Properties

Label 1274.2.n.l.961.6
Level $1274$
Weight $2$
Character 1274.961
Analytic conductor $10.173$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1274,2,Mod(753,1274)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1274.753"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1274, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1274 = 2 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1274.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,-4,6,0,0,0,0,6,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1729412175\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.17213603549184.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 5x^{10} + 19x^{8} - 28x^{6} + 31x^{4} - 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 182)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 961.6
Root \(-1.56052 + 0.900969i\) of defining polynomial
Character \(\chi\) \(=\) 1274.961
Dual form 1274.2.n.l.753.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{2} +(0.400969 + 0.694498i) q^{3} +(0.500000 + 0.866025i) q^{4} +(-0.480608 - 0.277479i) q^{5} +0.801938i q^{6} +1.00000i q^{8} +(1.17845 - 2.04113i) q^{9} +(-0.277479 - 0.480608i) q^{10} +(2.15983 - 1.24698i) q^{11} +(-0.400969 + 0.694498i) q^{12} +(0.890084 - 3.49396i) q^{13} -0.445042i q^{15} +(-0.500000 + 0.866025i) q^{16} +(2.92543 + 5.06699i) q^{17} +(2.04113 - 1.17845i) q^{18} +(2.50289 + 1.44504i) q^{19} -0.554958i q^{20} +2.49396 q^{22} +(-3.04892 + 5.28088i) q^{23} +(-0.694498 + 0.400969i) q^{24} +(-2.34601 - 4.06341i) q^{25} +(2.51781 - 2.58082i) q^{26} +4.29590 q^{27} +6.27413 q^{29} +(0.222521 - 0.385418i) q^{30} +(6.91774 - 3.99396i) q^{31} +(-0.866025 + 0.500000i) q^{32} +(1.73205 + 1.00000i) q^{33} +5.85086i q^{34} +2.35690 q^{36} +(-7.89781 - 4.55980i) q^{37} +(1.44504 + 2.50289i) q^{38} +(2.78345 - 0.782807i) q^{39} +(0.277479 - 0.480608i) q^{40} +4.71379i q^{41} +6.03684 q^{43} +(2.15983 + 1.24698i) q^{44} +(-1.13274 + 0.653989i) q^{45} +(-5.28088 + 3.04892i) q^{46} +(0.213891 + 0.123490i) q^{47} -0.801938 q^{48} -4.69202i q^{50} +(-2.34601 + 4.06341i) q^{51} +(3.47090 - 0.976144i) q^{52} +(1.66487 + 2.88365i) q^{53} +(3.72036 + 2.14795i) q^{54} -1.38404 q^{55} +2.31767i q^{57} +(5.43355 + 3.13706i) q^{58} +(-5.66164 + 3.26875i) q^{59} +(0.385418 - 0.222521i) q^{60} +(-7.34481 + 12.7216i) q^{61} +7.98792 q^{62} -1.00000 q^{64} +(-1.39728 + 1.43224i) q^{65} +(1.00000 + 1.73205i) q^{66} +(1.81678 - 1.04892i) q^{67} +(-2.92543 + 5.06699i) q^{68} -4.89008 q^{69} +2.46681i q^{71} +(2.04113 + 1.17845i) q^{72} +(3.03632 - 1.75302i) q^{73} +(-4.55980 - 7.89781i) q^{74} +(1.88135 - 3.25860i) q^{75} +2.89008i q^{76} +(2.80194 + 0.713792i) q^{78} +(-7.54288 + 13.0646i) q^{79} +(0.480608 - 0.277479i) q^{80} +(-1.81282 - 3.13990i) q^{81} +(-2.35690 + 4.08226i) q^{82} -11.6039i q^{83} -3.24698i q^{85} +(5.22805 + 3.01842i) q^{86} +(2.51573 + 4.35737i) q^{87} +(1.24698 + 2.15983i) q^{88} +(-7.69904 - 4.44504i) q^{89} -1.30798 q^{90} -6.09783 q^{92} +(5.54760 + 3.20291i) q^{93} +(0.123490 + 0.213891i) q^{94} +(-0.801938 - 1.38900i) q^{95} +(-0.694498 - 0.400969i) q^{96} -9.52542i q^{97} -5.87800i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{3} + 6 q^{4} + 6 q^{9} - 4 q^{10} + 4 q^{12} + 8 q^{13} - 6 q^{16} + 8 q^{17} - 8 q^{22} - 18 q^{25} + 2 q^{26} - 4 q^{27} + 32 q^{29} + 2 q^{30} + 12 q^{36} + 16 q^{38} - 12 q^{39} + 4 q^{40}+ \cdots + 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1274\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 0.500000i 0.612372 + 0.353553i
\(3\) 0.400969 + 0.694498i 0.231499 + 0.400969i 0.958250 0.285933i \(-0.0923035\pi\)
−0.726750 + 0.686902i \(0.758970\pi\)
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) −0.480608 0.277479i −0.214934 0.124092i 0.388668 0.921378i \(-0.372935\pi\)
−0.603603 + 0.797285i \(0.706269\pi\)
\(6\) 0.801938i 0.327390i
\(7\) 0 0
\(8\) 1.00000i 0.353553i
\(9\) 1.17845 2.04113i 0.392816 0.680377i
\(10\) −0.277479 0.480608i −0.0877466 0.151982i
\(11\) 2.15983 1.24698i 0.651214 0.375978i −0.137707 0.990473i \(-0.543973\pi\)
0.788921 + 0.614494i \(0.210640\pi\)
\(12\) −0.400969 + 0.694498i −0.115750 + 0.200484i
\(13\) 0.890084 3.49396i 0.246865 0.969050i
\(14\) 0 0
\(15\) 0.445042i 0.114909i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 2.92543 + 5.06699i 0.709520 + 1.22893i 0.965035 + 0.262120i \(0.0844217\pi\)
−0.255515 + 0.966805i \(0.582245\pi\)
\(18\) 2.04113 1.17845i 0.481099 0.277763i
\(19\) 2.50289 + 1.44504i 0.574201 + 0.331515i 0.758826 0.651294i \(-0.225773\pi\)
−0.184624 + 0.982809i \(0.559107\pi\)
\(20\) 0.554958i 0.124092i
\(21\) 0 0
\(22\) 2.49396 0.531714
\(23\) −3.04892 + 5.28088i −0.635743 + 1.10114i 0.350614 + 0.936520i \(0.385973\pi\)
−0.986357 + 0.164619i \(0.947360\pi\)
\(24\) −0.694498 + 0.400969i −0.141764 + 0.0818474i
\(25\) −2.34601 4.06341i −0.469202 0.812682i
\(26\) 2.51781 2.58082i 0.493784 0.506140i
\(27\) 4.29590 0.826746
\(28\) 0 0
\(29\) 6.27413 1.16508 0.582538 0.812803i \(-0.302060\pi\)
0.582538 + 0.812803i \(0.302060\pi\)
\(30\) 0.222521 0.385418i 0.0406266 0.0703673i
\(31\) 6.91774 3.99396i 1.24246 0.717336i 0.272868 0.962052i \(-0.412028\pi\)
0.969595 + 0.244715i \(0.0786945\pi\)
\(32\) −0.866025 + 0.500000i −0.153093 + 0.0883883i
\(33\) 1.73205 + 1.00000i 0.301511 + 0.174078i
\(34\) 5.85086i 1.00341i
\(35\) 0 0
\(36\) 2.35690 0.392816
\(37\) −7.89781 4.55980i −1.29839 0.749627i −0.318266 0.948002i \(-0.603100\pi\)
−0.980126 + 0.198375i \(0.936434\pi\)
\(38\) 1.44504 + 2.50289i 0.234417 + 0.406022i
\(39\) 2.78345 0.782807i 0.445708 0.125349i
\(40\) 0.277479 0.480608i 0.0438733 0.0759908i
\(41\) 4.71379i 0.736171i 0.929792 + 0.368085i \(0.119987\pi\)
−0.929792 + 0.368085i \(0.880013\pi\)
\(42\) 0 0
\(43\) 6.03684 0.920609 0.460304 0.887761i \(-0.347740\pi\)
0.460304 + 0.887761i \(0.347740\pi\)
\(44\) 2.15983 + 1.24698i 0.325607 + 0.187989i
\(45\) −1.13274 + 0.653989i −0.168859 + 0.0974910i
\(46\) −5.28088 + 3.04892i −0.778623 + 0.449538i
\(47\) 0.213891 + 0.123490i 0.0311992 + 0.0180128i 0.515518 0.856878i \(-0.327599\pi\)
−0.484319 + 0.874891i \(0.660933\pi\)
\(48\) −0.801938 −0.115750
\(49\) 0 0
\(50\) 4.69202i 0.663552i
\(51\) −2.34601 + 4.06341i −0.328507 + 0.568991i
\(52\) 3.47090 0.976144i 0.481327 0.135367i
\(53\) 1.66487 + 2.88365i 0.228688 + 0.396099i 0.957420 0.288700i \(-0.0932231\pi\)
−0.728731 + 0.684800i \(0.759890\pi\)
\(54\) 3.72036 + 2.14795i 0.506276 + 0.292299i
\(55\) −1.38404 −0.186624
\(56\) 0 0
\(57\) 2.31767i 0.306983i
\(58\) 5.43355 + 3.13706i 0.713460 + 0.411917i
\(59\) −5.66164 + 3.26875i −0.737083 + 0.425555i −0.821008 0.570917i \(-0.806588\pi\)
0.0839249 + 0.996472i \(0.473254\pi\)
\(60\) 0.385418 0.222521i 0.0497572 0.0287273i
