Properties

Label 1638.2.c.i.883.3
Level $1638$
Weight $2$
Character 1638.883
Analytic conductor $13.079$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1638,2,Mod(883,1638)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1638.883"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1638, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,-6,0,0,0,0,0,-4,0,0,-10,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.30647296.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 8x^{3} + 25x^{2} - 10x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 182)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 883.3
Root \(-1.27280 - 1.27280i\) of defining polynomial
Character \(\chi\) \(=\) 1638.883
Dual form 1638.2.c.i.883.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000 q^{4} +2.54561i q^{5} -1.00000i q^{7} +1.00000i q^{8} +2.54561 q^{10} -3.33127i q^{11} +(-3.27280 + 1.51286i) q^{13} -1.00000 q^{14} +1.00000 q^{16} +7.09122 q^{17} +4.54561i q^{19} -2.54561i q^{20} -3.33127 q^{22} +1.75994 q^{23} -1.48012 q^{25} +(1.51286 + 3.27280i) q^{26} +1.00000i q^{28} -7.57133 q^{29} +3.33127i q^{31} -1.00000i q^{32} -7.09122i q^{34} +2.54561 q^{35} -3.75994i q^{37} +4.54561 q^{38} -2.54561 q^{40} +4.24006i q^{41} +9.09122 q^{43} +3.33127i q^{44} -1.75994i q^{46} +11.3313i q^{47} -1.00000 q^{49} +1.48012i q^{50} +(3.27280 - 1.51286i) q^{52} +6.00000 q^{53} +8.48012 q^{55} +1.00000 q^{56} +7.57133i q^{58} +8.06549i q^{59} -0.785667 q^{61} +3.33127 q^{62} -1.00000 q^{64} +(-3.85116 - 8.33127i) q^{65} +5.75994i q^{67} -7.09122 q^{68} -2.54561i q^{70} +11.1427i q^{71} +9.33127i q^{73} -3.75994 q^{74} -4.54561i q^{76} -3.33127 q^{77} +4.85116 q^{79} +2.54561i q^{80} +4.24006 q^{82} +11.2082i q^{83} +18.0515i q^{85} -9.09122i q^{86} +3.33127 q^{88} -15.0912i q^{89} +(1.51286 + 3.27280i) q^{91} -1.75994 q^{92} +11.3313 q^{94} -11.5713 q^{95} -7.75994i q^{97} +1.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{4} - 4 q^{10} - 10 q^{13} - 6 q^{14} + 6 q^{16} + 4 q^{17} + 14 q^{22} + 6 q^{23} - 18 q^{25} + 4 q^{26} - 16 q^{29} - 4 q^{35} + 8 q^{38} + 4 q^{40} + 16 q^{43} - 6 q^{49} + 10 q^{52} + 36 q^{53}+ \cdots - 40 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1638\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(703\) \(911\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 2.54561i 1.13843i 0.822189 + 0.569215i \(0.192753\pi\)
−0.822189 + 0.569215i \(0.807247\pi\)
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 2.54561 0.804992
\(11\) 3.33127i 1.00442i −0.864747 0.502209i \(-0.832521\pi\)
0.864747 0.502209i \(-0.167479\pi\)
\(12\) 0 0
\(13\) −3.27280 + 1.51286i −0.907712 + 0.419593i
\(14\) −1.00000 −0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 7.09122 1.71987 0.859936 0.510402i \(-0.170503\pi\)
0.859936 + 0.510402i \(0.170503\pi\)
\(18\) 0 0
\(19\) 4.54561i 1.04283i 0.853302 + 0.521417i \(0.174596\pi\)
−0.853302 + 0.521417i \(0.825404\pi\)
\(20\) 2.54561i 0.569215i
\(21\) 0 0
\(22\) −3.33127 −0.710230
\(23\) 1.75994 0.366973 0.183487 0.983022i \(-0.441262\pi\)
0.183487 + 0.983022i \(0.441262\pi\)
\(24\) 0 0
\(25\) −1.48012 −0.296024
\(26\) 1.51286 + 3.27280i 0.296697 + 0.641850i
\(27\) 0 0
\(28\) 1.00000i 0.188982i
\(29\) −7.57133 −1.40596 −0.702981 0.711209i \(-0.748148\pi\)
−0.702981 + 0.711209i \(0.748148\pi\)
\(30\) 0 0
\(31\) 3.33127i 0.598315i 0.954204 + 0.299157i \(0.0967055\pi\)
−0.954204 + 0.299157i \(0.903294\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 7.09122i 1.21613i
\(35\) 2.54561 0.430286
\(36\) 0 0
\(37\) 3.75994i 0.618130i −0.951041 0.309065i \(-0.899984\pi\)
0.951041 0.309065i \(-0.100016\pi\)
\(38\) 4.54561 0.737395
\(39\) 0 0
\(40\) −2.54561 −0.402496
\(41\) 4.24006i 0.662186i 0.943598 + 0.331093i \(0.107417\pi\)
−0.943598 + 0.331093i \(0.892583\pi\)
\(42\) 0 0
\(43\) 9.09122 1.38640 0.693199 0.720747i \(-0.256201\pi\)
0.693199 + 0.720747i \(0.256201\pi\)
\(44\) 3.33127i 0.502209i
\(45\) 0 0
\(46\) 1.75994i 0.259489i
\(47\) 11.3313i 1.65284i 0.563057 + 0.826418i \(0.309625\pi\)
−0.563057 + 0.826418i \(0.690375\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 1.48012i 0.209320i
\(51\) 0 0
\(52\) 3.27280 1.51286i 0.453856 0.209796i
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) 8.48012 1.14346
\(56\) 1.00000 0.133631
\(57\) 0 0
\(58\) 7.57133i 0.994165i
\(59\) 8.06549i 1.05004i 0.851091 + 0.525019i \(0.175942\pi\)
−0.851091 + 0.525019i \(0.824058\pi\)
\(60\) 0 0
\(61\) −0.785667 −0.100594 −0.0502972 0.998734i \(-0.516017\pi\)
−0.0502972 + 0.998734i \(0.516017\pi\)
\(62\) 3.33127 0.423072
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −3.85116 8.33127i −0.477677 1.03337i
\(66\) 0 0
\(67\) 5.75994i 0.703689i 0.936059 + 0.351844i \(0.114445\pi\)
−0.936059 + 0.351844i \(0.885555\pi\)
\(68\) −7.09122 −0.859936
