Properties

Label 1274.2.n.l.753.6
Level $1274$
Weight $2$
Character 1274.753
Analytic conductor $10.173$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1274,2,Mod(753,1274)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1274.753"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1274, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1274 = 2 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1274.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,-4,6,0,0,0,0,6,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1729412175\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.17213603549184.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 5x^{10} + 19x^{8} - 28x^{6} + 31x^{4} - 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 182)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 753.6
Root \(-1.56052 - 0.900969i\) of defining polynomial
Character \(\chi\) \(=\) 1274.753
Dual form 1274.2.n.l.961.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(0.400969 - 0.694498i) q^{3} +(0.500000 - 0.866025i) q^{4} +(-0.480608 + 0.277479i) q^{5} -0.801938i q^{6} -1.00000i q^{8} +(1.17845 + 2.04113i) q^{9} +(-0.277479 + 0.480608i) q^{10} +(2.15983 + 1.24698i) q^{11} +(-0.400969 - 0.694498i) q^{12} +(0.890084 + 3.49396i) q^{13} +0.445042i q^{15} +(-0.500000 - 0.866025i) q^{16} +(2.92543 - 5.06699i) q^{17} +(2.04113 + 1.17845i) q^{18} +(2.50289 - 1.44504i) q^{19} +0.554958i q^{20} +2.49396 q^{22} +(-3.04892 - 5.28088i) q^{23} +(-0.694498 - 0.400969i) q^{24} +(-2.34601 + 4.06341i) q^{25} +(2.51781 + 2.58082i) q^{26} +4.29590 q^{27} +6.27413 q^{29} +(0.222521 + 0.385418i) q^{30} +(6.91774 + 3.99396i) q^{31} +(-0.866025 - 0.500000i) q^{32} +(1.73205 - 1.00000i) q^{33} -5.85086i q^{34} +2.35690 q^{36} +(-7.89781 + 4.55980i) q^{37} +(1.44504 - 2.50289i) q^{38} +(2.78345 + 0.782807i) q^{39} +(0.277479 + 0.480608i) q^{40} -4.71379i q^{41} +6.03684 q^{43} +(2.15983 - 1.24698i) q^{44} +(-1.13274 - 0.653989i) q^{45} +(-5.28088 - 3.04892i) q^{46} +(0.213891 - 0.123490i) q^{47} -0.801938 q^{48} +4.69202i q^{50} +(-2.34601 - 4.06341i) q^{51} +(3.47090 + 0.976144i) q^{52} +(1.66487 - 2.88365i) q^{53} +(3.72036 - 2.14795i) q^{54} -1.38404 q^{55} -2.31767i q^{57} +(5.43355 - 3.13706i) q^{58} +(-5.66164 - 3.26875i) q^{59} +(0.385418 + 0.222521i) q^{60} +(-7.34481 - 12.7216i) q^{61} +7.98792 q^{62} -1.00000 q^{64} +(-1.39728 - 1.43224i) q^{65} +(1.00000 - 1.73205i) q^{66} +(1.81678 + 1.04892i) q^{67} +(-2.92543 - 5.06699i) q^{68} -4.89008 q^{69} -2.46681i q^{71} +(2.04113 - 1.17845i) q^{72} +(3.03632 + 1.75302i) q^{73} +(-4.55980 + 7.89781i) q^{74} +(1.88135 + 3.25860i) q^{75} -2.89008i q^{76} +(2.80194 - 0.713792i) q^{78} +(-7.54288 - 13.0646i) q^{79} +(0.480608 + 0.277479i) q^{80} +(-1.81282 + 3.13990i) q^{81} +(-2.35690 - 4.08226i) q^{82} +11.6039i q^{83} +3.24698i q^{85} +(5.22805 - 3.01842i) q^{86} +(2.51573 - 4.35737i) q^{87} +(1.24698 - 2.15983i) q^{88} +(-7.69904 + 4.44504i) q^{89} -1.30798 q^{90} -6.09783 q^{92} +(5.54760 - 3.20291i) q^{93} +(0.123490 - 0.213891i) q^{94} +(-0.801938 + 1.38900i) q^{95} +(-0.694498 + 0.400969i) q^{96} +9.52542i q^{97} +5.87800i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{3} + 6 q^{4} + 6 q^{9} - 4 q^{10} + 4 q^{12} + 8 q^{13} - 6 q^{16} + 8 q^{17} - 8 q^{22} - 18 q^{25} + 2 q^{26} - 4 q^{27} + 32 q^{29} + 2 q^{30} + 12 q^{36} + 16 q^{38} - 12 q^{39} + 4 q^{40}+ \cdots + 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1274\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) 0.400969 0.694498i 0.231499 0.400969i −0.726750 0.686902i \(-0.758970\pi\)
0.958250 + 0.285933i \(0.0923035\pi\)
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) −0.480608 + 0.277479i −0.214934 + 0.124092i −0.603603 0.797285i \(-0.706269\pi\)
0.388668 + 0.921378i \(0.372935\pi\)
\(6\) 0.801938i 0.327390i
\(7\) 0 0
\(8\) 1.00000i 0.353553i
\(9\) 1.17845 + 2.04113i 0.392816 + 0.680377i
\(10\) −0.277479 + 0.480608i −0.0877466 + 0.151982i
\(11\) 2.15983 + 1.24698i 0.651214 + 0.375978i 0.788921 0.614494i \(-0.210640\pi\)
−0.137707 + 0.990473i \(0.543973\pi\)
\(12\) −0.400969 0.694498i −0.115750 0.200484i
\(13\) 0.890084 + 3.49396i 0.246865 + 0.969050i
\(14\) 0 0
\(15\) 0.445042i 0.114909i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 2.92543 5.06699i 0.709520 1.22893i −0.255515 0.966805i \(-0.582245\pi\)
0.965035 0.262120i \(-0.0844217\pi\)
\(18\) 2.04113 + 1.17845i 0.481099 + 0.277763i
\(19\) 2.50289 1.44504i 0.574201 0.331515i −0.184624 0.982809i \(-0.559107\pi\)
0.758826 + 0.651294i \(0.225773\pi\)
\(20\) 0.554958i 0.124092i
\(21\) 0 0
\(22\) 2.49396 0.531714
\(23\) −3.04892 5.28088i −0.635743 1.10114i −0.986357 0.164619i \(-0.947360\pi\)
0.350614 0.936520i \(-0.385973\pi\)
\(24\) −0.694498 0.400969i −0.141764 0.0818474i
\(25\) −2.34601 + 4.06341i −0.469202 + 0.812682i
\(26\) 2.51781 + 2.58082i 0.493784 + 0.506140i
\(27\) 4.29590 0.826746
\(28\) 0 0
\(29\) 6.27413 1.16508 0.582538 0.812803i \(-0.302060\pi\)
0.582538 + 0.812803i \(0.302060\pi\)
\(30\) 0.222521 + 0.385418i 0.0406266 + 0.0703673i
\(31\) 6.91774 + 3.99396i 1.24246 + 0.717336i 0.969595 0.244715i \(-0.0786945\pi\)
0.272868 + 0.962052i \(0.412028\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) 1.73205 1.00000i 0.301511 0.174078i
