4.24578 + 2.45130i 0.144444 + 0.0833951i
\(865\) −45.4075 26.2160i −1.54390 0.891371i
\(866\) −25.4408 + 14.6883i −0.864515 + 0.499128i
\(867\) 92.7219 3.14900
\(868\) 0 0
\(869\) 16.1605i 0.548209i
\(870\) −26.8450 46.4969i −0.910130 1.57639i
\(871\) −11.9686 16.9721i −0.405540 0.575079i
\(872\) −6.57133 + 11.3819i −0.222533 + 0.385439i
\(873\) 31.9883 18.4684i 1.08264 0.625062i
\(874\) 8.00000 0.270604
\(875\) 0 0
\(876\) 25.9938i 0.878250i
\(877\) 41.0239 23.6852i 1.38528 0.799792i 0.392502 0.919751i \(-0.371610\pi\)
0.992779 + 0.119959i \(0.0382764\pi\)
\(878\) 0.0891186 + 0.0514526i 0.00300761 + 0.00173644i
\(879\) −18.4235 10.6368i −0.621410 0.358771i
\(880\) −4.24006 7.34400i −0.142932 0.247566i
\(881\) −43.8052 −1.47584 −0.737918 0.674891i \(-0.764191\pi\)
−0.737918 + 0.674891i \(0.764191\pi\)
\(882\) 0 0
\(883\) −1.81757 −0.0611661 −0.0305830 0.999532i \(-0.509736\pi\)
−0.0305830 + 0.999532i \(0.509736\pi\)
\(884\) 2.31332 + 25.4629i 0.0778055 + 0.856409i
\(885\) 28.5971 49.5316i 0.961280 1.66499i
\(886\) 23.5062 + 13.5713i 0.789708 + 0.455938i
\(887\) −3.63682 6.29916i −0.122113 0.211505i 0.798488 0.602011i \(-0.205634\pi\)
−0.920601 + 0.390506i \(0.872300\pi\)
\(888\) −10.4739 −0.351483
\(889\) 0 0
\(890\) 38.4163i 1.28772i
\(891\) 1.79672 1.03734i 0.0601924 0.0347521i
\(892\) −11.1740 6.45130i −0.374133 0.216006i
\(893\) −25.7538 + 44.6068i −0.861817 + 1.49271i
\(894\) 8.09430 + 14.0197i 0.270714 + 0.468890i
\(895\) 44.1029i 1.47420i
\(896\) 0 0
\(897\) 16.0453 + 7.41698i 0.535736 + 0.247646i
\(898\) −4.85116 8.40245i −0.161885 0.280393i
\(899\) 21.8431 + 12.6111i 0.728507 + 0.420604i
\(900\) −3.52264 + 6.10139i −0.117421 + 0.203380i
\(901\) −21.2736 36.8470i −0.708728 1.22755i
\(902\) 14.1248i 0.470304i
\(903\) 0 0
\(904\) 1.75994i 0.0585348i
\(905\) −37.2938 + 21.5316i −1.23969 + 0.715734i
\(906\) −4.30555 + 7.45743i −0.143042 + 0.247756i
\(907\) 6.23388 10.7974i 0.206993 0.358522i −0.743773 0.668432i \(-0.766966\pi\)
0.950766 + 0.309910i \(0.100299\pi\)
\(908\) −7.81651 + 4.51286i −0.259400 + 0.149765i
\(909\) −17.5854 −0.583270
\(910\) 0 0
\(911\) 1.92047 0.0636282 0.0318141 0.999494i \(-0.489872\pi\)
0.0318141 + 0.999494i \(0.489872\pi\)
\(912\) −10.9661 + 6.33127i −0.363124 + 0.209649i
\(913\) −18.6687 + 32.3352i −0.617845 + 1.07014i
\(914\) 18.0850 31.3242i 0.598200 1.03611i
\(915\) −4.82492 + 2.78567i −0.159507 + 0.0920913i
\(916\) 14.1684i 0.468137i
\(917\) 0 0
\(918\) 34.7655i 1.14743i
\(919\) 6.61418 + 11.4561i 0.218182 + 0.377902i 0.954252 0.299003i \(-0.0966541\pi\)