\(61\) −7.34481 + 12.7216i −0.940407 + 1.62883i −0.175711 + 0.984442i \(0.556222\pi\)
−0.764696 + 0.644391i \(0.777111\pi\)
\(62\) 7.98792 1.01447
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −1.39728 + 1.43224i −0.173311 + 0.177648i
\(66\) 1.00000 + 1.73205i 0.123091 + 0.213201i
\(67\) 1.81678 1.04892i 0.221955 0.128146i −0.384900 0.922958i \(-0.625764\pi\)
0.606855 + 0.794813i \(0.292431\pi\)
\(68\) −2.92543 + 5.06699i −0.354760 + 0.614463i
\(69\) −4.89008 −0.588697
\(70\) 0 0
\(71\) 2.46681i 0.292757i 0.989229 + 0.146378i \(0.0467617\pi\)
−0.989229 + 0.146378i \(0.953238\pi\)
\(72\) 2.04113 + 1.17845i 0.240550 + 0.138881i
\(73\) 3.03632 1.75302i 0.355374 0.205176i −0.311675 0.950189i \(-0.600890\pi\)
0.667050 + 0.745013i \(0.267557\pi\)
\(74\) −4.55980 7.89781i −0.530066 0.918102i
\(75\) 1.88135 3.25860i 0.217240 0.376271i
\(76\) 2.89008i 0.331515i
\(77\) 0 0
\(78\) 2.80194 + 0.713792i 0.317257 + 0.0808210i
\(79\) −7.54288 + 13.0646i −0.848640 + 1.46989i 0.0337823 + 0.999429i \(0.489245\pi\)
−0.882422 + 0.470458i \(0.844089\pi\)
\(80\) 0.480608 0.277479i 0.0537336 0.0310231i
\(81\) −1.81282 3.13990i −0.201425 0.348878i
\(82\) −2.35690 + 4.08226i −0.260276 + 0.450811i
\(83\) 11.6039i 1.27369i −0.770992 0.636845i \(-0.780239\pi\)
0.770992 0.636845i \(-0.219761\pi\)
\(84\) 0 0
\(85\) 3.24698i 0.352184i
\(86\) 5.22805 + 3.01842i 0.563755 + 0.325484i
\(87\) 2.51573 + 4.35737i 0.269715 + 0.467159i
\(88\) 1.24698 + 2.15983i 0.132928 + 0.230239i
\(89\) −7.69904 4.44504i −0.816096 0.471173i 0.0329721 0.999456i \(-0.489503\pi\)
−0.849068 + 0.528283i \(0.822836\pi\)
\(90\) −1.30798 −0.137873
\(91\) 0 0
\(92\) −6.09783 −0.635743
\(93\) 5.54760 + 3.20291i 0.575259 + 0.332126i
\(94\) 0.123490 + 0.213891i 0.0127370 + 0.0220611i
\(95\) −0.801938 1.38900i −0.0822771 0.142508i
\(96\) −0.694498 0.400969i −0.0708820 0.0409237i
\(97\) 9.52542i 0.967160i −0.875300 0.483580i \(-0.839336\pi\)
0.875300 0.483580i \(-0.160664\pi\)
\(98\) 0 0
\(99\) 5.87800i 0.590761i
\(100\) 2.34601 4.06341i 0.234601 0.406341i
\(101\) −1.41789 2.45587i −0.141086 0.244368i 0.786820 0.617183i \(-0.211726\pi\)
−0.927906 + 0.372815i \(0.878393\pi\)
\(102\) −4.06341 + 2.34601i −0.402338 + 0.232290i
\(103\) 2.10992 3.65448i 0.207896 0.360087i −0.743155 0.669119i \(-0.766672\pi\)
0.951052 + 0.309032i \(0.100005\pi\)
\(104\) 3.49396 + 0.890084i 0.342611 + 0.0872799i
\(105\) 0 0
\(106\) 3.32975i 0.323414i
\(107\) 6.95473 12.0459i 0.672339 1.16453i −0.304900 0.952384i \(-0.598623\pi\)
0.977239 0.212141i \(-0.0680437\pi\)
\(108\) 2.14795 + 3.72036i 0.206686 + 0.357991i
\(109\) 2.12793 1.22856i 0.203819 0.117675i −0.394617 0.918846i \(-0.629123\pi\)
0.598436 + 0.801171i \(0.295789\pi\)
\(110\) −1.19862 0.692021i −0.114284 0.0659817i
\(111\) 7.31336i 0.694153i
\(112\) 0 0
\(113\) 11.7681 1.10705 0.553524 0.832833i \(-0.313283\pi\)
0.553524 + 0.832833i \(0.313283\pi\)
\(114\) −1.15883 + 2.00716i −0.108535 + 0.187988i
\(115\) 2.93067 1.69202i 0.273286 0.157782i
\(116\) 3.13706 + 5.43355i 0.291269 + 0.504493i
\(117\) −6.08271 5.93423i −0.562347 0.548619i
\(118\) −6.53750 −0.601826
\(119\) 0 0
\(120\) 0.445042 0.0406266
\(121\) −2.39008 + 4.13975i −0.217280 + 0.376341i
\(122\) −12.7216 + 7.34481i −1.15176 + 0.664968i
\(123\) −3.27372 + 1.89008i −0.295181 + 0.170423i
\(124\) 6.91774 + 3.99396i 0.621231 + 0.358668i
\(125\) 5.37867i 0.481083i
\(126\) 0 0
\(127\) −2.45042 −0.217439 −0.108720 0.994072i \(-0.534675\pi\)
−0.108720 + 0.994072i \(0.534675\pi\)
\(128\) −0.866025 0.500000i −0.0765466 0.0441942i
\(129\) 2.42058 + 4.19257i 0.213120 + 0.369135i
\(130\) −1.92620 + 0.541719i −0.168939 + 0.0475119i
\(131\) −2.03050 + 3.51693i −0.177406 + 0.307275i −0.940991 0.338431i \(-0.890104\pi\)
0.763586 + 0.645707i \(0.223437\pi\)
\(132\) 2.00000i 0.174078i
\(133\) 0 0
\(134\) 2.09783 0.181225
\(135\) −2.06464 1.19202i −0.177696 0.102593i
\(136\) −5.06699 + 2.92543i −0.434491 + 0.250853i
\(137\) 8.89765 5.13706i 0.760178 0.438889i −0.0691817 0.997604i \(-0.522039\pi\)
0.829360 + 0.558715i \(0.188705\pi\)
\(138\) −4.23494 2.44504i −0.360502 0.208136i
\(139\) −3.19136 −0.270687 −0.135344 0.990799i \(-0.543214\pi\)
−0.135344 + 0.990799i \(0.543214\pi\)
\(140\) 0 0
\(141\) 0.198062i 0.0166799i
\(142\) −1.23341 + 2.13632i −0.103505 + 0.179276i
\(143\) −2.43446 8.65628i −0.203580 0.723875i
\(144\) 1.17845 + 2.04113i 0.0982040 + 0.170094i
\(145\) −3.01539 1.74094i −0.250415 0.144577i
\(146\) 3.50604 0.290162
\(147\) 0 0
\(148\) 9.11960i 0.749627i
\(149\) −20.6853 11.9426i −1.69460 0.978380i −0.950710 0.310082i \(-0.899643\pi\)
−0.743894 0.668298i \(-0.767023\pi\)
\(150\) 3.25860 1.88135i 0.266064 0.153612i
\(151\) −12.6981 + 7.33124i −1.03336 + 0.596608i −0.917944 0.396710i \(-0.870152\pi\)
−0.115411 + 0.993318i \(0.536819\pi\)
\(152\) −1.44504 + 2.50289i −0.117208 + 0.203011i
\(153\) 13.7899 1.11484
\(154\) 0 0
\(155\) −4.43296 −0.356064
\(156\) 2.06965 + 2.01913i 0.165705 + 0.161660i
\(157\) −3.20775 5.55599i −0.256006 0.443416i 0.709162 0.705046i \(-0.249073\pi\)
−0.965168 + 0.261630i \(0.915740\pi\)
\(158\) −13.0646 + 7.54288i −1.03937 + 0.600079i
\(159\) −1.33513 + 2.31251i −0.105882 + 0.183394i
\(160\) 0.554958 0.0438733
\(161\) 0 0
\(162\) 3.62565i 0.284858i
\(163\) 8.63933 + 4.98792i 0.676684 + 0.390684i 0.798605 0.601856i \(-0.205572\pi\)
−0.121920 + 0.992540i \(0.538905\pi\)
\(164\) −4.08226 + 2.35690i −0.318771 + 0.184043i
\(165\) −0.554958 0.961216i −0.0432034 0.0748305i
\(166\) 5.80194 10.0493i 0.450318 0.779973i
\(167\) 6.80433i 0.526535i 0.964723 + 0.263267i \(0.0848002\pi\)
−0.964723 + 0.263267i \(0.915200\pi\)
\(168\) 0 0
\(169\) −11.4155 6.21983i −0.878116 0.478449i
\(170\) 1.62349 2.81197i 0.124516 0.215668i
\(171\) 5.89904 3.40581i 0.451111 0.260449i
\(172\) 3.01842 + 5.22805i 0.230152 + 0.398635i
\(173\) 1.64310 2.84594i 0.124923 0.216373i −0.796780 0.604270i \(-0.793465\pi\)
0.921703 + 0.387897i \(0.126798\pi\)
\(174\) 5.03146i 0.381434i
\(175\) 0 0
\(176\) 2.49396i 0.187989i
\(177\) −4.54028 2.62133i −0.341269 0.197032i
\(178\) −4.44504 7.69904i −0.333170 0.577067i
\(179\) −2.92058 5.05860i −0.218295 0.378097i 0.735992 0.676990i \(-0.236716\pi\)
−0.954287 + 0.298893i \(0.903383\pi\)
\(180\) −1.13274 0.653989i −0.0844297 0.0487455i
\(181\) −10.6703 −0.793114 −0.396557 0.918010i \(-0.629795\pi\)
−0.396557 + 0.918010i \(0.629795\pi\)
\(182\) 0 0
\(183\) −11.7802 −0.870815
\(184\) −5.28088 3.04892i −0.389312 0.224769i
\(185\) 2.53050 + 4.38295i 0.186046 + 0.322241i
\(186\) 3.20291 + 5.54760i 0.234849 + 0.406770i
\(187\) 12.6369 + 7.29590i 0.924099 + 0.533529i
\(188\) 0.246980i 0.0180128i
\(189\) 0 0
\(190\) 1.60388i 0.116357i
\(191\) 11.5429 19.9928i 0.835213 1.44663i −0.0586435 0.998279i \(-0.518678\pi\)
0.893857 0.448353i \(-0.147989\pi\)
\(192\) −0.400969 0.694498i −0.0289374 0.0501211i