\(69\) 0 0
\(70\) 2.54561i 0.304258i
\(71\) 11.1427i 1.32239i 0.750213 + 0.661196i \(0.229951\pi\)
−0.750213 + 0.661196i \(0.770049\pi\)
\(72\) 0 0
\(73\) 9.33127i 1.09214i 0.837739 + 0.546072i \(0.183877\pi\)
−0.837739 + 0.546072i \(0.816123\pi\)
\(74\) −3.75994 −0.437084
\(75\) 0 0
\(76\) 4.54561i 0.521417i
\(77\) −3.33127 −0.379634
\(78\) 0 0
\(79\) 4.85116 0.545798 0.272899 0.962043i \(-0.412018\pi\)
0.272899 + 0.962043i \(0.412018\pi\)
\(80\) 2.54561i 0.284608i
\(81\) 0 0
\(82\) 4.24006 0.468236
\(83\) 11.2082i 1.23026i 0.788428 + 0.615128i \(0.210895\pi\)
−0.788428 + 0.615128i \(0.789105\pi\)
\(84\) 0 0
\(85\) 18.0515i 1.95795i
\(86\) 9.09122i 0.980331i
\(87\) 0 0
\(88\) 3.33127 0.355115
\(89\) 15.0912i 1.59967i −0.600223 0.799833i \(-0.704921\pi\)
0.600223 0.799833i \(-0.295079\pi\)
\(90\) 0 0
\(91\) 1.51286 + 3.27280i 0.158591 + 0.343083i
\(92\) −1.75994 −0.183487
\(93\) 0 0
\(94\) 11.3313 1.16873
\(95\) −11.5713 −1.18719
\(96\) 0 0
\(97\) 7.75994i 0.787903i −0.919131 0.393951i \(-0.871108\pi\)
0.919131 0.393951i \(-0.128892\pi\)
\(98\) 1.00000i 0.101015i
\(99\) 0 0
\(100\) 1.48012 0.148012
\(101\) 3.69445 0.367612 0.183806 0.982963i \(-0.441158\pi\)
0.183806 + 0.982963i \(0.441158\pi\)
\(102\) 0 0
\(103\) 13.0912 1.28992 0.644958 0.764218i \(-0.276875\pi\)
0.644958 + 0.764218i \(0.276875\pi\)
\(104\) −1.51286 3.27280i −0.148348 0.320925i
\(105\) 0 0
\(106\) 6.00000i 0.582772i
\(107\) 3.51988 0.340280 0.170140 0.985420i \(-0.445578\pi\)
0.170140 + 0.985420i \(0.445578\pi\)
\(108\) 0 0
\(109\) 13.1427i 1.25884i 0.777066 + 0.629420i \(0.216707\pi\)
−0.777066 + 0.629420i \(0.783293\pi\)
\(110\) 8.48012i 0.808548i
\(111\) 0 0
\(112\) 1.00000i 0.0944911i
\(113\) 1.75994 0.165561 0.0827806 0.996568i \(-0.473620\pi\)
0.0827806 + 0.996568i \(0.473620\pi\)
\(114\) 0 0
\(115\) 4.48012i 0.417773i
\(116\) 7.57133 0.702981
\(117\) 0 0
\(118\) 8.06549 0.742488
\(119\) 7.09122i 0.650051i
\(120\) 0 0
\(121\) −0.0973913 −0.00885375
\(122\) 0.785667i 0.0711309i
\(123\) 0 0
\(124\) 3.33127i 0.299157i
\(125\) 8.96024i 0.801428i
\(126\) 0 0
\(127\) −12.9026 −1.14492 −0.572461 0.819932i \(-0.694011\pi\)
−0.572461 + 0.819932i \(0.694011\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) −8.33127 + 3.85116i −0.730701 + 0.337769i
\(131\) 16.7795 1.46603 0.733015 0.680212i \(-0.238112\pi\)
0.733015 + 0.680212i \(0.238112\pi\)
\(132\) 0 0
\(133\) 4.54561 0.394154
\(134\) 5.75994 0.497583
\(135\) 0 0
\(136\) 7.09122i 0.608067i
\(137\) 11.1427i 0.951982i −0.879450 0.475991i \(-0.842089\pi\)
0.879450 0.475991i \(-0.157911\pi\)
\(138\) 0 0
\(139\) 4.54561 0.385553 0.192777 0.981243i \(-0.438251\pi\)
0.192777 + 0.981243i \(0.438251\pi\)
\(140\) −2.54561 −0.215143
\(141\) 0 0
\(142\) 11.1427 0.935072
\(143\) 5.03976 + 10.9026i 0.421446 + 0.911722i
\(144\) 0 0
\(145\) 19.2736i 1.60059i
\(146\) 9.33127 0.772262
\(147\) 0 0
\(148\) 3.75994i 0.309065i
\(149\) 5.81139i 0.476088i −0.971254 0.238044i \(-0.923494\pi\)
0.971254 0.238044i \(-0.0765062\pi\)
\(150\) 0 0
\(151\) 3.09122i 0.251560i −0.992058 0.125780i \(-0.959857\pi\)
0.992058 0.125780i \(-0.0401433\pi\)
\(152\) −4.54561 −0.368697
\(153\) 0 0
\(154\) 3.33127i 0.268442i
\(155\) −8.48012 −0.681140
\(156\) 0 0
\(157\) −7.92834 −0.632750 −0.316375 0.948634i \(-0.602466\pi\)
−0.316375 + 0.948634i \(0.602466\pi\)
\(158\) 4.85116i 0.385937i
\(159\) 0 0
\(160\) 2.54561 0.201248
\(161\) 1.75994i 0.138703i
\(162\) 0 0
\(163\) 10.0515i 0.787291i −0.919262 0.393645i \(-0.871214\pi\)
0.919262 0.393645i \(-0.128786\pi\)
\(164\) 4.24006i 0.331093i
\(165\) 0 0
\(166\) 11.2082 0.869922
\(167\) 24.2339i 1.87527i −0.347616 0.937637i \(-0.613009\pi\)
0.347616 0.937637i \(-0.386991\pi\)
\(168\) 0 0
\(169\) 8.42249 9.90261i 0.647884 0.761739i
\(170\) 18.0515 1.38448
\(171\) 0 0
\(172\) −9.09122 −0.693199
\(173\) −20.5971 −1.56597 −0.782983 0.622043i \(-0.786303\pi\)
−0.782983 + 0.622043i \(0.786303\pi\)
\(174\) 0 0
\(175\) 1.48012i 0.111886i
\(176\) 3.33127i 0.251104i
\(177\) 0 0
\(178\) −15.0912 −1.13113
\(179\) −17.3251 −1.29494 −0.647469 0.762091i \(-0.724173\pi\)
−0.647469 + 0.762091i \(0.724173\pi\)
\(180\) 0 0
\(181\) −16.9166 −1.25740 −0.628702 0.777646i \(-0.716414\pi\)
−0.628702 + 0.777646i \(0.716414\pi\)
\(182\) 3.27280 1.51286i 0.242596 0.112141i
\(183\) 0 0
\(184\) 1.75994i 0.129745i
\(185\) 9.57133 0.703698
\(186\) 0 0
\(187\) 23.6228i 1.72747i
\(188\) 11.3313i 0.826418i
\(189\) 0 0
\(190\) 11.5713i 0.839473i
\(191\) −4.42867 −0.320447 −0.160224 0.987081i \(-0.551221\pi\)
−0.160224 + 0.987081i \(0.551221\pi\)
\(192\) 0 0
\(193\) 2.48012i 0.178523i −0.996008 0.0892614i \(-0.971549\pi\)
0.996008 0.0892614i \(-0.0284507\pi\)
\(194\) −7.75994 −0.557131
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) 8.85116i 0.630619i −0.948989 0.315309i \(-0.897892\pi\)