−0.736070 + 0.676905i \(0.763321\pi\)
\(920\) −2.24006 + 3.87990i −0.0738526 + 0.127916i
\(921\) −34.6208 19.9883i −1.14079 0.658637i
\(922\) 10.4871 + 18.1643i 0.345375 + 0.598208i
\(923\) 16.8573 36.4678i 0.554866 1.20035i
\(924\) 0 0
\(925\) 5.56516i 0.182981i
\(926\) 12.4225 + 21.5164i 0.408228 + 0.707072i
\(927\) −31.1567 + 53.9650i −1.02332 + 1.77244i
\(928\) 6.55697 + 3.78567i 0.215243 + 0.124271i
\(929\) 1.12861 0.651601i 0.0370284 0.0213783i −0.481372 0.876517i \(-0.659861\pi\)
0.518400 + 0.855138i \(0.326528\pi\)
\(930\) 23.6228i 0.774622i
\(931\) 0 0
\(932\) 7.38273 0.241829
\(933\) −3.03976 5.26502i −0.0995174 0.172369i
\(934\) 1.10155 + 0.635981i 0.0360438 + 0.0208099i
\(935\) 30.0672 52.0779i 0.983302 1.70313i
\(936\) −17.0918 + 1.55281i −0.558664 + 0.0507551i
\(937\) 14.9602 0.488730 0.244365 0.969683i \(-0.421421\pi\)
0.244365 + 0.969683i \(0.421421\pi\)
\(938\) 0 0
\(939\) 43.3766 1.41554
\(940\) −14.4225 24.9805i −0.470410 0.814774i
\(941\) −8.60354 4.96726i −0.280467 0.161928i 0.353168 0.935560i \(-0.385105\pi\)
−0.633635 + 0.773632i \(0.718438\pi\)
\(942\) −19.1268 11.0429i −0.623184 0.359796i
\(943\) −6.46250 + 3.73113i −0.210448 + 0.121502i
\(944\) 8.06549i 0.262509i
\(945\) 0 0
\(946\) −30.2853 −0.984661
\(947\) 35.0704 20.2479i 1.13964 0.657969i 0.193295 0.981141i \(-0.438082\pi\)
0.946340 + 0.323172i \(0.104749\pi\)
\(948\) 6.75685 11.7032i 0.219452 0.380103i
\(949\) −19.3895 27.4953i −0.629408 0.892537i
\(950\) −3.36402 5.82665i −0.109143 0.189042i
\(951\) 39.5247i 1.28168i
\(952\) 0 0
\(953\) −18.9602 −0.614182 −0.307091 0.951680i \(-0.599356\pi\)
−0.307091 + 0.951680i \(0.599356\pi\)
\(954\) 24.7334 14.2798i 0.800773 0.462326i
\(955\) −9.76326 5.63682i −0.315932 0.182403i
\(956\) 5.30958 + 3.06549i 0.171724 + 0.0991450i
\(957\) −60.8475 + 35.1303i −1.96692 + 1.13560i
\(958\) −22.0515 −0.712450
\(959\) 0 0
\(960\) 7.09122i 0.228868i
\(961\) −9.95130 17.2362i −0.321010 0.556005i
\(962\) 11.0790 7.81278i 0.357200 0.251894i
\(963\) 8.37721 14.5098i 0.269952 0.467570i
\(964\) 23.6642 13.6625i 0.762174 0.440041i
\(965\) −6.31341 −0.203236
\(966\) 0 0
\(967\) 4.63448i 0.149035i −0.997220 0.0745174i \(-0.976258\pi\)
0.997220 0.0745174i \(-0.0237416\pi\)
\(968\) −0.0843433 + 0.0486956i −0.00271090 + 0.00156514i
\(969\) −77.7629 44.8964i −2.49810 1.44228i
\(970\) −17.1073 9.87688i −0.549281 0.317128i
\(971\) −11.8668 20.5539i −0.380823 0.659605i 0.610357 0.792126i \(-0.291026\pi\)
−0.991180 + 0.132522i \(0.957693\pi\)
\(972\) 16.4427 0.527400
\(973\) 0 0
\(974\) 4.42867 0.141904