\(193\) −11.5062 + 6.64310i −0.828234 + 0.478181i −0.853248 0.521506i \(-0.825370\pi\)
0.0250136 + 0.999687i \(0.492037\pi\)
\(194\) 4.76271 8.24925i 0.341943 0.592262i
\(195\) −1.55496 0.396125i −0.111353 0.0283671i
\(196\) 0 0
\(197\) 14.8834i 1.06040i 0.847874 + 0.530198i \(0.177883\pi\)
−0.847874 + 0.530198i \(0.822117\pi\)
\(198\) 2.93900 5.09050i 0.208866 0.361766i
\(199\) 3.77479 + 6.53813i 0.267588 + 0.463476i 0.968238 0.250029i \(-0.0804401\pi\)
−0.700651 + 0.713505i \(0.747107\pi\)
\(200\) 4.06341 2.34601i 0.287326 0.165888i
\(201\) 1.45694 + 0.841166i 0.102765 + 0.0593313i
\(202\) 2.83579i 0.199525i
\(203\) 0 0
\(204\) −4.69202 −0.328507
\(205\) 1.30798 2.26549i 0.0913532 0.158228i
\(206\) 3.65448 2.10992i 0.254620 0.147005i
\(207\) 7.18598 + 12.4465i 0.499460 + 0.865090i
\(208\) 2.58082 + 2.51781i 0.178947 + 0.174579i
\(209\) 7.20775 0.498571
\(210\) 0 0
\(211\) −2.69740 −0.185697 −0.0928483 0.995680i \(-0.529597\pi\)
−0.0928483 + 0.995680i \(0.529597\pi\)
\(212\) −1.66487 + 2.88365i −0.114344 + 0.198050i
\(213\) −1.71320 + 0.989115i −0.117386 + 0.0677730i
\(214\) 12.0459 6.95473i 0.823444 0.475416i
\(215\) −2.90135 1.67510i −0.197870 0.114241i
\(216\) 4.29590i 0.292299i
\(217\) 0 0
\(218\) 2.45712 0.166417
\(219\) 2.43494 + 1.40581i 0.164538 + 0.0949961i
\(220\) −0.692021 1.19862i −0.0466561 0.0808107i
\(221\) 20.3077 5.71128i 1.36605 0.384182i
\(222\) 3.65668 6.33355i 0.245420 0.425080i
\(223\) 2.62565i 0.175826i −0.996128 0.0879131i \(-0.971980\pi\)
0.996128 0.0879131i \(-0.0280198\pi\)
\(224\) 0 0
\(225\) −11.0586 −0.737240
\(226\) 10.1915 + 5.88404i 0.677926 + 0.391401i
\(227\) 7.90620 4.56465i 0.524753 0.302966i −0.214124 0.976806i \(-0.568690\pi\)
0.738877 + 0.673840i \(0.235356\pi\)
\(228\) −2.00716 + 1.15883i −0.132927 + 0.0767456i
\(229\) −9.27003 5.35205i −0.612581 0.353674i 0.161394 0.986890i \(-0.448401\pi\)
−0.773975 + 0.633216i \(0.781734\pi\)
\(230\) 3.38404 0.223137
\(231\) 0 0
\(232\) 6.27413i 0.411917i
\(233\) −3.55011 + 6.14898i −0.232576 + 0.402833i −0.958565 0.284873i \(-0.908049\pi\)
0.725990 + 0.687706i \(0.241382\pi\)
\(234\) −2.30067 8.18055i −0.150400 0.534779i
\(235\) −0.0685317 0.118700i −0.00447051 0.00774316i
\(236\) −5.66164 3.26875i −0.368541 0.212777i
\(237\) −12.0978 −0.785839
\(238\) 0 0
\(239\) 15.6136i 1.00996i −0.863132 0.504979i \(-0.831500\pi\)
0.863132 0.504979i \(-0.168500\pi\)
\(240\) 0.385418 + 0.222521i 0.0248786 + 0.0143637i
\(241\) −14.4159 + 8.32304i −0.928612 + 0.536134i −0.886372 0.462973i \(-0.846783\pi\)
−0.0422397 + 0.999108i \(0.513449\pi\)
\(242\) −4.13975 + 2.39008i −0.266113 + 0.153640i
\(243\) 7.89762 13.6791i 0.506632 0.877513i
\(244\) −14.6896 −0.940407
\(245\) 0 0
\(246\) −3.78017 −0.241015
\(247\) 7.27670 7.45877i 0.463005 0.474590i
\(248\) 3.99396 + 6.91774i 0.253617 + 0.439277i
\(249\) 8.05887 4.65279i 0.510710 0.294859i
\(250\) −2.68933 + 4.65806i −0.170088 + 0.294602i
\(251\) −11.9336 −0.753244 −0.376622 0.926367i \(-0.622914\pi\)
−0.376622 + 0.926367i \(0.622914\pi\)
\(252\) 0 0
\(253\) 15.2078i 0.956103i
\(254\) −2.12212 1.22521i −0.133154 0.0768765i
\(255\) 2.25502 1.30194i 0.141215 0.0815305i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 0.634375 1.09877i 0.0395712 0.0685394i −0.845561 0.533878i \(-0.820734\pi\)
0.885133 + 0.465339i \(0.154067\pi\)
\(258\) 4.84117i 0.301398i
\(259\) 0 0
\(260\) −1.93900 0.493959i −0.120252 0.0306340i
\(261\) 7.39373 12.8063i 0.457660 0.792691i
\(262\) −3.51693 + 2.03050i −0.217277 + 0.125445i
\(263\) −2.65279 4.59477i −0.163578 0.283326i 0.772571 0.634928i \(-0.218970\pi\)
−0.936149 + 0.351602i \(0.885637\pi\)
\(264\) −1.00000 + 1.73205i −0.0615457 + 0.106600i
\(265\) 1.84787i 0.113514i
\(266\) 0 0
\(267\) 7.12929i 0.436306i
\(268\) 1.81678 + 1.04892i 0.110977 + 0.0640728i
\(269\) −13.0097 22.5334i −0.793215 1.37389i −0.923967 0.382473i \(-0.875072\pi\)
0.130752 0.991415i \(-0.458261\pi\)
\(270\) −1.19202 2.06464i −0.0725441 0.125650i
\(271\) −21.0446 12.1501i −1.27837 0.738066i −0.301820 0.953365i \(-0.597594\pi\)
−0.976548 + 0.215299i \(0.930928\pi\)
\(272\) −5.85086 −0.354760
\(273\) 0 0
\(274\) 10.2741 0.620683
\(275\) −10.1340 5.85086i −0.611102 0.352820i
\(276\) −2.44504 4.23494i −0.147174 0.254913i
\(277\) −0.939001 1.62640i −0.0564191 0.0977208i 0.836436 0.548064i \(-0.184635\pi\)
−0.892856 + 0.450343i \(0.851302\pi\)
\(278\) −2.76380 1.59568i −0.165762 0.0957025i
\(279\) 18.8267i 1.12712i
\(280\) 0 0
\(281\) 31.9081i 1.90348i 0.306906 + 0.951740i \(0.400706\pi\)
−0.306906 + 0.951740i \(0.599294\pi\)
\(282\) −0.0990311 + 0.171527i −0.00589722 + 0.0102143i
\(283\) −14.7681 25.5791i −0.877872 1.52052i −0.853672 0.520811i \(-0.825630\pi\)
−0.0241996 0.999707i \(-0.507704\pi\)
\(284\) −2.13632 + 1.23341i −0.126767 + 0.0731892i
\(285\) 0.643104 1.11389i 0.0380942 0.0659811i
\(286\) 2.21983 8.71379i 0.131261 0.515257i
\(287\) 0 0
\(288\) 2.35690i 0.138881i
\(289\) −8.61625 + 14.9238i −0.506838 + 0.877870i
\(290\) −1.74094 3.01539i −0.102231 0.177070i
\(291\) 6.61539 3.81940i 0.387801 0.223897i
\(292\) 3.03632 + 1.75302i 0.177687 + 0.102588i
\(293\) 8.69932i 0.508220i 0.967175 + 0.254110i \(0.0817825\pi\)
−0.967175 + 0.254110i \(0.918218\pi\)
\(294\) 0 0
\(295\) 3.62804 0.211233
\(296\) 4.55980 7.89781i 0.265033 0.459051i
\(297\) 9.27842 5.35690i 0.538388 0.310839i
\(298\) −11.9426 20.6853i −0.691819 1.19827i
\(299\) 15.7374 + 15.3532i 0.910117 + 0.887900i
\(300\) 3.76271 0.217240
\(301\) 0 0
\(302\) −14.6625 −0.843731
\(303\) 1.13706 1.96945i 0.0653226 0.113142i
\(304\) −2.50289 + 1.44504i −0.143550 + 0.0828788i
\(305\) 7.05995 4.07606i 0.404252 0.233395i
\(306\) 11.9424 + 6.89493i 0.682700 + 0.394157i
\(307\) 26.1521i 1.49258i 0.665620 + 0.746290i \(0.268167\pi\)
−0.665620 + 0.746290i \(0.731833\pi\)
\(308\) 0 0
\(309\) 3.38404 0.192511
\(310\) −3.83906 2.21648i −0.218044 0.125888i
\(311\) 5.55496 + 9.62147i 0.314993 + 0.545583i 0.979436 0.201755i \(-0.0646646\pi\)
−0.664443 + 0.747339i \(0.731331\pi\)
\(312\) 0.782807 + 2.78345i 0.0443177 + 0.157582i
\(313\) 3.91335 6.77811i 0.221195 0.383122i −0.733976 0.679176i \(-0.762337\pi\)
0.955171 + 0.296054i \(0.0956708\pi\)
\(314\) 6.41550i 0.362048i
\(315\) 0 0
\(316\) −15.0858 −0.848640
\(317\) 9.83909 + 5.68060i 0.552619 + 0.319054i 0.750177 0.661237i \(-0.229968\pi\)
−0.197559 + 0.980291i \(0.563301\pi\)
\(318\) −2.31251 + 1.33513i −0.129679 + 0.0748701i
\(319\) 13.5511 7.82371i 0.758714 0.438044i
\(320\) 0.480608 + 0.277479i 0.0268668 + 0.0155116i
\(321\) 11.1545 0.622585
\(322\) 0 0
\(323\) 16.9095i 0.940868i
\(324\) 1.81282 3.13990i 0.100712 0.174439i
\(325\) −16.2855 + 4.58009i −0.903359 + 0.254058i
\(326\) 4.98792 + 8.63933i 0.276255 + 0.478488i
\(327\) 1.70647 + 0.985230i 0.0943679 + 0.0544833i