\(34\) 5.85086i 1.00341i
\(35\) 0 0
\(36\) 2.35690 0.392816
\(37\) −7.89781 + 4.55980i −1.29839 + 0.749627i −0.980126 0.198375i \(-0.936434\pi\)
−0.318266 + 0.948002i \(0.603100\pi\)
\(38\) 1.44504 2.50289i 0.234417 0.406022i
\(39\) 2.78345 + 0.782807i 0.445708 + 0.125349i
\(40\) 0.277479 + 0.480608i 0.0438733 + 0.0759908i
\(41\) 4.71379i 0.736171i −0.929792 0.368085i \(-0.880013\pi\)
0.929792 0.368085i \(-0.119987\pi\)
\(42\) 0 0
\(43\) 6.03684 0.920609 0.460304 0.887761i \(-0.347740\pi\)
0.460304 + 0.887761i \(0.347740\pi\)
\(44\) 2.15983 1.24698i 0.325607 0.187989i
\(45\) −1.13274 0.653989i −0.168859 0.0974910i
\(46\) −5.28088 3.04892i −0.778623 0.449538i
\(47\) 0.213891 0.123490i 0.0311992 0.0180128i −0.484319 0.874891i \(-0.660933\pi\)
0.515518 + 0.856878i \(0.327599\pi\)
\(48\) −0.801938 −0.115750
\(49\) 0 0
\(50\) 4.69202i 0.663552i
\(51\) −2.34601 4.06341i −0.328507 0.568991i
\(52\) 3.47090 + 0.976144i 0.481327 + 0.135367i
\(53\) 1.66487 2.88365i 0.228688 0.396099i −0.728731 0.684800i \(-0.759890\pi\)
0.957420 + 0.288700i \(0.0932231\pi\)
\(54\) 3.72036 2.14795i 0.506276 0.292299i
\(55\) −1.38404 −0.186624
\(56\) 0 0
\(57\) 2.31767i 0.306983i
\(58\) 5.43355 3.13706i 0.713460 0.411917i
\(59\) −5.66164 3.26875i −0.737083 0.425555i 0.0839249 0.996472i \(-0.473254\pi\)
−0.821008 + 0.570917i \(0.806588\pi\)
\(60\) 0.385418 + 0.222521i 0.0497572 + 0.0287273i
\(61\) −7.34481 12.7216i −0.940407 1.62883i −0.764696 0.644391i \(-0.777111\pi\)
−0.175711 0.984442i \(-0.556222\pi\)
\(62\) 7.98792 1.01447
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −1.39728 1.43224i −0.173311 0.177648i
\(66\) 1.00000 1.73205i 0.123091 0.213201i
\(67\) 1.81678 + 1.04892i 0.221955 + 0.128146i 0.606855 0.794813i \(-0.292431\pi\)
−0.384900 + 0.922958i \(0.625764\pi\)
\(68\) −2.92543 5.06699i −0.354760 0.614463i
\(69\) −4.89008 −0.588697
\(70\) 0 0
\(71\) 2.46681i 0.292757i −0.989229 0.146378i \(-0.953238\pi\)
0.989229 0.146378i \(-0.0467617\pi\)
\(72\) 2.04113 1.17845i 0.240550 0.138881i
\(73\) 3.03632 + 1.75302i 0.355374 + 0.205176i 0.667050 0.745013i \(-0.267557\pi\)
−0.311675 + 0.950189i \(0.600890\pi\)
\(74\) −4.55980 + 7.89781i −0.530066 + 0.918102i
\(75\) 1.88135 + 3.25860i 0.217240 + 0.376271i
\(76\) 2.89008i 0.331515i
\(77\) 0 0
\(78\) 2.80194 0.713792i 0.317257 0.0808210i
\(79\) −7.54288 13.0646i −0.848640 1.46989i −0.882422 0.470458i \(-0.844089\pi\)
0.0337823 0.999429i \(-0.489245\pi\)
\(80\) 0.480608 + 0.277479i 0.0537336 + 0.0310231i
\(81\) −1.81282 + 3.13990i −0.201425 + 0.348878i
\(82\) −2.35690 4.08226i −0.260276 0.450811i