0.948989 0.315309i \(-0.102108\pi\)
\(198\) 0 0
\(199\) 1.09122 0.0773542 0.0386771 0.999252i \(-0.487686\pi\)
0.0386771 + 0.999252i \(0.487686\pi\)
\(200\) 1.48012i 0.104660i
\(201\) 0 0
\(202\) 3.69445i 0.259941i
\(203\) 7.57133i 0.531403i
\(204\) 0 0
\(205\) −10.7935 −0.753853
\(206\) 13.0912i 0.912108i
\(207\) 0 0
\(208\) −3.27280 + 1.51286i −0.226928 + 0.104898i
\(209\) 15.1427 1.04744
\(210\) 0 0
\(211\) 15.0398 1.03538 0.517690 0.855568i \(-0.326792\pi\)
0.517690 + 0.855568i \(0.326792\pi\)
\(212\) −6.00000 −0.412082
\(213\) 0 0
\(214\) 3.51988i 0.240614i
\(215\) 23.1427i 1.57832i
\(216\) 0 0
\(217\) 3.33127 0.226142
\(218\) 13.1427 0.890134
\(219\) 0 0
\(220\) −8.48012 −0.571729
\(221\) −23.2082 + 10.7280i −1.56115 + 0.721646i
\(222\) 0 0
\(223\) 12.9026i 0.864023i 0.901868 + 0.432011i \(0.142196\pi\)
−0.901868 + 0.432011i \(0.857804\pi\)
\(224\) −1.00000 −0.0668153
\(225\) 0 0
\(226\) 1.75994i 0.117070i
\(227\) 9.02573i 0.599058i 0.954087 + 0.299529i \(0.0968296\pi\)
−0.954087 + 0.299529i \(0.903170\pi\)
\(228\) 0 0
\(229\) 14.1684i 0.936274i −0.883656 0.468137i \(-0.844925\pi\)
0.883656 0.468137i \(-0.155075\pi\)
\(230\) 4.48012 0.295410
\(231\) 0 0
\(232\) 7.57133i 0.497082i
\(233\) 7.38273 0.483659 0.241829 0.970319i \(-0.422253\pi\)
0.241829 + 0.970319i \(0.422253\pi\)
\(234\) 0 0
\(235\) −28.8450 −1.88164
\(236\) 8.06549i 0.525019i
\(237\) 0 0
\(238\) −7.09122 −0.459655
\(239\) 6.13098i 0.396580i 0.980143 + 0.198290i \(0.0635388\pi\)
−0.980143 + 0.198290i \(0.936461\pi\)
\(240\) 0 0
\(241\) 27.3251i 1.76016i 0.474821 + 0.880082i \(0.342513\pi\)
−0.474821 + 0.880082i \(0.657487\pi\)
\(242\) 0.0973913i 0.00626055i
\(243\) 0 0
\(244\) 0.785667 0.0502972
\(245\) 2.54561i 0.162633i
\(246\) 0 0
\(247\) −6.87688 14.8769i −0.437566 0.946593i
\(248\) −3.33127 −0.211536
\(249\) 0 0
\(250\) 8.96024 0.566695
\(251\) −16.4880 −1.04071 −0.520356 0.853949i \(-0.674201\pi\)
−0.520356 + 0.853949i \(0.674201\pi\)
\(252\) 0 0
\(253\) 5.86285i 0.368594i
\(254\) 12.9026i 0.809582i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 1.14267 0.0712777 0.0356388 0.999365i \(-0.488653\pi\)
0.0356388 + 0.999365i \(0.488653\pi\)
\(258\) 0 0
\(259\) −3.75994 −0.233631
\(260\) 3.85116 + 8.33127i 0.238839 + 0.516684i
\(261\) 0 0
\(262\) 16.7795i 1.03664i
\(263\) 10.6111 0.654308 0.327154 0.944971i \(-0.393910\pi\)
0.327154 + 0.944971i \(0.393910\pi\)
\(264\) 0 0
\(265\) 15.2736i 0.938253i
\(266\) 4.54561i 0.278709i
\(267\) 0 0
\(268\) 5.75994i 0.351844i
\(269\) 12.0593 0.735269 0.367635 0.929970i \(-0.380168\pi\)
0.367635 + 0.929970i \(0.380168\pi\)
\(270\) 0 0
\(271\) 1.38273i 0.0839947i 0.999118 + 0.0419974i \(0.0133721\pi\)
−0.999118 + 0.0419974i \(0.986628\pi\)
\(272\) 7.09122 0.429968
\(273\) 0 0
\(274\) −11.1427 −0.673153
\(275\) 4.93068i 0.297331i
\(276\) 0 0
\(277\) 1.14267 0.0686563 0.0343281 0.999411i \(-0.489071\pi\)
0.0343281 + 0.999411i \(0.489071\pi\)
\(278\) 4.54561i 0.272627i
\(279\) 0 0
\(280\) 2.54561i 0.152129i
\(281\) 7.14267i 0.426096i −0.977042 0.213048i \(-0.931661\pi\)
0.977042 0.213048i \(-0.0683390\pi\)
\(282\) 0 0
\(283\) −4.83712 −0.287537 −0.143768 0.989611i \(-0.545922\pi\)
−0.143768 + 0.989611i \(0.545922\pi\)
\(284\) 11.1427i 0.661196i
\(285\) 0 0
\(286\) 10.9026 5.03976i 0.644685 0.298007i
\(287\) 4.24006 0.250283
\(288\) 0 0
\(289\) 33.2853 1.95796
\(290\) −19.2736 −1.13179
\(291\) 0 0
\(292\) 9.33127i 0.546072i
\(293\) 7.63682i 0.446148i 0.974802 + 0.223074i \(0.0716092\pi\)
−0.974802 + 0.223074i \(0.928391\pi\)
\(294\) 0 0
\(295\) −20.5316 −1.19539
\(296\) 3.75994 0.218542
\(297\) 0 0
\(298\) −5.81139 −0.336645
\(299\) −5.75994 + 2.66255i −0.333106 + 0.153979i
\(300\) 0 0
\(301\) 9.09122i 0.524009i
\(302\) −3.09122 −0.177879
\(303\) 0 0
\(304\) 4.54561i 0.260708i
\(305\) 2.00000i 0.114520i
\(306\) 0 0
\(307\) 14.3508i 0.819045i −0.912300 0.409522i \(-0.865695\pi\)
0.912300 0.409522i \(-0.134305\pi\)
\(308\) 3.33127 0.189817
\(309\) 0 0
\(310\) 8.48012i 0.481638i
\(311\) −2.18243 −0.123754 −0.0618771 0.998084i \(-0.519709\pi\)
−0.0618771 + 0.998084i \(0.519709\pi\)
\(312\) 0 0
\(313\) 15.5713 0.880144 0.440072 0.897963i \(-0.354953\pi\)
0.440072 + 0.897963i \(0.354953\pi\)
\(314\) 7.92834i 0.447422i
\(315\) 0 0
\(316\) −4.85116 −0.272899
\(317\) 14.1886i 0.796912i 0.917188 + 0.398456i \(0.130454\pi\)
−0.917188 + 0.398456i \(0.869546\pi\)
\(318\) 0 0
\(319\) 25.2222i 1.41217i
\(320\) 2.54561i 0.142304i
\(321\) 0 0
\(322\) −1.75994 −0.0980777
\(323\) 32.2339i 1.79354i
\(324\) 0 0
\(325\) 4.84414 2.23922i 0.268704 0.124209i
\(326\) −10.0515 −0.556698
\(327\) 0 0
\(328\) −4.24006 −0.234118
\(329\) 11.3313 0.624713
\(330\) 0 0
\(331\) 2.85116i 0.156714i 0.996925 + 0.0783569i \(0.0249674\pi\)
−0.996925 + 0.0783569i \(0.975033\pi\)
\(332\) 11.2082i 0.615128i
\(333\) 0 0