\(328\) −4.71379 −0.260276
\(329\) 0 0
\(330\) 1.10992i 0.0610989i
\(331\) 17.5579 + 10.1371i 0.965070 + 0.557183i 0.897730 0.440547i \(-0.145215\pi\)
0.0673402 + 0.997730i \(0.478549\pi\)
\(332\) 10.0493 5.80194i 0.551524 0.318423i
\(333\) −18.6143 + 10.7470i −1.02006 + 0.588931i
\(334\) −3.40217 + 5.89272i −0.186158 + 0.322435i
\(335\) −1.16421 −0.0636076
\(336\) 0 0
\(337\) −18.6963 −1.01845 −0.509227 0.860632i \(-0.670069\pi\)
−0.509227 + 0.860632i \(0.670069\pi\)
\(338\) −6.77620 11.0943i −0.368577 0.603449i
\(339\) 4.71864 + 8.17292i 0.256281 + 0.443892i
\(340\) 2.81197 1.62349i 0.152500 0.0880461i
\(341\) 9.96077 17.2526i 0.539406 0.934279i
\(342\) 6.81163 0.368331
\(343\) 0 0
\(344\) 6.03684i 0.325484i
\(345\) 2.35021 + 1.35690i 0.126531 + 0.0730528i
\(346\) 2.84594 1.64310i 0.152999 0.0883338i
\(347\) 6.59999 + 11.4315i 0.354306 + 0.613676i 0.986999 0.160727i \(-0.0513838\pi\)
−0.632693 + 0.774403i \(0.718050\pi\)
\(348\) −2.51573 + 4.35737i −0.134857 + 0.233580i
\(349\) 33.2349i 1.77902i 0.456912 + 0.889512i \(0.348955\pi\)
−0.456912 + 0.889512i \(0.651045\pi\)
\(350\) 0 0
\(351\) 3.82371 15.0097i 0.204094 0.801158i
\(352\) −1.24698 + 2.15983i −0.0664642 + 0.115119i
\(353\) −16.8886 + 9.75063i −0.898889 + 0.518974i −0.876839 0.480783i \(-0.840352\pi\)
−0.0220491 + 0.999757i \(0.507019\pi\)
\(354\) −2.62133 4.54028i −0.139322 0.241313i
\(355\) 0.684489 1.18557i 0.0363289 0.0629235i
\(356\) 8.89008i 0.471173i
\(357\) 0 0
\(358\) 5.84117i 0.308715i
\(359\) −3.77991 2.18233i −0.199496 0.115179i 0.396924 0.917851i \(-0.370078\pi\)
−0.596420 + 0.802672i \(0.703411\pi\)
\(360\) −0.653989 1.13274i −0.0344683 0.0597008i
\(361\) −5.32371 9.22093i −0.280195 0.485312i
\(362\) −9.24071 5.33513i −0.485681 0.280408i
\(363\) −3.83340 −0.201201
\(364\) 0 0
\(365\) −1.94571 −0.101843
\(366\) −10.2019 5.89008i −0.533263 0.307880i
\(367\) −14.7506 25.5488i −0.769976 1.33364i −0.937575 0.347783i \(-0.886935\pi\)
0.167599 0.985855i \(-0.446399\pi\)
\(368\) −3.04892 5.28088i −0.158936 0.275285i
\(369\) 9.62147 + 5.55496i 0.500874 + 0.289180i
\(370\) 5.06100i 0.263109i
\(371\) 0 0
\(372\) 6.40581i 0.332126i
\(373\) −4.94869 + 8.57138i −0.256233 + 0.443809i −0.965230 0.261403i \(-0.915815\pi\)
0.708996 + 0.705212i \(0.249148\pi\)
\(374\) 7.29590 + 12.6369i 0.377262 + 0.653437i
\(375\) −3.73548 + 2.15668i −0.192899 + 0.111370i
\(376\) −0.123490 + 0.213891i −0.00636850 + 0.0110306i
\(377\) 5.58450 21.9215i 0.287616 1.12902i
\(378\) 0 0
\(379\) 20.2935i 1.04241i −0.853432 0.521204i \(-0.825483\pi\)
0.853432 0.521204i \(-0.174517\pi\)
\(380\) 0.801938 1.38900i 0.0411385 0.0712540i
\(381\) −0.982542 1.70181i −0.0503371 0.0871865i
\(382\) 19.9928 11.5429i 1.02292 0.590585i
\(383\) 14.3773 + 8.30074i 0.734646 + 0.424148i 0.820119 0.572192i \(-0.193907\pi\)
−0.0854734 + 0.996340i \(0.527240\pi\)
\(384\) 0.801938i 0.0409237i
\(385\) 0 0
\(386\) −13.2862 −0.676250
\(387\) 7.11410 12.3220i 0.361630 0.626361i
\(388\) 8.24925 4.76271i 0.418792 0.241790i
\(389\) 11.2174 + 19.4292i 0.568747 + 0.985098i 0.996690 + 0.0812928i \(0.0259049\pi\)
−0.427943 + 0.903805i \(0.640762\pi\)
\(390\) −1.14857 1.12053i −0.0581602 0.0567404i
\(391\) −35.6775 −1.80429
\(392\) 0 0
\(393\) −3.25667 −0.164277
\(394\) −7.44169 + 12.8894i −0.374907 + 0.649358i
\(395\) 7.25033 4.18598i 0.364804 0.210620i
\(396\) 5.09050 2.93900i 0.255807 0.147690i
\(397\) 17.9073 + 10.3388i 0.898741 + 0.518888i 0.876791 0.480871i \(-0.159679\pi\)
0.0219493 + 0.999759i \(0.493013\pi\)
\(398\) 7.54958i 0.378426i
\(399\) 0 0
\(400\) 4.69202 0.234601
\(401\) −27.4336 15.8388i −1.36997 0.790951i −0.379043 0.925379i \(-0.623747\pi\)
−0.990923 + 0.134428i \(0.957080\pi\)
\(402\) 0.841166 + 1.45694i 0.0419536 + 0.0726657i
\(403\) −7.79736 27.7253i −0.388414 1.38109i
\(404\) 1.41789 2.45587i 0.0705429 0.122184i
\(405\) 2.01208i 0.0999811i
\(406\) 0 0
\(407\) −22.7439 −1.12737
\(408\) −4.06341 2.34601i −0.201169 0.116145i
\(409\) 6.32682 3.65279i 0.312841 0.180619i −0.335356 0.942091i \(-0.608857\pi\)
0.648197 + 0.761473i \(0.275523\pi\)
\(410\) 2.26549 1.30798i 0.111884 0.0645965i
\(411\) 7.13537 + 4.11960i 0.351962 + 0.203205i
\(412\) 4.21983 0.207896
\(413\) 0 0
\(414\) 14.3720i 0.706343i
\(415\) −3.21983 + 5.57691i −0.158055 + 0.273760i
\(416\) 0.976144 + 3.47090i 0.0478594 + 0.170175i
\(417\) −1.27963 2.21639i −0.0626640 0.108537i
\(418\) 6.24210 + 3.60388i 0.305311 + 0.176271i
\(419\) 31.5381 1.54074 0.770368 0.637599i \(-0.220072\pi\)
0.770368 + 0.637599i \(0.220072\pi\)
\(420\) 0 0
\(421\) 0.359289i 0.0175107i −0.999962 0.00875533i \(-0.997213\pi\)
0.999962 0.00875533i \(-0.00278694\pi\)
\(422\) −2.33602 1.34870i −0.113715 0.0656536i
\(423\) 0.504118 0.291053i 0.0245111 0.0141515i
\(424\) −2.88365 + 1.66487i −0.140042 + 0.0808534i
\(425\) 13.7262 23.7744i 0.665817 1.15323i
\(426\) −1.97823 −0.0958455
\(427\) 0 0
\(428\) 13.9095 0.672339
\(429\) 5.03563 5.16163i 0.243122 0.249206i
\(430\) −1.67510 2.90135i −0.0807803 0.139916i
\(431\) −31.0259 + 17.9128i −1.49447 + 0.862830i −0.999980 0.00635609i \(-0.997977\pi\)
−0.494485 + 0.869186i \(0.664643\pi\)
\(432\) −2.14795 + 3.72036i −0.103343 + 0.178996i
\(433\) −4.89977 −0.235468 −0.117734 0.993045i \(-0.537563\pi\)
−0.117734 + 0.993045i \(0.537563\pi\)
\(434\) 0 0
\(435\) 2.79225i 0.133878i
\(436\) 2.12793 + 1.22856i 0.101909 + 0.0588374i
\(437\) −15.2622 + 8.81163i −0.730089 + 0.421517i
\(438\) 1.40581 + 2.43494i 0.0671724 + 0.116346i
\(439\) −19.5646 + 33.8870i −0.933770 + 1.61734i −0.156956 + 0.987606i \(0.550168\pi\)
−0.776813 + 0.629731i \(0.783165\pi\)
\(440\) 1.38404i 0.0659817i
\(441\) 0 0
\(442\) 20.4426 + 5.20775i 0.972358 + 0.247707i
\(443\) 0.269282 0.466411i 0.0127940 0.0221598i −0.859558 0.511039i \(-0.829261\pi\)
0.872352 + 0.488879i \(0.162594\pi\)
\(444\) 6.33355 3.65668i 0.300577 0.173538i
\(445\) 2.46681 + 4.27264i 0.116938 + 0.202543i
\(446\) 1.31282 2.27388i 0.0621640 0.107671i
\(447\) 19.1545i 0.905978i
\(448\) 0 0
\(449\) 14.0194i 0.661615i 0.943698 + 0.330808i \(0.107321\pi\)
−0.943698 + 0.330808i \(0.892679\pi\)
\(450\) −9.57703 5.52930i −0.451466 0.260654i
\(451\) 5.87800 + 10.1810i 0.276784 + 0.479404i
\(452\) 5.88404 + 10.1915i 0.276762 + 0.479366i
\(453\) −10.1831 5.87920i −0.478442 0.276229i
\(454\) 9.12929 0.428459
\(455\) 0 0
\(456\) −2.31767 −0.108535
\(457\) 1.67342 + 0.966148i 0.0782792 + 0.0451945i 0.538629 0.842543i \(-0.318943\pi\)
−0.460350 + 0.887738i \(0.652276\pi\)
\(458\) −5.35205 9.27003i −0.250085 0.433160i
\(459\) 12.5673 + 21.7673i 0.586593 + 1.01601i
\(460\) 2.93067 + 1.69202i 0.136643 + 0.0788909i
\(461\) 28.6926i 1.33635i 0.744005 + 0.668174i \(0.232924\pi\)
−0.744005 + 0.668174i \(0.767076\pi\)
\(462\) 0 0
\(463\) 27.7198i 1.28825i −0.764922 0.644123i \(-0.777222\pi\)