\(83\) 11.6039i 1.27369i 0.770992 + 0.636845i \(0.219761\pi\)
−0.770992 + 0.636845i \(0.780239\pi\)
\(84\) 0 0
\(85\) 3.24698i 0.352184i
\(86\) 5.22805 3.01842i 0.563755 0.325484i
\(87\) 2.51573 4.35737i 0.269715 0.467159i
\(88\) 1.24698 2.15983i 0.132928 0.230239i
\(89\) −7.69904 + 4.44504i −0.816096 + 0.471173i −0.849068 0.528283i \(-0.822836\pi\)
0.0329721 + 0.999456i \(0.489503\pi\)
\(90\) −1.30798 −0.137873
\(91\) 0 0
\(92\) −6.09783 −0.635743
\(93\) 5.54760 3.20291i 0.575259 0.332126i
\(94\) 0.123490 0.213891i 0.0127370 0.0220611i
\(95\) −0.801938 + 1.38900i −0.0822771 + 0.142508i
\(96\) −0.694498 + 0.400969i −0.0708820 + 0.0409237i
\(97\) 9.52542i 0.967160i 0.875300 + 0.483580i \(0.160664\pi\)
−0.875300 + 0.483580i \(0.839336\pi\)
\(98\) 0 0
\(99\) 5.87800i 0.590761i
\(100\) 2.34601 + 4.06341i 0.234601 + 0.406341i
\(101\) −1.41789 + 2.45587i −0.141086 + 0.244368i −0.927906 0.372815i \(-0.878393\pi\)
0.786820 + 0.617183i \(0.211726\pi\)
\(102\) −4.06341 2.34601i −0.402338 0.232290i
\(103\) 2.10992 + 3.65448i 0.207896 + 0.360087i 0.951052 0.309032i \(-0.100005\pi\)
−0.743155 + 0.669119i \(0.766672\pi\)
\(104\) 3.49396 0.890084i 0.342611 0.0872799i
\(105\) 0 0
\(106\) 3.32975i 0.323414i
\(107\) 6.95473 + 12.0459i 0.672339 + 1.16453i 0.977239 + 0.212141i \(0.0680437\pi\)
−0.304900 + 0.952384i \(0.598623\pi\)
\(108\) 2.14795 3.72036i 0.206686 0.357991i
\(109\) 2.12793 + 1.22856i 0.203819 + 0.117675i 0.598436 0.801171i \(-0.295789\pi\)
−0.394617 + 0.918846i \(0.629123\pi\)
\(110\) −1.19862 + 0.692021i −0.114284 + 0.0659817i
\(111\) 7.31336i 0.694153i
\(112\) 0 0
\(113\) 11.7681 1.10705 0.553524 0.832833i \(-0.313283\pi\)
0.553524 + 0.832833i \(0.313283\pi\)
\(114\) −1.15883 2.00716i −0.108535 0.187988i
\(115\) 2.93067 + 1.69202i 0.273286 + 0.157782i
\(116\) 3.13706 5.43355i 0.291269 0.504493i
\(117\) −6.08271 + 5.93423i −0.562347 + 0.548619i
\(118\) −6.53750 −0.601826
\(119\) 0 0
\(120\) 0.445042 0.0406266
\(121\) −2.39008 4.13975i −0.217280 0.376341i
\(122\) −12.7216 7.34481i −1.15176 0.664968i
\(123\) −3.27372 1.89008i −0.295181 0.170423i
\(124\) 6.91774 3.99396i 0.621231 0.358668i
\(125\) 5.37867i 0.481083i
\(126\) 0 0
\(127\) −2.45042 −0.217439 −0.108720 0.994072i \(-0.534675\pi\)
−0.108720 + 0.994072i \(0.534675\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) 2.42058 4.19257i 0.213120 0.369135i
\(130\) −1.92620 0.541719i −0.168939 0.0475119i
\(131\) −2.03050 3.51693i −0.177406 0.307275i 0.763586 0.645707i \(-0.223437\pi\)
−0.940991 + 0.338431i \(0.890104\pi\)
\(132\) 2.00000i 0.174078i
\(133\) 0 0
\(134\) 2.09783 0.181225
\(135\) −2.06464 + 1.19202i −0.177696 + 0.102593i