\(334\) −24.2339 −1.32602
\(335\) −14.6625 −0.801101
\(336\) 0 0
\(337\) −32.5254 −1.77177 −0.885886 0.463904i \(-0.846448\pi\)
−0.885886 + 0.463904i \(0.846448\pi\)
\(338\) −9.90261 8.42249i −0.538631 0.458123i
\(339\) 0 0
\(340\) 18.0515i 0.978977i
\(341\) 11.0974 0.600957
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 9.09122i 0.490165i
\(345\) 0 0
\(346\) 20.5971i 1.10730i
\(347\) −5.94855 −0.319335 −0.159667 0.987171i \(-0.551042\pi\)
−0.159667 + 0.987171i \(0.551042\pi\)
\(348\) 0 0
\(349\) 32.9619i 1.76441i −0.470864 0.882206i \(-0.656058\pi\)
0.470864 0.882206i \(-0.343942\pi\)
\(350\) 1.48012 0.0791157
\(351\) 0 0
\(352\) −3.33127 −0.177558
\(353\) 0.851156i 0.0453025i −0.999743 0.0226512i \(-0.992789\pi\)
0.999743 0.0226512i \(-0.00721073\pi\)
\(354\) 0 0
\(355\) −28.3649 −1.50545
\(356\) 15.0912i 0.799833i
\(357\) 0 0
\(358\) 17.3251i 0.915660i
\(359\) 27.9362i 1.47442i −0.675666 0.737208i \(-0.736144\pi\)
0.675666 0.737208i \(-0.263856\pi\)
\(360\) 0 0
\(361\) −1.66255 −0.0875026
\(362\) 16.9166i 0.889119i
\(363\) 0 0
\(364\) −1.51286 3.27280i −0.0792956 0.171542i
\(365\) −23.7538 −1.24333
\(366\) 0 0
\(367\) −7.14267 −0.372844 −0.186422 0.982470i \(-0.559689\pi\)
−0.186422 + 0.982470i \(0.559689\pi\)
\(368\) 1.75994 0.0917433
\(369\) 0 0
\(370\) 9.57133i 0.497590i
\(371\) 6.00000i 0.311504i
\(372\) 0 0
\(373\) −33.1427 −1.71606 −0.858031 0.513598i \(-0.828312\pi\)
−0.858031 + 0.513598i \(0.828312\pi\)
\(374\) −23.6228 −1.22151
\(375\) 0 0
\(376\) −11.3313 −0.584366
\(377\) 24.7795 11.4544i 1.27621 0.589931i
\(378\) 0 0
\(379\) 35.2736i 1.81189i 0.423400 + 0.905943i \(0.360836\pi\)
−0.423400 + 0.905943i \(0.639164\pi\)
\(380\) 11.5713 0.593597
\(381\) 0 0
\(382\) 4.42867i 0.226590i
\(383\) 6.95406i 0.355336i −0.984090 0.177668i \(-0.943145\pi\)
0.984090 0.177668i \(-0.0568553\pi\)
\(384\) 0 0
\(385\) 8.48012i 0.432187i
\(386\) −2.48012 −0.126235
\(387\) 0 0
\(388\) 7.75994i 0.393951i
\(389\) 5.27365 0.267384 0.133692 0.991023i \(-0.457317\pi\)
0.133692 + 0.991023i \(0.457317\pi\)
\(390\) 0 0
\(391\) 12.4801 0.631147
\(392\) 1.00000i 0.0505076i
\(393\) 0 0
\(394\) −8.85116 −0.445915
\(395\) 12.3491i 0.621353i
\(396\) 0 0
\(397\) 18.6766i 0.937351i −0.883370 0.468675i \(-0.844731\pi\)
0.883370 0.468675i \(-0.155269\pi\)
\(398\) 1.09122i 0.0546977i
\(399\) 0 0
\(400\) −1.48012 −0.0740059
\(401\) 21.5199i 1.07465i −0.843375 0.537326i \(-0.819435\pi\)
0.843375 0.537326i \(-0.180565\pi\)
\(402\) 0 0
\(403\) −5.03976 10.9026i −0.251048 0.543098i
\(404\) −3.69445 −0.183806
\(405\) 0 0
\(406\) 7.57133 0.375759
\(407\) −12.5254 −0.620861
\(408\) 0 0
\(409\) 19.3251i 0.955565i −0.878478 0.477782i \(-0.841441\pi\)
0.878478 0.477782i \(-0.158559\pi\)
\(410\) 10.7935i 0.533054i
\(411\) 0 0
\(412\) −13.0912 −0.644958
\(413\) 8.06549 0.396877
\(414\) 0 0
\(415\) −28.5316 −1.40056
\(416\) 1.51286 + 3.27280i 0.0741742 + 0.160462i
\(417\) 0 0
\(418\) 15.1427i 0.740652i
\(419\) −12.8371 −0.627134 −0.313567 0.949566i \(-0.601524\pi\)
−0.313567 + 0.949566i \(0.601524\pi\)
\(420\) 0 0
\(421\) 21.3313i 1.03962i 0.854281 + 0.519811i \(0.173998\pi\)
−0.854281 + 0.519811i \(0.826002\pi\)
\(422\) 15.0398i 0.732124i
\(423\) 0 0
\(424\) 6.00000i 0.291386i
\(425\) −10.4958 −0.509123
\(426\) 0 0
\(427\) 0.785667i 0.0380211i
\(428\) −3.51988 −0.170140
\(429\) 0 0
\(430\) 23.1427 1.11604
\(431\) 11.5713i 0.557372i 0.960382 + 0.278686i \(0.0898988\pi\)
−0.960382 + 0.278686i \(0.910101\pi\)
\(432\) 0 0
\(433\) 29.3766 1.41175 0.705873 0.708338i \(-0.250555\pi\)
0.705873 + 0.708338i \(0.250555\pi\)
\(434\) 3.33127i 0.159906i
\(435\) 0 0
\(436\) 13.1427i 0.629420i
\(437\) 8.00000i 0.382692i
\(438\) 0 0
\(439\) 0.102905 0.00491140 0.00245570 0.999997i \(-0.499218\pi\)
0.00245570 + 0.999997i \(0.499218\pi\)
\(440\) 8.48012i 0.404274i
\(441\) 0 0
\(442\) 10.7280 + 23.2082i 0.510281 + 1.10390i
\(443\) −27.1427 −1.28959 −0.644794 0.764357i \(-0.723057\pi\)
−0.644794 + 0.764357i \(0.723057\pi\)
\(444\) 0 0
\(445\) 38.4163 1.82111
\(446\) 12.9026 0.610956
\(447\) 0 0
\(448\) 1.00000i 0.0472456i
\(449\) 9.70231i 0.457880i 0.973440 + 0.228940i \(0.0735260\pi\)
−0.973440 + 0.228940i \(0.926474\pi\)
\(450\) 0 0
\(451\) 14.1248 0.665111
\(452\) −1.75994 −0.0827806
\(453\) 0 0
\(454\) 9.02573 0.423598
\(455\) −8.33127 + 3.85116i −0.390576 + 0.180545i
\(456\) 0 0
\(457\) 36.1701i 1.69196i 0.533211 + 0.845982i \(0.320985\pi\)
−0.533211 + 0.845982i \(0.679015\pi\)
\(458\) −14.1684 −0.662046
\(459\) 0 0
\(460\) 4.48012i 0.208887i
\(461\) 20.9743i 0.976869i −0.872600 0.488435i \(-0.837568\pi\)
0.872600 0.488435i \(-0.162432\pi\)
\(462\) 0 0
\(463\) 24.8450i 1.15464i 0.816517 + 0.577322i \(0.195902\pi\)
−0.816517 + 0.577322i \(0.804098\pi\)
\(464\) −7.57133 −0.351490
\(465\) 0 0
\(466\) 7.38273i 0.341998i
\(467\) −1.27196 −0.0588594 −0.0294297 0.999567i \(-0.509369\pi\)