0.764922 0.644123i \(-0.222778\pi\)
\(464\) −3.13706 + 5.43355i −0.145635 + 0.252246i
\(465\) −1.77748 3.07868i −0.0824286 0.142771i
\(466\) −6.14898 + 3.55011i −0.284846 + 0.164456i
\(467\) −11.2513 + 19.4878i −0.520648 + 0.901788i 0.479064 + 0.877780i \(0.340976\pi\)
−0.999712 + 0.0240083i \(0.992357\pi\)
\(468\) 2.09783 8.23490i 0.0969724 0.380658i
\(469\) 0 0
\(470\) 0.137063i 0.00632226i
\(471\) 2.57242 4.45556i 0.118531 0.205301i
\(472\) −3.26875 5.66164i −0.150456 0.260598i
\(473\) 13.0386 7.52781i 0.599513 0.346129i
\(474\) −10.4770 6.04892i −0.481226 0.277836i
\(475\) 13.5603i 0.622191i
\(476\) 0 0
\(477\) 7.84787 0.359329
\(478\) 7.80678 13.5217i 0.357074 0.618470i
\(479\) 7.43232 4.29105i 0.339591 0.196063i −0.320500 0.947249i \(-0.603851\pi\)
0.660091 + 0.751185i \(0.270518\pi\)
\(480\) 0.222521 + 0.385418i 0.0101566 + 0.0175918i
\(481\) −22.9615 + 23.5360i −1.04695 + 1.07315i
\(482\) −16.6461 −0.758209
\(483\) 0 0
\(484\) −4.78017 −0.217280
\(485\) −2.64310 + 4.57799i −0.120017 + 0.207876i
\(486\) 13.6791 7.89762i 0.620495 0.358243i
\(487\) −13.9400 + 8.04825i −0.631681 + 0.364701i −0.781403 0.624027i \(-0.785496\pi\)
0.149722 + 0.988728i \(0.452162\pi\)
\(488\) −12.7216 7.34481i −0.575879 0.332484i
\(489\) 8.00000i 0.361773i
\(490\) 0 0
\(491\) −11.0382 −0.498145 −0.249073 0.968485i \(-0.580126\pi\)
−0.249073 + 0.968485i \(0.580126\pi\)
\(492\) −3.27372 1.89008i −0.147591 0.0852116i
\(493\) 18.3545 + 31.7909i 0.826645 + 1.43179i
\(494\) 10.0312 2.82114i 0.451325 0.126929i
\(495\) −1.63102 + 2.82501i −0.0733090 + 0.126975i
\(496\) 7.98792i 0.358668i
\(497\) 0 0
\(498\) 9.30559 0.416993
\(499\) 11.9340 + 6.89008i 0.534238 + 0.308443i 0.742741 0.669579i \(-0.233526\pi\)
−0.208502 + 0.978022i \(0.566859\pi\)
\(500\) −4.65806 + 2.68933i −0.208315 + 0.120271i
\(501\) −4.72560 + 2.72832i −0.211124 + 0.121893i
\(502\) −10.3348 5.96681i −0.461266 0.266312i
\(503\) 28.1823 1.25658 0.628292 0.777977i \(-0.283754\pi\)
0.628292 + 0.777977i \(0.283754\pi\)
\(504\) 0 0
\(505\) 1.57374i 0.0700307i
\(506\) −7.60388 + 13.1703i −0.338033 + 0.585491i
\(507\) −0.257597 10.4220i −0.0114403 0.462858i
\(508\) −1.22521 2.12212i −0.0543599 0.0941541i
\(509\) −20.0776 11.5918i −0.889923 0.513797i −0.0160056 0.999872i \(-0.505095\pi\)
−0.873917 + 0.486075i \(0.838428\pi\)
\(510\) 2.60388 0.115302
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) 10.7521 + 6.20775i 0.474719 + 0.274079i
\(514\) 1.09877 0.634375i 0.0484647 0.0279811i
\(515\) −2.02808 + 1.17092i −0.0893681 + 0.0515967i
\(516\) −2.42058 + 4.19257i −0.106560 + 0.184568i
\(517\) 0.615957 0.0270898
\(518\) 0 0
\(519\) 2.63533 0.115678
\(520\) −1.43224 1.39728i −0.0628081 0.0612749i
\(521\) 7.74578 + 13.4161i 0.339349 + 0.587770i 0.984310 0.176445i \(-0.0564599\pi\)
−0.644961 + 0.764215i \(0.723127\pi\)
\(522\) 12.8063 7.39373i 0.560517 0.323615i
\(523\) 20.6129 35.7026i 0.901339 1.56117i 0.0755819 0.997140i \(-0.475919\pi\)
0.825757 0.564026i \(-0.190748\pi\)
\(524\) −4.06100 −0.177406
\(525\) 0 0
\(526\) 5.30559i 0.231335i
\(527\) 40.4747 + 23.3681i 1.76311 + 1.01793i
\(528\) −1.73205 + 1.00000i −0.0753778 + 0.0435194i
\(529\) −7.09179 12.2833i −0.308339 0.534059i
\(530\) 0.923936 1.60030i 0.0401332 0.0695127i
\(531\) 15.4082i 0.668659i
\(532\) 0 0
\(533\) 16.4698 + 4.19567i 0.713386 + 0.181735i
\(534\) 3.56465 6.17415i 0.154257 0.267182i
\(535\) −6.68500 + 3.85958i −0.289018 + 0.166864i
\(536\) 1.04892 + 1.81678i 0.0453063 + 0.0784729i
\(537\) 2.34213 4.05668i 0.101070 0.175059i
\(538\) 26.0194i 1.12178i
\(539\) 0 0
\(540\) 2.38404i 0.102593i
\(541\) 7.66392 + 4.42476i 0.329497 + 0.190235i 0.655618 0.755093i \(-0.272408\pi\)
−0.326121 + 0.945328i \(0.605742\pi\)
\(542\) −12.1501 21.0446i −0.521892 0.903943i
\(543\) −4.27844 7.41047i −0.183605 0.318014i
\(544\) −5.06699 2.92543i −0.217245 0.125427i
\(545\) −1.36360 −0.0584102
\(546\) 0 0
\(547\) 21.6329 0.924958 0.462479 0.886630i \(-0.346960\pi\)
0.462479 + 0.886630i \(0.346960\pi\)
\(548\) 8.89765 + 5.13706i 0.380089 + 0.219444i
\(549\) 17.3110 + 29.9835i 0.738814 + 1.27966i
\(550\) −5.85086 10.1340i −0.249481 0.432114i
\(551\) 15.7034 + 9.06638i 0.668988 + 0.386241i
\(552\) 4.89008i 0.208136i
\(553\) 0 0
\(554\) 1.87800i 0.0797887i
\(555\) −2.02930 + 3.51486i −0.0861391 + 0.149197i
\(556\) −1.59568 2.76380i −0.0676719 0.117211i
\(557\) −21.5848 + 12.4620i −0.914576 + 0.528031i −0.881901 0.471436i \(-0.843736\pi\)
−0.0326751 + 0.999466i \(0.510403\pi\)
\(558\) 9.41335 16.3044i 0.398499 0.690220i
\(559\) 5.37329 21.0925i 0.227266 0.892116i
\(560\) 0 0
\(561\) 11.7017i 0.494047i
\(562\) −15.9541 + 27.6333i −0.672982 + 1.16564i
\(563\) 12.0305 + 20.8374i 0.507025 + 0.878193i 0.999967 + 0.00813097i \(0.00258820\pi\)
−0.492942 + 0.870062i \(0.664078\pi\)
\(564\) −0.171527 + 0.0990311i −0.00722259 + 0.00416996i
\(565\) −5.65583 3.26540i −0.237943 0.137376i
\(566\) 29.5362i 1.24150i
\(567\) 0 0
\(568\) −2.46681 −0.103505
\(569\) 16.8470 29.1798i 0.706262 1.22328i −0.259973 0.965616i \(-0.583714\pi\)
0.966234 0.257665i \(-0.0829532\pi\)
\(570\) 1.11389 0.643104i 0.0466557 0.0269367i
\(571\) −2.19083 3.79462i −0.0916832 0.158800i 0.816536 0.577294i \(-0.195891\pi\)
−0.908219 + 0.418494i \(0.862558\pi\)
\(572\) 6.27933 6.43645i 0.262552 0.269121i
\(573\) 18.5133 0.773406
\(574\) 0 0
\(575\) 28.6112 1.19317
\(576\) −1.17845 + 2.04113i −0.0491020 + 0.0850472i
\(577\) −31.3254 + 18.0858i −1.30410 + 0.752920i −0.981104 0.193482i \(-0.938022\pi\)
−0.322991 + 0.946402i \(0.604689\pi\)
\(578\) −14.9238 + 8.61625i −0.620748 + 0.358389i
\(579\) −9.22725 5.32736i −0.383471 0.221397i
\(580\) 3.48188i 0.144577i
\(581\) 0 0
\(582\) 7.63879 0.316638
\(583\) 7.19170 + 4.15213i 0.297850 + 0.171964i
\(584\) 1.75302 + 3.03632i 0.0725405 + 0.125644i
\(585\) 1.27678 + 4.53986i 0.0527882 + 0.187700i
\(586\) −4.34966 + 7.53383i −0.179683 + 0.311220i
\(587\) 35.0616i 1.44715i 0.690248 + 0.723573i \(0.257502\pi\)
−0.690248 + 0.723573i \(0.742498\pi\)
\(588\) 0 0
\(589\) 23.0858 0.951232
\(590\) 3.14197 + 1.81402i 0.129353 + 0.0746820i
\(591\) −10.3365 + 5.96777i −0.425186 + 0.245481i
\(592\) 7.89781 4.55980i 0.324598 0.187407i
\(593\) −21.1444 12.2078i −0.868298 0.501312i −0.00151591 0.999999i \(-0.500483\pi\)
−0.866782 + 0.498687i \(0.833816\pi\)
\(594\) 10.7138 0.439592
\(595\) 0 0
\(596\) 23.8853i 0.978380i
\(597\) −3.02715 + 5.24317i −0.123893 + 0.214589i
\(598\) 5.95237 + 21.1650i 0.243410 + 0.865500i
\(599\) −16.3002 28.2328i −0.666008 1.15356i −0.979011 0.203808i \(-0.934668\pi\)
0.313002 0.949752i \(-0.398665\pi\)
\(600\) 3.25860 + 1.88135i 0.133032 + 0.0768060i
\(601\) −15.9989 −0.652610 −0.326305 0.945265i \(-0.605804\pi\)
−0.326305 + 0.945265i \(0.605804\pi\)
\(602\) 0 0
\(603\) 4.94438i 0.201351i