\(975\) −1.34506 14.8051i −0.0430764 0.474144i
\(976\) 0.392834 0.680408i 0.0125743 0.0217793i
\(977\) 4.10676 + 2.37104i 0.131387 + 0.0758562i 0.564253 0.825602i \(-0.309164\pi\)
−0.432866 + 0.901458i \(0.642498\pi\)
\(978\) −14.0000 24.2487i −0.447671 0.775388i
\(979\) −50.2730 −1.60673
\(980\) 0 0
\(981\) 62.5583i 1.99733i
\(982\) 26.8705 15.5137i 0.857473 0.495062i
\(983\) −20.5607 11.8707i −0.655783 0.378617i 0.134885 0.990861i \(-0.456933\pi\)
−0.790668 + 0.612245i \(0.790267\pi\)
\(984\) 5.90570 10.2290i 0.188267 0.326088i
\(985\) −11.2658 19.5129i −0.358958 0.621733i
\(986\) 53.6900i 1.70984i
\(987\) 0 0
\(988\) 6.87688 14.8769i 0.218783 0.473297i
\(989\) 8.00000 + 13.8564i 0.254385 + 0.440608i
\(990\) 34.9570 + 20.1824i 1.11101 + 0.641440i
\(991\) −20.4256 + 35.3781i −0.648840 + 1.12382i 0.334560 + 0.942374i \(0.391412\pi\)
−0.983400 + 0.181449i \(0.941921\pi\)
\(992\) 1.66564 + 2.88497i 0.0528840 + 0.0915978i
\(993\) 7.94237i 0.252044i
\(994\) 0 0
\(995\) 2.77781i 0.0880624i
\(996\) −27.0392 + 15.6111i −0.856770 + 0.494657i
\(997\) 2.93844 5.08953i 0.0930614 0.161187i −0.815736 0.578424i \(-0.803668\pi\)
0.908798 + 0.417237i \(0.137001\pi\)
\(998\) −11.5425 + 19.9922i −0.365372 + 0.632843i
\(999\) 15.9639 9.21676i 0.505075 0.291605i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1274.2.n.m.753.1 12
7.2 even 3 inner 1274.2.n.m.961.4 12
7.3 odd 6 1274.2.d.l.883.1 6
7.4 even 3 182.2.d.b.155.3 6
7.5 odd 6 1274.2.n.n.961.6 12
7.6 odd 2 1274.2.n.n.753.3 12
13.12 even 2 inner 1274.2.n.m.753.4 12
21.11 odd 6 1638.2.c.i.883.4 6
28.11 odd 6 1456.2.k.b.337.2 6
91.12 odd 6 1274.2.n.n.961.3 12
91.18 odd 12 2366.2.a.x.1.3 3
91.25 even 6 182.2.d.b.155.6 yes 6
91.38 odd 6 1274.2.d.l.883.4 6
91.51 even 6 inner 1274.2.n.m.961.1 12
91.60 odd 12 2366.2.a.bc.1.3 3
91.90 odd 2 1274.2.n.n.753.6 12
273.116 odd 6 1638.2.c.i.883.3 6
364.207 odd 6 1456.2.k.b.337.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
182.2.d.b.155.3 6 7.4 even 3
182.2.d.b.155.6 yes 6 91.25 even 6
1274.2.d.l.883.1 6 7.3 odd 6
1274.2.d.l.883.4 6 91.38 odd 6
1274.2.n.m.753.1 12 1.1 even 1 trivial
1274.2.n.m.753.4 12 13.12 even 2 inner
1274.2.n.m.961.1 12 91.51 even 6 inner
1274.2.n.m.961.4 12 7.2 even 3 inner
1274.2.n.n.753.3 12 7.6 odd 2
1274.2.n.n.753.6 12 91.90 odd 2
1274.2.n.n.961.3 12 91.12 odd 6
1274.2.n.n.961.6 12 7.5 odd 6
1456.2.k.b.337.1 6 364.207 odd 6
1456.2.k.b.337.2 6 28.11 odd 6
1638.2.c.i.883.3 6 273.116 odd 6
1638.2.c.i.883.4 6 21.11 odd 6
2366.2.a.x.1.3 3 91.18 odd 12
2366.2.a.bc.1.3 3 91.60 odd 12