−0.0294297 + 0.999567i \(0.509369\pi\)
\(468\) 0 0
\(469\) 5.75994 0.265969
\(470\) 28.8450i 1.33052i
\(471\) 0 0
\(472\) −8.06549 −0.371244
\(473\) 30.2853i 1.39252i
\(474\) 0 0
\(475\) 6.72804i 0.308704i
\(476\) 7.09122i 0.325025i
\(477\) 0 0
\(478\) 6.13098 0.280424
\(479\) 22.0515i 1.00756i −0.863833 0.503778i \(-0.831943\pi\)
0.863833 0.503778i \(-0.168057\pi\)
\(480\) 0 0
\(481\) 5.68828 + 12.3055i 0.259363 + 0.561085i
\(482\) 27.3251 1.24462
\(483\) 0 0
\(484\) 0.0973913 0.00442688
\(485\) 19.7538 0.896972
\(486\) 0 0
\(487\) 4.42867i 0.200682i −0.994953 0.100341i \(-0.968007\pi\)
0.994953 0.100341i \(-0.0319934\pi\)
\(488\) 0.785667i 0.0355655i
\(489\) 0 0
\(490\) −2.54561 −0.114999
\(491\) 31.0274 1.40025 0.700124 0.714022i \(-0.253128\pi\)
0.700124 + 0.714022i \(0.253128\pi\)
\(492\) 0 0
\(493\) −53.6900 −2.41807
\(494\) −14.8769 + 6.87688i −0.669343 + 0.309406i
\(495\) 0 0
\(496\) 3.33127i 0.149579i
\(497\) 11.1427 0.499817
\(498\) 0 0
\(499\) 23.0850i 1.03343i −0.856158 0.516714i \(-0.827155\pi\)
0.856158 0.516714i \(-0.172845\pi\)
\(500\) 8.96024i 0.400714i
\(501\) 0 0
\(502\) 16.4880i 0.735895i
\(503\) 17.7023 0.789307 0.394654 0.918830i \(-0.370865\pi\)
0.394654 + 0.918830i \(0.370865\pi\)
\(504\) 0 0
\(505\) 9.40462i 0.418500i
\(506\) −5.86285 −0.260635
\(507\) 0 0
\(508\) 12.9026 0.572461
\(509\) 24.7280i 1.09605i −0.836462 0.548026i \(-0.815380\pi\)
0.836462 0.548026i \(-0.184620\pi\)
\(510\) 0 0
\(511\) 9.33127 0.412791
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 1.14267i 0.0504009i
\(515\) 33.3251i 1.46848i
\(516\) 0 0
\(517\) 37.7476 1.66014
\(518\) 3.75994i 0.165202i
\(519\) 0 0
\(520\) 8.33127 3.85116i 0.365351 0.168884i
\(521\) 20.4287 0.894996 0.447498 0.894285i \(-0.352315\pi\)
0.447498 + 0.894285i \(0.352315\pi\)
\(522\) 0 0
\(523\) 25.8254 1.12927 0.564634 0.825342i \(-0.309017\pi\)
0.564634 + 0.825342i \(0.309017\pi\)
\(524\) −16.7795 −0.733015
\(525\) 0 0
\(526\) 10.6111i 0.462666i
\(527\) 23.6228i 1.02902i
\(528\) 0 0
\(529\) −19.9026 −0.865331
\(530\) 15.2736 0.663445
\(531\) 0 0
\(532\) −4.54561 −0.197077
\(533\) −6.41463 13.8769i −0.277848 0.601075i
\(534\) 0 0
\(535\) 8.96024i 0.387385i
\(536\) −5.75994 −0.248792
\(537\) 0 0
\(538\) 12.0593i 0.519914i
\(539\) 3.33127i 0.143488i
\(540\) 0 0
\(541\) 28.3134i 1.21729i −0.793443 0.608644i \(-0.791714\pi\)
0.793443 0.608644i \(-0.208286\pi\)
\(542\) 1.38273 0.0593932
\(543\) 0 0
\(544\) 7.09122i 0.304033i
\(545\) −33.4561 −1.43310
\(546\) 0 0
\(547\) 25.5713 1.09335 0.546676 0.837344i \(-0.315893\pi\)
0.546676 + 0.837344i \(0.315893\pi\)
\(548\) 11.1427i 0.475991i
\(549\) 0 0
\(550\) 4.93068 0.210245
\(551\) 34.4163i 1.46618i
\(552\) 0 0
\(553\) 4.85116i 0.206292i
\(554\) 1.14267i 0.0485473i
\(555\) 0 0
\(556\) −4.54561 −0.192777
\(557\) 3.99382i 0.169224i 0.996414 + 0.0846119i \(0.0269650\pi\)
−0.996414 + 0.0846119i \(0.973035\pi\)
\(558\) 0 0
\(559\) −29.7538 + 13.7538i −1.25845 + 0.581722i
\(560\) 2.54561 0.107572
\(561\) 0 0
\(562\) −7.14267 −0.301295
\(563\) −43.4997 −1.83329 −0.916646 0.399699i \(-0.869114\pi\)
−0.916646 + 0.399699i \(0.869114\pi\)
\(564\) 0 0
\(565\) 4.48012i 0.188480i
\(566\) 4.83712i 0.203319i
\(567\) 0 0
\(568\) −11.1427 −0.467536
\(569\) −41.2675 −1.73002 −0.865011 0.501753i \(-0.832689\pi\)
−0.865011 + 0.501753i \(0.832689\pi\)
\(570\) 0 0
\(571\) 13.9362 0.583212 0.291606 0.956539i \(-0.405810\pi\)
0.291606 + 0.956539i \(0.405810\pi\)
\(572\) −5.03976 10.9026i −0.210723 0.455861i
\(573\) 0 0
\(574\) 4.24006i 0.176977i
\(575\) −2.60492 −0.108633
\(576\) 0 0
\(577\) 32.4163i 1.34951i −0.738042 0.674754i \(-0.764250\pi\)
0.738042 0.674754i \(-0.235750\pi\)
\(578\) 33.2853i 1.38449i
\(579\) 0 0
\(580\) 19.2736i 0.800295i
\(581\) 11.2082 0.464993
\(582\) 0 0
\(583\) 19.9876i 0.827804i
\(584\) −9.33127 −0.386131
\(585\) 0 0
\(586\) 7.63682 0.315474
\(587\) 4.03742i 0.166642i −0.996523 0.0833210i \(-0.973447\pi\)
0.996523 0.0833210i \(-0.0265527\pi\)
\(588\) 0 0
\(589\) −15.1427 −0.623943
\(590\) 20.5316i 0.845271i
\(591\) 0 0
\(592\) 3.75994i 0.154533i
\(593\) 20.4163i 0.838398i 0.907894 + 0.419199i \(0.137689\pi\)
−0.907894 + 0.419199i \(0.862311\pi\)
\(594\) 0 0
\(595\) 18.0515 0.740037
\(596\) 5.81139i 0.238044i
\(597\) 0 0
\(598\) 2.66255 + 5.75994i 0.108880 + 0.235541i
\(599\) 8.10908 0.331328 0.165664 0.986182i \(-0.447023\pi\)
0.165664 + 0.986182i \(0.447023\pi\)
\(600\) 0 0
\(601\) −7.70231 −0.314184 −0.157092 0.987584i \(-0.550212\pi\)
−0.157092 + 0.987584i \(0.550212\pi\)
\(602\) −9.09122 −0.370530
\(603\) 0 0
\(604\) 3.09122i 0.125780i
\(605\) 0.247920i 0.0100794i
\(606\) 0 0
\(607\) −33.7023 −1.36793 −0.683967 0.729513i \(-0.739747\pi\)
−0.683967 + 0.729513i \(0.739747\pi\)
\(608\) 4.54561 0.184349
\(609\) 0 0
\(610\) −2.00000 −0.0809776