\(604\) −12.6981 7.33124i −0.516678 0.298304i
\(605\) 2.29739 1.32640i 0.0934020 0.0539257i
\(606\) 1.96945 1.13706i 0.0800035 0.0461900i
\(607\) 8.79656 15.2361i 0.357041 0.618414i −0.630424 0.776251i \(-0.717119\pi\)
0.987465 + 0.157837i \(0.0504522\pi\)
\(608\) −2.89008 −0.117208
\(609\) 0 0
\(610\) 8.15213 0.330070
\(611\) 0.621849 0.637409i 0.0251573 0.0257868i
\(612\) 6.89493 + 11.9424i 0.278711 + 0.482742i
\(613\) −14.8635 + 8.58144i −0.600331 + 0.346601i −0.769172 0.639042i \(-0.779331\pi\)
0.168841 + 0.985643i \(0.445998\pi\)
\(614\) −13.0761 + 22.6484i −0.527707 + 0.914015i
\(615\) 2.09783 0.0845929
\(616\) 0 0
\(617\) 29.5797i 1.19083i −0.803417 0.595417i \(-0.796987\pi\)
0.803417 0.595417i \(-0.203013\pi\)
\(618\) 2.93067 + 1.69202i 0.117889 + 0.0680631i
\(619\) 30.5076 17.6136i 1.22620 0.707949i 0.259970 0.965617i \(-0.416287\pi\)
0.966234 + 0.257668i \(0.0829540\pi\)
\(620\) −2.21648 3.83906i −0.0890160 0.154180i
\(621\) −13.0978 + 22.6861i −0.525598 + 0.910362i
\(622\) 11.1099i 0.445467i
\(623\) 0 0
\(624\) −0.713792 + 2.80194i −0.0285745 + 0.112167i
\(625\) −10.2376 + 17.7320i −0.409503 + 0.709281i
\(626\) 6.77811 3.91335i 0.270908 0.156409i
\(627\) 2.89008 + 5.00577i 0.115419 + 0.199911i
\(628\) 3.20775 5.55599i 0.128003 0.221708i
\(629\) 53.3575i 2.12750i
\(630\) 0 0
\(631\) 9.55065i 0.380205i −0.981764 0.190103i \(-0.939118\pi\)
0.981764 0.190103i \(-0.0608821\pi\)
\(632\) −13.0646 7.54288i −0.519684 0.300040i
\(633\) −1.08157 1.87334i −0.0429887 0.0744585i
\(634\) 5.68060 + 9.83909i 0.225606 + 0.390760i
\(635\) 1.17769 + 0.679940i 0.0467352 + 0.0269826i
\(636\) −2.67025 −0.105882
\(637\) 0 0
\(638\) 15.6474 0.619487
\(639\) 5.03509 + 2.90701i 0.199185 + 0.115000i
\(640\) 0.277479 + 0.480608i 0.0109683 + 0.0189977i
\(641\) 10.6957 + 18.5254i 0.422454 + 0.731711i 0.996179 0.0873368i \(-0.0278356\pi\)
−0.573725 + 0.819048i \(0.694502\pi\)
\(642\) 9.66010 + 5.57726i 0.381254 + 0.220117i
\(643\) 4.05429i 0.159886i −0.996799 0.0799429i \(-0.974526\pi\)
0.996799 0.0799429i \(-0.0254738\pi\)
\(644\) 0 0
\(645\) 2.68664i 0.105787i
\(646\) −8.45473 + 14.6440i −0.332647 + 0.576161i
\(647\) 13.9366 + 24.1389i 0.547905 + 0.948999i 0.998418 + 0.0562289i \(0.0179077\pi\)
−0.450513 + 0.892770i \(0.648759\pi\)
\(648\) 3.13990 1.81282i 0.123347 0.0712144i
\(649\) −8.15213 + 14.1199i −0.319999 + 0.554255i
\(650\) −16.3937 4.17629i −0.643015 0.163808i
\(651\) 0 0
\(652\) 9.97584i 0.390684i
\(653\) −4.73556 + 8.20223i −0.185317 + 0.320978i −0.943683 0.330850i \(-0.892664\pi\)
0.758366 + 0.651829i \(0.225998\pi\)
\(654\) 0.985230 + 1.70647i 0.0385255 + 0.0667282i
\(655\) 1.95175 1.12684i 0.0762611 0.0440294i
\(656\) −4.08226 2.35690i −0.159386 0.0920213i
\(657\) 8.26337i 0.322385i
\(658\) 0 0
\(659\) 1.29829 0.0505742 0.0252871 0.999680i \(-0.491950\pi\)
0.0252871 + 0.999680i \(0.491950\pi\)
\(660\) 0.554958 0.961216i 0.0216017 0.0374153i
\(661\) −9.38292 + 5.41723i −0.364953 + 0.210706i −0.671251 0.741230i \(-0.734243\pi\)
0.306298 + 0.951936i \(0.400910\pi\)
\(662\) 10.1371 + 17.5579i 0.393988 + 0.682408i
\(663\) 12.1092 + 11.8136i 0.470284 + 0.458804i
\(664\) 11.6039 0.450318
\(665\) 0 0
\(666\) −21.4940 −0.832874
\(667\) −19.1293 + 33.1329i −0.740689 + 1.28291i
\(668\) −5.89272 + 3.40217i −0.227996 + 0.131634i
\(669\) 1.82351 1.05280i 0.0705008 0.0407037i
\(670\) −1.00824 0.582105i −0.0389515 0.0224887i
\(671\) 36.6353i 1.41429i
\(672\) 0 0
\(673\) 17.8025 0.686237 0.343119 0.939292i \(-0.388517\pi\)
0.343119 + 0.939292i \(0.388517\pi\)
\(674\) −16.1915 9.34817i −0.623673 0.360078i
\(675\) −10.0782 17.4560i −0.387911 0.671881i
\(676\) −0.321218 12.9960i −0.0123545 0.499847i
\(677\) −17.0640 + 29.5557i −0.655822 + 1.13592i 0.325865 + 0.945416i \(0.394345\pi\)
−0.981687 + 0.190501i \(0.938989\pi\)
\(678\) 9.43727i 0.362436i
\(679\) 0 0
\(680\) 3.24698 0.124516
\(681\) 6.34028 + 3.66056i 0.242960 + 0.140273i
\(682\) 17.2526 9.96077i 0.660635 0.381418i
\(683\) 20.3434 11.7453i 0.778417 0.449420i −0.0574517 0.998348i \(-0.518298\pi\)
0.835869 + 0.548929i \(0.184964\pi\)
\(684\) 5.89904 + 3.40581i 0.225555 + 0.130225i
\(685\) −5.70171 −0.217851
\(686\) 0 0
\(687\) 8.58402i 0.327501i
\(688\) −3.01842 + 5.22805i −0.115076 + 0.199318i
\(689\) 11.5572 3.25032i 0.440295 0.123827i
\(690\) 1.35690 + 2.35021i 0.0516561 + 0.0894711i
\(691\) 20.7898 + 12.0030i 0.790880 + 0.456615i 0.840272 0.542164i \(-0.182395\pi\)
−0.0493920 + 0.998779i \(0.515728\pi\)
\(692\) 3.28621 0.124923
\(693\) 0 0
\(694\) 13.2000i 0.501064i
\(695\) 1.53379 + 0.885535i 0.0581800 + 0.0335903i
\(696\) −4.35737 + 2.51573i −0.165166 + 0.0953585i
\(697\) −23.8847 + 13.7899i −0.904699 + 0.522328i
\(698\) −16.6174 + 28.7823i −0.628980 + 1.08942i
\(699\) −5.69394 −0.215365
\(700\) 0 0
\(701\) 3.28621 0.124118 0.0620592 0.998072i \(-0.480233\pi\)
0.0620592 + 0.998072i \(0.480233\pi\)
\(702\) 10.8163 11.0869i 0.408234 0.418449i
\(703\) −13.1782 22.8253i −0.497026 0.860874i
\(704\) −2.15983 + 1.24698i −0.0814017 + 0.0469973i
\(705\) 0.0549581 0.0951903i 0.00206984 0.00358507i
\(706\) −19.5013 −0.733939
\(707\) 0 0
\(708\) 5.24267i 0.197032i
\(709\) −20.6278 11.9095i −0.774693 0.447269i 0.0598532 0.998207i \(-0.480937\pi\)
−0.834546 + 0.550938i \(0.814270\pi\)
\(710\) 1.18557 0.684489i 0.0444936 0.0256884i
\(711\) 17.7778 + 30.7920i 0.666719 + 1.15479i
\(712\) 4.44504 7.69904i 0.166585 0.288534i
\(713\) 48.7090i 1.82417i
\(714\) 0 0
\(715\) −1.23191 + 4.83579i −0.0460710 + 0.180848i
\(716\) 2.92058 5.05860i 0.109147 0.189049i
\(717\) 10.8436 6.26055i 0.404962 0.233805i
\(718\) −2.18233 3.77991i −0.0814439 0.141065i
\(719\) 16.9172 29.3015i 0.630906 1.09276i −0.356461 0.934310i \(-0.616017\pi\)
0.987367 0.158451i \(-0.0506501\pi\)
\(720\) 1.30798i 0.0487455i
\(721\) 0 0
\(722\) 10.6474i 0.396256i
\(723\) −11.5607 6.67456i −0.429946 0.248230i
\(724\) −5.33513 9.24071i −0.198278 0.343428i
\(725\) −14.7192 25.4943i −0.546656 0.946836i
\(726\) −3.31982 1.91670i −0.123210 0.0711353i
\(727\) −19.3163 −0.716403 −0.358202 0.933644i \(-0.616610\pi\)
−0.358202 + 0.933644i \(0.616610\pi\)
\(728\) 0 0
\(729\) 1.78986 0.0662910
\(730\) −1.68503 0.972853i −0.0623658 0.0360069i
\(731\) 17.6603 + 30.5886i 0.653191 + 1.13136i
\(732\) −5.89008 10.2019i −0.217704 0.377074i
\(733\) 14.0233 + 8.09634i 0.517962 + 0.299045i 0.736100 0.676873i \(-0.236665\pi\)
−0.218139 + 0.975918i \(0.569999\pi\)
\(734\) 29.5013i 1.08891i
\(735\) 0 0
\(736\) 6.09783i 0.224769i
\(737\) 2.61596 4.53097i 0.0963600 0.166900i
\(738\) 5.55496 + 9.62147i 0.204481 + 0.354171i
\(739\) −29.2075 + 16.8629i −1.07441 + 0.620313i −0.929384 0.369114i \(-0.879661\pi\)
−0.145030 + 0.989427i \(0.546328\pi\)
\(740\) −2.53050 + 4.38295i −0.0930230 + 0.161121i
\(741\) 8.09783 + 2.06292i 0.297481 + 0.0757832i