\(136\) −5.06699 2.92543i −0.434491 0.250853i
\(137\) 8.89765 + 5.13706i 0.760178 + 0.438889i 0.829360 0.558715i \(-0.188705\pi\)
−0.0691817 + 0.997604i \(0.522039\pi\)
\(138\) −4.23494 + 2.44504i −0.360502 + 0.208136i
\(139\) −3.19136 −0.270687 −0.135344 0.990799i \(-0.543214\pi\)
−0.135344 + 0.990799i \(0.543214\pi\)
\(140\) 0 0
\(141\) 0.198062i 0.0166799i
\(142\) −1.23341 2.13632i −0.103505 0.179276i
\(143\) −2.43446 + 8.65628i −0.203580 + 0.723875i
\(144\) 1.17845 2.04113i 0.0982040 0.170094i
\(145\) −3.01539 + 1.74094i −0.250415 + 0.144577i
\(146\) 3.50604 0.290162
\(147\) 0 0
\(148\) 9.11960i 0.749627i
\(149\) −20.6853 + 11.9426i −1.69460 + 0.978380i −0.743894 + 0.668298i \(0.767023\pi\)
−0.950710 + 0.310082i \(0.899643\pi\)
\(150\) 3.25860 + 1.88135i 0.266064 + 0.153612i
\(151\) −12.6981 7.33124i −1.03336 0.596608i −0.115411 0.993318i \(-0.536819\pi\)
−0.917944 + 0.396710i \(0.870152\pi\)
\(152\) −1.44504 2.50289i −0.117208 0.203011i
\(153\) 13.7899 1.11484
\(154\) 0 0
\(155\) −4.43296 −0.356064
\(156\) 2.06965 2.01913i 0.165705 0.161660i
\(157\) −3.20775 + 5.55599i −0.256006 + 0.443416i −0.965168 0.261630i \(-0.915740\pi\)
0.709162 + 0.705046i \(0.249073\pi\)
\(158\) −13.0646 7.54288i −1.03937 0.600079i
\(159\) −1.33513 2.31251i −0.105882 0.183394i
\(160\) 0.554958 0.0438733
\(161\) 0 0
\(162\) 3.62565i 0.284858i
\(163\) 8.63933 4.98792i 0.676684 0.390684i −0.121920 0.992540i \(-0.538905\pi\)
0.798605 + 0.601856i \(0.205572\pi\)
\(164\) −4.08226 2.35690i −0.318771 0.184043i
\(165\) −0.554958 + 0.961216i −0.0432034 + 0.0748305i
\(166\) 5.80194 + 10.0493i 0.450318 + 0.779973i
\(167\) 6.80433i 0.526535i −0.964723 0.263267i \(-0.915200\pi\)
0.964723 0.263267i \(-0.0848002\pi\)
\(168\) 0 0
\(169\) −11.4155 + 6.21983i −0.878116 + 0.478449i
\(170\) 1.62349 + 2.81197i 0.124516 + 0.215668i
\(171\) 5.89904 + 3.40581i 0.451111 + 0.260449i
\(172\) 3.01842 5.22805i 0.230152 0.398635i
\(173\) 1.64310 + 2.84594i 0.124923 + 0.216373i 0.921703 0.387897i \(-0.126798\pi\)
−0.796780 + 0.604270i \(0.793465\pi\)
\(174\) 5.03146i 0.381434i
\(175\) 0 0
\(176\) 2.49396i 0.187989i
\(177\) −4.54028 + 2.62133i −0.341269 + 0.197032i
\(178\) −4.44504 + 7.69904i −0.333170 + 0.577067i
\(179\) −2.92058 + 5.05860i −0.218295 + 0.378097i −0.954287 0.298893i \(-0.903383\pi\)
0.735992 + 0.676990i \(0.236716\pi\)
\(180\) −1.13274 + 0.653989i −0.0844297 + 0.0487455i
\(181\) −10.6703 −0.793114 −0.396557 0.918010i \(-0.629795\pi\)
−0.396557 + 0.918010i \(0.629795\pi\)
\(182\) 0 0
\(183\) −11.7802 −0.870815
\(184\) −5.28088 + 3.04892i −0.389312 + 0.224769i
\(185\) 2.53050 4.38295i 0.186046 0.322241i