\(611\) −17.1427 37.0850i −0.693518 1.50030i
\(612\) 0 0
\(613\) 23.2675i 0.939764i −0.882729 0.469882i \(-0.844296\pi\)
0.882729 0.469882i \(-0.155704\pi\)
\(614\) −14.3508 −0.579152
\(615\) 0 0
\(616\) 3.33127i 0.134221i
\(617\) 1.51988i 0.0611881i −0.999532 0.0305941i \(-0.990260\pi\)
0.999532 0.0305941i \(-0.00973991\pi\)
\(618\) 0 0
\(619\) 0.779491i 0.0313304i −0.999877 0.0156652i \(-0.995013\pi\)
0.999877 0.0156652i \(-0.00498659\pi\)
\(620\) 8.48012 0.340570
\(621\) 0 0
\(622\) 2.18243i 0.0875075i
\(623\) −15.0912 −0.604617
\(624\) 0 0
\(625\) −30.2098 −1.20839
\(626\) 15.5713i 0.622356i
\(627\) 0 0
\(628\) 7.92834 0.316375
\(629\) 26.6625i 1.06311i
\(630\) 0 0
\(631\) 32.4678i 1.29252i −0.763117 0.646261i \(-0.776332\pi\)
0.763117 0.646261i \(-0.223668\pi\)
\(632\) 4.85116i 0.192969i
\(633\) 0 0
\(634\) 14.1886 0.563502
\(635\) 32.8450i 1.30341i
\(636\) 0 0
\(637\) 3.27280 1.51286i 0.129673 0.0599418i
\(638\) 25.2222 0.998556
\(639\) 0 0
\(640\) −2.54561 −0.100624
\(641\) 42.2277 1.66789 0.833947 0.551844i \(-0.186076\pi\)
0.833947 + 0.551844i \(0.186076\pi\)
\(642\) 0 0
\(643\) 6.84330i 0.269873i −0.990854 0.134937i \(-0.956917\pi\)
0.990854 0.134937i \(-0.0430831\pi\)
\(644\) 1.75994i 0.0693514i
\(645\) 0 0
\(646\) 32.2339 1.26823
\(647\) 3.75376 0.147576 0.0737879 0.997274i \(-0.476491\pi\)
0.0737879 + 0.997274i \(0.476491\pi\)
\(648\) 0 0
\(649\) 26.8684 1.05468
\(650\) −2.23922 4.84414i −0.0878293 0.190003i
\(651\) 0 0
\(652\) 10.0515i 0.393645i
\(653\) −23.8333 −0.932669 −0.466334 0.884609i \(-0.654426\pi\)
−0.466334 + 0.884609i \(0.654426\pi\)
\(654\) 0 0
\(655\) 42.7140i 1.66897i
\(656\) 4.24006i 0.165547i
\(657\) 0 0
\(658\) 11.3313i 0.441739i
\(659\) 21.0912 0.821597 0.410799 0.911726i \(-0.365250\pi\)
0.410799 + 0.911726i \(0.365250\pi\)
\(660\) 0 0
\(661\) 34.4023i 1.33809i 0.743220 + 0.669047i \(0.233297\pi\)
−0.743220 + 0.669047i \(0.766703\pi\)
\(662\) 2.85116 0.110813
\(663\) 0 0
\(664\) −11.2082 −0.434961
\(665\) 11.5713i 0.448717i
\(666\) 0 0
\(667\) −13.3251 −0.515950
\(668\) 24.2339i 0.937637i
\(669\) 0 0
\(670\) 14.6625i 0.566464i
\(671\) 2.61727i 0.101039i
\(672\) 0 0
\(673\) 10.7997 0.416298 0.208149 0.978097i \(-0.433256\pi\)
0.208149 + 0.978097i \(0.433256\pi\)
\(674\) 32.5254i 1.25283i
\(675\) 0 0
\(676\) −8.42249 + 9.90261i −0.323942 + 0.380870i
\(677\) 33.7336 1.29649 0.648243 0.761434i \(-0.275504\pi\)
0.648243 + 0.761434i \(0.275504\pi\)
\(678\) 0 0
\(679\) −7.75994 −0.297799
\(680\) −18.0515 −0.692242
\(681\) 0 0
\(682\) 11.0974i 0.424941i
\(683\) 21.8628i 0.836559i 0.908318 + 0.418279i \(0.137367\pi\)
−0.908318 + 0.418279i \(0.862633\pi\)
\(684\) 0 0
\(685\) 28.3649 1.08377
\(686\) 1.00000 0.0381802
\(687\) 0 0
\(688\) 9.09122 0.346599
\(689\) −19.6368 + 9.07718i −0.748103 + 0.345813i
\(690\) 0 0
\(691\) 10.7404i 0.408584i −0.978910 0.204292i \(-0.934511\pi\)
0.978910 0.204292i \(-0.0654892\pi\)
\(692\) 20.5971 0.782983
\(693\) 0 0
\(694\) 5.94855i 0.225804i
\(695\) 11.5713i 0.438926i
\(696\) 0 0
\(697\) 30.0672i 1.13888i
\(698\) −32.9619 −1.24763
\(699\) 0 0
\(700\) 1.48012i 0.0559432i
\(701\) 11.1941 0.422796 0.211398 0.977400i \(-0.432198\pi\)
0.211398 + 0.977400i \(0.432198\pi\)
\(702\) 0 0
\(703\) 17.0912 0.644607
\(704\) 3.33127i 0.125552i
\(705\) 0 0
\(706\) −0.851156 −0.0320337
\(707\) 3.69445i 0.138944i
\(708\) 0 0
\(709\) 5.20030i 0.195301i −0.995221 0.0976506i \(-0.968867\pi\)
0.995221 0.0976506i \(-0.0311328\pi\)
\(710\) 28.3649i 1.06451i
\(711\) 0 0
\(712\) 15.0912 0.565567
\(713\) 5.86285i 0.219565i
\(714\) 0 0
\(715\) −27.7538 + 12.8293i −1.03793 + 0.479787i
\(716\) 17.3251 0.647469
\(717\) 0 0
\(718\) −27.9362 −1.04257
\(719\) 38.0515 1.41908 0.709540 0.704665i \(-0.248903\pi\)
0.709540 + 0.704665i \(0.248903\pi\)
\(720\) 0 0
\(721\) 13.0912i 0.487542i
\(722\) 1.66255i 0.0618737i
\(723\) 0 0
\(724\) 16.9166 0.628702
\(725\) 11.2065 0.416198
\(726\) 0 0
\(727\) −28.6111 −1.06113 −0.530563 0.847645i \(-0.678020\pi\)
−0.530563 + 0.847645i \(0.678020\pi\)
\(728\) −3.27280 + 1.51286i −0.121298 + 0.0560704i
\(729\) 0 0
\(730\) 23.7538i 0.879166i
\(731\) 64.4678 2.38443
\(732\) 0 0
\(733\) 8.21985i 0.303607i 0.988411 + 0.151803i \(0.0485081\pi\)
−0.988411 + 0.151803i \(0.951492\pi\)
\(734\) 7.14267i 0.263641i
\(735\) 0 0
\(736\) 1.75994i 0.0648723i
\(737\) 19.1879 0.706797
\(738\) 0 0
\(739\) 1.58369i 0.0582568i −0.999576 0.0291284i \(-0.990727\pi\)
0.999576 0.0291284i \(-0.00927317\pi\)
\(740\) −9.57133 −0.351849
\(741\) 0 0
\(742\) −6.00000 −0.220267
\(743\) 11.9485i 0.438350i 0.975686 + 0.219175i \(0.0703365\pi\)
−0.975686 + 0.219175i \(0.929663\pi\)
\(744\) 0 0
\(745\) 14.7935 0.541993
\(746\) 33.1427i 1.21344i
\(747\) 0 0
\(748\) 23.6228i 0.863735i
\(749\) 3.51988i 0.128614i
\(750\) 0 0
\(751\) 27.5652 1.00587 0.502933 0.864325i \(-0.332254\pi\)