\(742\) 0 0
\(743\) 32.5512i 1.19419i −0.802171 0.597095i \(-0.796322\pi\)
0.802171 0.597095i \(-0.203678\pi\)
\(744\) −3.20291 + 5.54760i −0.117424 + 0.203385i
\(745\) 6.62767 + 11.4795i 0.242819 + 0.420575i
\(746\) −8.57138 + 4.94869i −0.313821 + 0.181184i
\(747\) −23.6850 13.6746i −0.866590 0.500326i
\(748\) 14.5918i 0.533529i
\(749\) 0 0
\(750\) −4.31336 −0.157501
\(751\) −20.8780 + 36.1618i −0.761849 + 1.31956i 0.180047 + 0.983658i \(0.442375\pi\)
−0.941896 + 0.335903i \(0.890958\pi\)
\(752\) −0.213891 + 0.123490i −0.00779979 + 0.00450321i
\(753\) −4.78501 8.28788i −0.174376 0.302027i
\(754\) 15.7971 16.1924i 0.575296 0.589691i
\(755\) 8.13706 0.296138
\(756\) 0 0
\(757\) 29.9603 1.08893 0.544463 0.838785i \(-0.316734\pi\)
0.544463 + 0.838785i \(0.316734\pi\)
\(758\) 10.1468 17.5747i 0.368547 0.638341i
\(759\) −10.5618 + 6.09783i −0.383368 + 0.221337i
\(760\) 1.38900 0.801938i 0.0503842 0.0290893i
\(761\) 45.5040 + 26.2717i 1.64952 + 0.952350i 0.977263 + 0.212030i \(0.0680073\pi\)
0.672255 + 0.740320i \(0.265326\pi\)
\(762\) 1.96508i 0.0711875i
\(763\) 0 0
\(764\) 23.0858 0.835213
\(765\) −6.62751 3.82640i −0.239618 0.138344i
\(766\) 8.30074 + 14.3773i 0.299918 + 0.519473i
\(767\) 6.38154 + 22.6910i 0.230424 + 0.819325i
\(768\) 0.400969 0.694498i 0.0144687 0.0250606i
\(769\) 2.92021i 0.105306i −0.998613 0.0526528i \(-0.983232\pi\)
0.998613 0.0526528i \(-0.0167677\pi\)
\(770\) 0 0
\(771\) 1.01746 0.0366429
\(772\) −11.5062 6.64310i −0.414117 0.239091i
\(773\) −5.06118 + 2.92208i −0.182038 + 0.105100i −0.588250 0.808679i \(-0.700183\pi\)
0.406212 + 0.913779i \(0.366850\pi\)
\(774\) 12.3220 7.11410i 0.442904 0.255711i
\(775\) −32.4582 18.7397i −1.16593 0.673151i
\(776\) 9.52542 0.341943
\(777\) 0 0
\(778\) 22.4349i 0.804329i
\(779\) −6.81163 + 11.7981i −0.244052 + 0.422710i
\(780\) −0.434425 1.54470i −0.0155549 0.0553090i
\(781\) 3.07606 + 5.32790i 0.110070 + 0.190647i
\(782\) −30.8977 17.8388i −1.10490 0.637913i
\(783\) 26.9530 0.963222
\(784\) 0 0
\(785\) 3.56033i 0.127074i
\(786\) −2.82036 1.62833i −0.100599 0.0580808i
\(787\) 30.5639 17.6461i 1.08949 0.629015i 0.156047 0.987750i \(-0.450125\pi\)
0.933440 + 0.358735i \(0.116792\pi\)
\(788\) −12.8894 + 7.44169i −0.459165 + 0.265099i
\(789\) 2.12737 3.68472i 0.0757365 0.131180i
\(790\) 8.37196 0.297861
\(791\) 0 0
\(792\) 5.87800 0.208866
\(793\) 37.9112 + 36.9858i 1.34627 + 1.31340i
\(794\) 10.3388 + 17.9073i 0.366909 + 0.635506i
\(795\) 1.28334 0.740939i 0.0455155 0.0262784i
\(796\) −3.77479 + 6.53813i −0.133794 + 0.231738i
\(797\) 35.4228 1.25474 0.627370 0.778721i \(-0.284131\pi\)
0.627370 + 0.778721i \(0.284131\pi\)
\(798\) 0 0
\(799\) 1.44504i 0.0511219i
\(800\) 4.06341 + 2.34601i 0.143663 + 0.0829440i
\(801\) −18.1458 + 10.4765i −0.641151 + 0.370169i
\(802\) −15.8388 27.4336i −0.559287 0.968713i
\(803\) 4.37196 7.57246i 0.154283 0.267226i
\(804\) 1.68233i 0.0593313i
\(805\) 0 0
\(806\) 7.10992 27.9095i 0.250436 0.983069i
\(807\) 10.4330 18.0704i 0.367258 0.636109i
\(808\) 2.45587 1.41789i 0.0863971 0.0498814i
\(809\) −0.0199098 0.0344848i −0.000699992 0.00121242i 0.865675 0.500606i \(-0.166889\pi\)
−0.866375 + 0.499394i \(0.833556\pi\)
\(810\) −1.00604 + 1.74251i −0.0353487 + 0.0612257i
\(811\) 16.4638i 0.578123i −0.957310 0.289062i \(-0.906657\pi\)
0.957310 0.289062i \(-0.0933432\pi\)
\(812\) 0 0
\(813\) 19.4873i 0.683448i
\(814\) −19.6968 11.3720i −0.690373 0.398587i
\(815\) −2.76809 4.79447i −0.0969618 0.167943i
\(816\) −2.34601 4.06341i −0.0821268 0.142248i
\(817\) 15.1095 + 8.72348i 0.528615 + 0.305196i
\(818\) 7.30559 0.255434
\(819\) 0 0
\(820\) 2.61596 0.0913532
\(821\) −11.0584 6.38458i −0.385941 0.222823i 0.294459 0.955664i \(-0.404861\pi\)
−0.680400 + 0.732841i \(0.738194\pi\)
\(822\) 4.11960 + 7.13537i 0.143688 + 0.248874i
\(823\) −10.1468 17.5747i −0.353694 0.612615i 0.633200 0.773988i \(-0.281741\pi\)
−0.986893 + 0.161373i \(0.948408\pi\)
\(824\) 3.65448 + 2.10992i 0.127310 + 0.0735024i
\(825\) 9.38404i 0.326710i
\(826\) 0 0
\(827\) 27.4711i 0.955265i 0.878560 + 0.477632i \(0.158505\pi\)
−0.878560 + 0.477632i \(0.841495\pi\)
\(828\) −7.18598 + 12.4465i −0.249730 + 0.432545i
\(829\) −15.3545 26.5948i −0.533284 0.923675i −0.999244 0.0388693i \(-0.987624\pi\)
0.465960 0.884806i \(-0.345709\pi\)
\(830\) −5.57691 + 3.21983i −0.193577 + 0.111762i
\(831\) 0.753020 1.30427i 0.0261220 0.0452446i
\(832\) −0.890084 + 3.49396i −0.0308581 + 0.121131i
\(833\) 0 0
\(834\) 2.55927i 0.0886203i
\(835\) 1.88806 3.27021i 0.0653390 0.113170i
\(836\) 3.60388 + 6.24210i 0.124643 + 0.215887i
\(837\) 29.7179 17.1576i 1.02720 0.593055i
\(838\) 27.3128 + 15.7690i 0.943505 + 0.544733i
\(839\) 42.5991i 1.47068i −0.677696 0.735342i \(-0.737022\pi\)
0.677696 0.735342i \(-0.262978\pi\)
\(840\) 0 0
\(841\) 10.3647 0.357402
\(842\) 0.179644 0.311153i 0.00619095 0.0107230i
\(843\) −22.1601 + 12.7942i −0.763236 + 0.440655i
\(844\) −1.34870 2.33602i −0.0464241 0.0804090i
\(845\) 3.76051 + 6.15686i 0.129365 + 0.211803i
\(846\) 0.582105 0.0200132
\(847\) 0 0
\(848\) −3.32975 −0.114344
\(849\) 11.8431 20.5128i 0.406454 0.703998i
\(850\) 23.7744 13.7262i 0.815456 0.470804i
\(851\) 48.1595 27.8049i 1.65089 0.953140i
\(852\) −1.71320 0.989115i −0.0586932 0.0338865i
\(853\) 39.2524i 1.34398i 0.740562 + 0.671988i \(0.234559\pi\)
−0.740562 + 0.671988i \(0.765441\pi\)
\(854\) 0 0
\(855\) −3.78017 −0.129279
\(856\) 12.0459 + 6.95473i 0.411722 + 0.237708i
\(857\) −2.56033 4.43463i −0.0874594 0.151484i 0.818977 0.573826i \(-0.194541\pi\)
−0.906437 + 0.422342i \(0.861208\pi\)
\(858\) 6.94180 1.95229i 0.236989 0.0666500i
\(859\) 1.14310 1.97991i 0.0390022 0.0675538i −0.845865 0.533396i \(-0.820915\pi\)
0.884868 + 0.465843i \(0.154249\pi\)
\(860\) 3.35019i 0.114241i
\(861\) 0 0
\(862\) −35.8256 −1.22023
\(863\) 32.1726 + 18.5749i 1.09517 + 0.632296i 0.934948 0.354785i \(-0.115446\pi\)
0.160221 + 0.987081i \(0.448779\pi\)
\(864\) −3.72036 + 2.14795i −0.126569 + 0.0730747i
\(865\) −1.57938 + 0.911854i −0.0537004 + 0.0310040i
\(866\) −4.24333 2.44989i −0.144194 0.0832505i
\(867\) −13.8194 −0.469331
\(868\) 0 0
\(869\) 37.6233i 1.27628i
\(870\) 1.39612 2.41816i 0.0473331 0.0819833i
\(871\) −2.04779 7.28137i −0.0693867 0.246720i
\(872\) 1.22856 + 2.12793i 0.0416043 + 0.0720608i
\(873\) −19.4426 11.2252i −0.658033 0.379916i
\(874\) −17.6233 −0.596115
\(875\) 0 0
\(876\) 2.81163i 0.0949961i
\(877\) −1.16672 0.673604i −0.0393972 0.0227460i 0.480172 0.877174i \(-0.340574\pi\)
−0.519569 + 0.854428i \(0.673908\pi\)
\(878\) −33.8870 + 19.5646i −1.14363 + 0.660275i
\(879\) −6.04166 + 3.48816i −0.203780 + 0.117653i
\(880\) 0.692021 1.19862i 0.0233280 0.0404053i
\(881\) −29.5157 −0.994410 −0.497205 0.867633i \(-0.665640\pi\)
−0.497205 + 0.867633i \(0.665640\pi\)
\(882\) 0 0