0.502933 + 0.864325i \(0.332254\pi\)
\(752\) 11.3313i 0.413209i
\(753\) 0 0
\(754\) −11.4544 24.7795i −0.417144 0.902416i
\(755\) 7.86902 0.286383
\(756\) 0 0
\(757\) −38.2339 −1.38963 −0.694817 0.719187i \(-0.744515\pi\)
−0.694817 + 0.719187i \(0.744515\pi\)
\(758\) 35.2736 1.28120
\(759\) 0 0
\(760\) 11.5713i 0.419736i
\(761\) 51.7476i 1.87585i −0.346840 0.937924i \(-0.612745\pi\)
0.346840 0.937924i \(-0.387255\pi\)
\(762\) 0 0
\(763\) 13.1427 0.475797
\(764\) 4.42867 0.160224
\(765\) 0 0
\(766\) −6.95406 −0.251260
\(767\) −12.2020 26.3968i −0.440588 0.953132i
\(768\) 0 0
\(769\) 24.2401i 0.874119i −0.899433 0.437059i \(-0.856020\pi\)
0.899433 0.437059i \(-0.143980\pi\)
\(770\) −8.48012 −0.305602
\(771\) 0 0
\(772\) 2.48012i 0.0892614i
\(773\) 16.5971i 0.596955i 0.954417 + 0.298477i \(0.0964787\pi\)
−0.954417 + 0.298477i \(0.903521\pi\)
\(774\) 0 0
\(775\) 4.93068i 0.177115i
\(776\) 7.75994 0.278566
\(777\) 0 0
\(778\) 5.27365i 0.189069i
\(779\) −19.2736 −0.690550
\(780\) 0 0
\(781\) 37.1193 1.32823
\(782\) 12.4801i 0.446288i
\(783\) 0 0
\(784\) −1.00000 −0.0357143
\(785\) 20.1824i 0.720342i
\(786\) 0 0
\(787\) 8.31172i 0.296281i −0.988966 0.148140i \(-0.952671\pi\)
0.988966 0.148140i \(-0.0473288\pi\)
\(788\) 8.85116i 0.315309i
\(789\) 0 0
\(790\) 12.3491 0.439363
\(791\) 1.75994i 0.0625763i
\(792\) 0 0
\(793\) 2.57133 1.18861i 0.0913107 0.0422087i
\(794\) −18.6766 −0.662807
\(795\) 0 0
\(796\) −1.09122 −0.0386771
\(797\) −24.3055 −0.860947 −0.430473 0.902603i \(-0.641653\pi\)
−0.430473 + 0.902603i \(0.641653\pi\)
\(798\) 0 0
\(799\) 80.3525i 2.84267i
\(800\) 1.48012i 0.0523301i
\(801\) 0 0
\(802\) −21.5199 −0.759893
\(803\) 31.0850 1.09697
\(804\) 0 0
\(805\) 4.48012 0.157903
\(806\) −10.9026 + 5.03976i −0.384028 + 0.177518i
\(807\) 0 0
\(808\) 3.69445i 0.129970i
\(809\) 15.9876 0.562096 0.281048 0.959694i \(-0.409318\pi\)
0.281048 + 0.959694i \(0.409318\pi\)
\(810\) 0 0
\(811\) 19.7163i 0.692335i −0.938173 0.346167i \(-0.887483\pi\)
0.938173 0.346167i \(-0.112517\pi\)
\(812\) 7.57133i 0.265702i
\(813\) 0 0
\(814\) 12.5254i 0.439015i
\(815\) 25.5871 0.896275
\(816\) 0 0
\(817\) 41.3251i 1.44578i
\(818\) −19.3251 −0.675686
\(819\) 0 0
\(820\) 10.7935 0.376926
\(821\) 15.9485i 0.556608i 0.960493 + 0.278304i \(0.0897723\pi\)
−0.960493 + 0.278304i \(0.910228\pi\)
\(822\) 0 0
\(823\) 23.9938 0.836372 0.418186 0.908361i \(-0.362666\pi\)
0.418186 + 0.908361i \(0.362666\pi\)
\(824\) 13.0912i 0.456054i
\(825\) 0 0
\(826\) 8.06549i 0.280634i
\(827\) 49.4280i 1.71878i 0.511321 + 0.859390i \(0.329156\pi\)
−0.511321 + 0.859390i \(0.670844\pi\)
\(828\) 0 0
\(829\) −11.7678 −0.408713 −0.204356 0.978897i \(-0.565510\pi\)
−0.204356 + 0.978897i \(0.565510\pi\)
\(830\) 28.5316i 0.990345i
\(831\) 0 0
\(832\) 3.27280 1.51286i 0.113464 0.0524491i
\(833\) −7.09122 −0.245696
\(834\) 0 0
\(835\) 61.6900 2.13487
\(836\) −15.1427 −0.523720
\(837\) 0 0
\(838\) 12.8371i 0.443451i
\(839\) 16.6687i 0.575468i 0.957710 + 0.287734i \(0.0929020\pi\)
−0.957710 + 0.287734i \(0.907098\pi\)
\(840\) 0 0
\(841\) 28.3251 0.976728
\(842\) 21.3313 0.735124
\(843\) 0 0
\(844\) −15.0398 −0.517690
\(845\) 25.2082 + 21.4404i 0.867187 + 0.737571i
\(846\) 0 0
\(847\) 0.0973913i 0.00334640i
\(848\) 6.00000 0.206041
\(849\) 0 0
\(850\) 10.4958i 0.360004i
\(851\) 6.61727i 0.226837i
\(852\) 0 0
\(853\) 23.1286i 0.791909i 0.918270 + 0.395955i \(0.129586\pi\)
−0.918270 + 0.395955i \(0.870414\pi\)
\(854\) 0.785667 0.0268850
\(855\) 0 0
\(856\) 3.51988i 0.120307i
\(857\) −13.6509 −0.466304 −0.233152 0.972440i \(-0.574904\pi\)
−0.233152 + 0.972440i \(0.574904\pi\)
\(858\) 0 0
\(859\) −12.8371 −0.437997 −0.218998 0.975725i \(-0.570279\pi\)
−0.218998 + 0.975725i \(0.570279\pi\)
\(860\) 23.1427i 0.789158i
\(861\) 0 0
\(862\) 11.5713 0.394121
\(863\) 39.6228i 1.34878i −0.738377 0.674388i \(-0.764408\pi\)
0.738377 0.674388i \(-0.235592\pi\)
\(864\) 0 0
\(865\) 52.4320i 1.78274i
\(866\) 29.3766i 0.998256i
\(867\) 0 0
\(868\) −3.33127 −0.113071
\(869\) 16.1605i 0.548209i
\(870\) 0 0
\(871\) −8.71400 18.8512i −0.295263 0.638747i
\(872\) −13.1427 −0.445067
\(873\) 0 0
\(874\) 8.00000 0.270604
\(875\) 8.96024 0.302911
\(876\) 0 0
\(877\) 47.3704i 1.59958i −0.600277 0.799792i \(-0.704943\pi\)
0.600277 0.799792i \(-0.295057\pi\)
\(878\) 0.102905i 0.00347288i
\(879\) 0 0
\(880\) 8.48012 0.285865
\(881\) 43.8052 1.47584 0.737918 0.674891i \(-0.235809\pi\)
0.737918 + 0.674891i \(0.235809\pi\)
\(882\) 0 0
\(883\) −1.81757 −0.0611661 −0.0305830 0.999532i \(-0.509736\pi\)
−0.0305830 + 0.999532i \(0.509736\pi\)
\(884\) 23.2082 10.7280i 0.780575 0.360823i
\(885\) 0 0
\(886\) 27.1427i 0.911876i
\(887\) −7.27365 −0.244225 −0.122113 0.992516i \(-0.538967\pi\)
−0.122113 + 0.992516i \(0.538967\pi\)
\(888\) 0 0
\(889\) 12.9026i 0.432740i
\(890\) 38.4163i 1.28772i
\(891\) 0 0
\(892\) 12.9026i 0.432011i
\(893\) −51.5075 −1.72363
\(894\) 0 0
\(895\) 44.1029i 1.47420i
\(896\) 1.00000 0.0334077
\(897\) 0 0
\(898\) 9.70231 0.323770
\(899\) 25.2222i 0.841207i
\(900\) 0 0
\(901\) 42.5473 1.41746
\(902\) 14.1248i 0.470304i
\(903\) 0 0
\(904\) 1.75994i 0.0585348i
\(905\) 43.0631i 1.43147i
\(906\) 0 0
\(907\) −12.4678 −0.413985 −0.206993 0.978342i \(-0.566368\pi\)
−0.206993 + 0.978342i \(0.566368\pi\)
\(908\) 9.02573i 0.299529i
\(909\) 0 0
\(910\) 3.85116 + 8.33127i 0.127665 + 0.276179i
\(911\) −1.92047 −0.0636282 −0.0318141 0.999494i \(-0.510128\pi\)
−0.0318141 + 0.999494i \(0.510128\pi\)
\(912\) 0 0
\(913\) 37.3375 1.23569
\(914\) 36.1701 1.19640
\(915\) 0 0
\(916\) 14.1684i 0.468137i
\(917\) 16.7795i 0.554108i
\(918\) 0 0
\(919\) −13.2284 −0.436364 −0.218182 0.975908i \(-0.570013\pi\)
−0.218182 + 0.975908i \(0.570013\pi\)
\(920\) −4.48012 −0.147705
\(921\) 0 0
\(922\) −20.9743 −0.690751
\(923\) −16.8573 36.4678i −0.554866 1.20035i
\(924\) 0 0
\(925\) 5.56516i 0.182981i
\(926\) 24.8450 0.816457
\(927\) 0 0
\(928\) 7.57133i 0.248541i
\(929\) 1.30320i 0.0427567i 0.999771 + 0.0213783i \(0.00680545\pi\)
−0.999771 + 0.0213783i \(0.993195\pi\)
\(930\) 0 0
\(931\) 4.54561i 0.148976i
\(932\) −7.38273 −0.241829
\(933\) 0 0
\(934\) 1.27196i 0.0416199i
\(935\) 60.1343 1.96660
\(936\) 0 0
\(937\) 14.9602 0.488730 0.244365 0.969683i \(-0.421421\pi\)
0.244365 + 0.969683i \(0.421421\pi\)
\(938\) 5.75994i 0.188069i
\(939\) 0 0
\(940\) 28.8450 0.940820
\(941\) 9.93451i 0.323856i 0.986803 + 0.161928i \(0.0517712\pi\)
−0.986803 + 0.161928i \(0.948229\pi\)
\(942\) 0 0
\(943\) 7.46225i 0.243004i
\(944\) 8.06549i 0.262509i
\(945\) 0 0
\(946\) −30.2853 −0.984661
\(947\) 40.4958i 1.31594i 0.753045 + 0.657969i \(0.228584\pi\)
−0.753045 + 0.657969i \(0.771416\pi\)
\(948\) 0 0
\(949\) −14.1169 30.5394i −0.458255 0.991352i
\(950\) −6.72804 −0.218286
\(951\) 0 0
\(952\) 7.09122 0.229828
\(953\) 18.9602 0.614182 0.307091 0.951680i \(-0.400644\pi\)
0.307091 + 0.951680i \(0.400644\pi\)
\(954\) 0 0
\(955\) 11.2736i 0.364807i
\(956\) 6.13098i 0.198290i
\(957\) 0 0
\(958\) −22.0515 −0.712450
\(959\) −11.1427 −0.359816
\(960\) 0 0
\(961\) 19.9026 0.642020
\(962\) 12.3055 5.68828i 0.396747 0.183397i
\(963\) 0 0
\(964\) 27.3251i 0.880082i
\(965\) 6.31341 0.203236
\(966\) 0 0
\(967\) 4.63448i 0.149035i 0.997220 + 0.0745174i \(0.0237416\pi\)
−0.997220 + 0.0745174i \(0.976258\pi\)
\(968\) 0.0973913i 0.00313027i
\(969\) 0 0
\(970\) 19.7538i 0.634255i
\(971\) −23.7336 −0.761646 −0.380823 0.924648i \(-0.624359\pi\)
−0.380823 + 0.924648i \(0.624359\pi\)
\(972\) 0 0
\(973\) 4.54561i 0.145725i
\(974\) −4.42867 −0.141904
\(975\) 0 0
\(976\) −0.785667 −0.0251486
\(977\) 4.74208i 0.151712i −0.997119 0.0758562i \(-0.975831\pi\)
0.997119 0.0758562i \(-0.0241690\pi\)
\(978\) 0 0
\(979\) −50.2730 −1.60673
\(980\) 2.54561i 0.0813165i
\(981\) 0 0
\(982\) 31.0274i 0.990124i
\(983\) 23.7414i 0.757233i 0.925554 + 0.378617i \(0.123600\pi\)
−0.925554 + 0.378617i \(0.876400\pi\)
\(984\) 0 0
\(985\) 22.5316 0.717916
\(986\) 53.6900i 1.70984i
\(987\) 0 0
\(988\) 6.87688 + 14.8769i 0.218783 + 0.473297i
\(989\) 16.0000 0.508770
\(990\) 0 0
\(991\) 40.8512 1.29768 0.648840 0.760925i \(-0.275254\pi\)
0.648840 + 0.760925i \(0.275254\pi\)
\(992\) 3.33127 0.105768
\(993\) 0 0
\(994\) 11.1427i 0.353424i
\(995\) 2.77781i 0.0880624i
\(996\) 0 0
\(997\) −5.87688 −0.186123 −0.0930614 0.995660i \(-0.529665\pi\)
−0.0930614 + 0.995660i \(0.529665\pi\)
\(998\) −23.0850 −0.730744
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1638.2.c.i.883.3 6
3.2 odd 2 182.2.d.b.155.6 yes 6
12.11 even 2 1456.2.k.b.337.1 6
13.12 even 2 inner 1638.2.c.i.883.4 6
21.2 odd 6 1274.2.n.m.753.4 12
21.5 even 6 1274.2.n.n.753.6 12
21.11 odd 6 1274.2.n.m.961.1 12
21.17 even 6 1274.2.n.n.961.3 12
21.20 even 2 1274.2.d.l.883.4 6
39.5 even 4 2366.2.a.bc.1.3 3
39.8 even 4 2366.2.a.x.1.3 3
39.38 odd 2 182.2.d.b.155.3 6
156.155 even 2 1456.2.k.b.337.2 6
273.38 even 6 1274.2.n.n.961.6 12
273.116 odd 6 1274.2.n.m.961.4 12
273.194 even 6 1274.2.n.n.753.3 12
273.233 odd 6 1274.2.n.m.753.1 12
273.272 even 2 1274.2.d.l.883.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
182.2.d.b.155.3 6 39.38 odd 2
182.2.d.b.155.6 yes 6 3.2 odd 2
1274.2.d.l.883.1 6 273.272 even 2
1274.2.d.l.883.4 6 21.20 even 2
1274.2.n.m.753.1 12 273.233 odd 6
1274.2.n.m.753.4 12 21.2 odd 6
1274.2.n.m.961.1 12 21.11 odd 6
1274.2.n.m.961.4 12 273.116 odd 6
1274.2.n.n.753.3 12 273.194 even 6
1274.2.n.n.753.6 12 21.5 even 6
1274.2.n.n.961.3 12 21.17 even 6
1274.2.n.n.961.6 12 273.38 even 6
1456.2.k.b.337.1 6 12.11 even 2
1456.2.k.b.337.2 6 156.155 even 2
1638.2.c.i.883.3 6 1.1 even 1 trivial
1638.2.c.i.883.4 6 13.12 even 2 inner
2366.2.a.x.1.3 3 39.8 even 4
2366.2.a.bc.1.3 3 39.5 even 4