\(883\) −16.0968 −0.541699 −0.270850 0.962622i \(-0.587305\pi\)
−0.270850 + 0.962622i \(0.587305\pi\)
\(884\) 15.1000 + 14.7314i 0.507867 + 0.495470i
\(885\) 1.45473 + 2.51967i 0.0489002 + 0.0846977i
\(886\) 0.466411 0.269282i 0.0156694 0.00904672i
\(887\) −11.8116 + 20.4583i −0.396596 + 0.686924i −0.993303 0.115535i \(-0.963142\pi\)
0.596708 + 0.802459i \(0.296475\pi\)
\(888\) 7.31336 0.245420
\(889\) 0 0
\(890\) 4.93362i 0.165375i
\(891\) −7.83079 4.52111i −0.262341 0.151463i
\(892\) 2.27388 1.31282i 0.0761350 0.0439566i
\(893\) 0.356896 + 0.618162i 0.0119431 + 0.0206860i
\(894\) 9.57726 16.5883i 0.320312 0.554796i
\(895\) 3.24160i 0.108355i
\(896\) 0 0
\(897\) −4.35258 + 17.0858i −0.145329 + 0.570477i
\(898\) −7.00969 + 12.1411i −0.233916 + 0.405155i
\(899\) 43.4028 25.0586i 1.44756 0.835751i
\(900\) −5.52930 9.57703i −0.184310 0.319234i
\(901\) −9.74094 + 16.8718i −0.324518 + 0.562081i
\(902\) 11.7560i 0.391432i
\(903\) 0 0
\(904\) 11.7681i 0.391401i
\(905\) 5.12821 + 2.96077i 0.170467 + 0.0984194i
\(906\) −5.87920 10.1831i −0.195323 0.338310i
\(907\) 12.7927 + 22.1576i 0.424774 + 0.735730i 0.996399 0.0847848i \(-0.0270203\pi\)
−0.571625 + 0.820515i \(0.693687\pi\)
\(908\) 7.90620 + 4.56465i 0.262376 + 0.151483i
\(909\) −6.68366 −0.221683
\(910\) 0 0
\(911\) −51.8732 −1.71864 −0.859318 0.511441i \(-0.829112\pi\)
−0.859318 + 0.511441i \(0.829112\pi\)
\(912\) −2.00716 1.15883i −0.0664637 0.0383728i
\(913\) −14.4698 25.0624i −0.478880 0.829445i
\(914\) 0.966148 + 1.67342i 0.0319573 + 0.0553517i
\(915\) 5.66164 + 3.26875i 0.187168 + 0.108062i
\(916\) 10.7041i 0.353674i
\(917\) 0 0
\(918\) 25.1347i 0.829568i
\(919\) 9.79954 16.9733i 0.323257 0.559898i −0.657901 0.753104i \(-0.728555\pi\)
0.981158 + 0.193207i \(0.0618888\pi\)
\(920\) 1.69202 + 2.93067i 0.0557843 + 0.0966212i
\(921\) −18.1626 + 10.4862i −0.598478 + 0.345532i
\(922\) −14.3463 + 24.8485i −0.472470 + 0.818343i
\(923\) 8.61894 + 2.19567i 0.283696 + 0.0722713i
\(924\) 0 0
\(925\) 42.7894i 1.40691i
\(926\) 13.8599 24.0060i 0.455464 0.788887i
\(927\) −4.97285 8.61323i −0.163330 0.282896i
\(928\) −5.43355 + 3.13706i −0.178365 + 0.102979i
\(929\) 3.03218 + 1.75063i 0.0994825 + 0.0574362i 0.548916 0.835878i \(-0.315041\pi\)
−0.449433 + 0.893314i \(0.648374\pi\)
\(930\) 3.55496i 0.116572i
\(931\) 0 0
\(932\) −7.10023 −0.232576
\(933\) −4.45473 + 7.71582i −0.145841 + 0.252605i
\(934\) −19.4878 + 11.2513i −0.637661 + 0.368154i
\(935\) −4.04892 7.01293i −0.132414 0.229347i
\(936\) 5.93423 6.08271i 0.193966 0.198820i
\(937\) 12.9129 0.421847 0.210923 0.977503i \(-0.432353\pi\)
0.210923 + 0.977503i \(0.432353\pi\)
\(938\) 0 0
\(939\) 6.27652 0.204826
\(940\) 0.0685317 0.118700i 0.00223526 0.00387158i
\(941\) 6.76133 3.90366i 0.220413 0.127256i −0.385728 0.922612i \(-0.626050\pi\)
0.606142 + 0.795357i \(0.292716\pi\)
\(942\) 4.45556 2.57242i 0.145170 0.0838139i
\(943\) −24.8930 14.3720i −0.810627 0.468015i
\(944\) 6.53750i 0.212777i
\(945\) 0 0
\(946\) 15.0556 0.489500
\(947\) 16.6889 + 9.63533i 0.542316 + 0.313106i 0.746017 0.665927i \(-0.231964\pi\)
−0.203701 + 0.979033i \(0.565297\pi\)
\(948\) −6.04892 10.4770i −0.196460 0.340278i
\(949\) −3.42240 12.1691i −0.111096 0.395026i
\(950\) 6.78017 11.7436i 0.219978 0.381013i
\(951\) 9.11098i 0.295444i
\(952\) 0 0
\(953\) 45.7482 1.48193 0.740965 0.671543i \(-0.234368\pi\)
0.740965 + 0.671543i \(0.234368\pi\)
\(954\) 6.79646 + 3.92394i 0.220043 + 0.127042i
\(955\) −11.0952 + 6.40581i −0.359032 + 0.207287i
\(956\) 13.5217 7.80678i 0.437324 0.252489i
\(957\) 10.8671 + 6.27413i 0.351284 + 0.202814i
\(958\) 8.58211 0.277275
\(959\) 0 0
\(960\) 0.445042i 0.0143637i
\(961\) 16.4034 28.4116i 0.529143 0.916502i
\(962\) −31.6532 + 8.90205i −1.02054 + 0.287014i
\(963\) −16.3916 28.3910i −0.528211 0.914889i
\(964\) −14.4159 8.32304i −0.464306 0.268067i
\(965\) 7.37329 0.237355
\(966\) 0 0
\(967\) 49.4838i 1.59129i −0.605762 0.795646i \(-0.707132\pi\)
0.605762 0.795646i \(-0.292868\pi\)
\(968\) −4.13975 2.39008i −0.133056 0.0768202i
\(969\) −11.7436 + 6.78017i −0.377259 + 0.217810i
\(970\) −4.57799 + 2.64310i −0.146990 + 0.0848650i
\(971\) −1.34093 + 2.32256i −0.0430325 + 0.0745344i −0.886739 0.462270i \(-0.847035\pi\)
0.843707 + 0.536804i \(0.180369\pi\)
\(972\) 15.7952 0.506632
\(973\) 0 0
\(974\) −16.0965 −0.515765
\(975\) −9.71086 9.47380i −0.310996 0.303405i
\(976\) −7.34481 12.7216i −0.235102 0.407208i
\(977\) 46.8930 27.0737i 1.50024 0.866163i 0.500239 0.865887i \(-0.333245\pi\)
1.00000 0.000276237i \(-8.79291e-5\pi\)
\(978\) −4.00000 + 6.92820i −0.127906 + 0.221540i
\(979\) −22.1715 −0.708604
\(980\) 0 0
\(981\) 5.79118i 0.184898i
\(982\) −9.55933 5.51908i −0.305050 0.176121i
\(983\) 29.1061 16.8044i 0.928339 0.535977i 0.0420531 0.999115i \(-0.486610\pi\)
0.886286 + 0.463139i \(0.153277\pi\)
\(984\) −1.89008 3.27372i −0.0602537 0.104362i
\(985\) 4.12983 7.15307i 0.131587 0.227916i
\(986\) 36.7090i 1.16905i
\(987\) 0 0
\(988\) 10.0978 + 2.57242i 0.321255 + 0.0818395i
\(989\) −18.4058 + 31.8798i −0.585271 + 1.01372i
\(990\) −2.82501 + 1.63102i −0.0897848 + 0.0518373i
\(991\) 17.7560 + 30.7543i 0.564038 + 0.976943i 0.997138 + 0.0755969i \(0.0240862\pi\)
−0.433100 + 0.901346i \(0.642580\pi\)
\(992\) −3.99396 + 6.91774i −0.126808 + 0.219638i
\(993\) 16.2586i 0.515951i
\(994\) 0 0
\(995\) 4.18970i 0.132822i
\(996\) 8.05887 + 4.65279i 0.255355 + 0.147429i
\(997\) 30.5743 + 52.9563i 0.968299 + 1.67714i 0.700478 + 0.713674i \(0.252970\pi\)
0.267821 + 0.963469i \(0.413696\pi\)
\(998\) 6.89008 + 11.9340i 0.218102 + 0.377763i
\(999\) −33.9282 19.5884i −1.07344 0.619751i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1274.2.n.l.961.6 12
7.2 even 3 1274.2.d.m.883.1 6
7.3 odd 6 182.2.n.b.25.1 12
7.4 even 3 inner 1274.2.n.l.753.3 12
7.5 odd 6 1274.2.d.k.883.3 6
7.6 odd 2 182.2.n.b.51.4 yes 12
13.12 even 2 inner 1274.2.n.l.961.3 12
21.17 even 6 1638.2.dm.d.1117.5 12
21.20 even 2 1638.2.dm.d.415.2 12
91.12 odd 6 1274.2.d.k.883.6 6
91.25 even 6 inner 1274.2.n.l.753.6 12
91.38 odd 6 182.2.n.b.25.4 yes 12
91.51 even 6 1274.2.d.m.883.4 6
91.90 odd 2 182.2.n.b.51.1 yes 12
273.38 even 6 1638.2.dm.d.1117.2 12
273.272 even 2 1638.2.dm.d.415.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
182.2.n.b.25.1 12 7.3 odd 6
182.2.n.b.25.4 yes 12 91.38 odd 6
182.2.n.b.51.1 yes 12 91.90 odd 2
182.2.n.b.51.4 yes 12 7.6 odd 2
1274.2.d.k.883.3 6 7.5 odd 6
1274.2.d.k.883.6 6 91.12 odd 6
1274.2.d.m.883.1 6 7.2 even 3
1274.2.d.m.883.4 6 91.51 even 6
1274.2.n.l.753.3 12 7.4 even 3 inner
1274.2.n.l.753.6 12 91.25 even 6 inner
1274.2.n.l.961.3 12 13.12 even 2 inner
1274.2.n.l.961.6 12 1.1 even 1 trivial
1638.2.dm.d.415.2 12 21.20 even 2
1638.2.dm.d.415.5 12 273.272 even 2
1638.2.dm.d.1117.2 12 273.38 even 6
1638.2.dm.d.1117.5 12 21.17 even 6