\(186\) 3.20291 5.54760i 0.234849 0.406770i
\(187\) 12.6369 7.29590i 0.924099 0.533529i
\(188\) 0.246980i 0.0180128i
\(189\) 0 0
\(190\) 1.60388i 0.116357i
\(191\) 11.5429 + 19.9928i 0.835213 + 1.44663i 0.893857 + 0.448353i \(0.147989\pi\)
−0.0586435 + 0.998279i \(0.518678\pi\)
\(192\) −0.400969 + 0.694498i −0.0289374 + 0.0501211i
\(193\) −11.5062 6.64310i −0.828234 0.478181i 0.0250136 0.999687i \(-0.492037\pi\)
−0.853248 + 0.521506i \(0.825370\pi\)
\(194\) 4.76271 + 8.24925i 0.341943 + 0.592262i
\(195\) −1.55496 + 0.396125i −0.111353 + 0.0283671i
\(196\) 0 0
\(197\) 14.8834i 1.06040i −0.847874 0.530198i \(-0.822117\pi\)
0.847874 0.530198i \(-0.177883\pi\)
\(198\) 2.93900 + 5.09050i 0.208866 + 0.361766i
\(199\) 3.77479 6.53813i 0.267588 0.463476i −0.700651 0.713505i \(-0.747107\pi\)
0.968238 + 0.250029i \(0.0804401\pi\)
\(200\) 4.06341 + 2.34601i 0.287326 + 0.165888i
\(201\) 1.45694 0.841166i 0.102765 0.0593313i
\(202\) 2.83579i 0.199525i
\(203\) 0 0
\(204\) −4.69202 −0.328507
\(205\) 1.30798 + 2.26549i 0.0913532 + 0.158228i
\(206\) 3.65448 + 2.10992i 0.254620 + 0.147005i
\(207\) 7.18598 12.4465i 0.499460 0.865090i
\(208\) 2.58082 2.51781i 0.178947 0.174579i
\(209\) 7.20775 0.498571
\(210\) 0 0
\(211\) −2.69740 −0.185697 −0.0928483 0.995680i \(-0.529597\pi\)
−0.0928483 + 0.995680i \(0.529597\pi\)
\(212\) −1.66487 2.88365i −0.114344 0.198050i
\(213\) −1.71320 0.989115i −0.117386 0.0677730i
\(214\) 12.0459 + 6.95473i 0.823444 + 0.475416i
\(215\) −2.90135 + 1.67510i −0.197870 + 0.114241i
\(216\) 4.29590i 0.292299i
\(217\) 0 0
\(218\) 2.45712 0.166417
\(219\) 2.43494 1.40581i 0.164538 0.0949961i
\(220\) −0.692021 + 1.19862i −0.0466561 + 0.0808107i
\(221\) 20.3077 + 5.71128i 1.36605 + 0.384182i
\(222\) 3.65668 + 6.33355i 0.245420 + 0.425080i
\(223\) 2.62565i 0.175826i 0.996128 + 0.0879131i \(0.0280198\pi\)
−0.996128 + 0.0879131i \(0.971980\pi\)
\(224\) 0 0
\(225\) −11.0586 −0.737240
\(226\) 10.1915 5.88404i 0.677926 0.391401i
\(227\) 7.90620 + 4.56465i 0.524753 + 0.302966i 0.738877 0.673840i \(-0.235356\pi\)
−0.214124 + 0.976806i \(0.568690\pi\)
\(228\) −2.00716 1.15883i −0.132927 0.0767456i
\(229\) −9.27003 + 5.35205i −0.612581 + 0.353674i −0.773975 0.633216i \(-0.781734\pi\)
0.161394 + 0.986890i \(0.448401\pi\)
\(230\) 3.38404 0.223137
\(231\) 0 0
\(232\) 6.27413i 0.411917i
\(233\) −3.55011 6.14898i −0.232576 0.402833i 0.725990 0.687706i \(-0.241382\pi\)
−0.958565 + 0.284873i \(0.908049\pi\)
\(234\) −2.30067 + 8.18055i −0.150400 + 0.534779i
\(235\) −0.0685317 + 0.118700i −0.00447051 + 0.00774316i
\(236\) −5.66164 + 3.26875i −0.368541 + 0.212777i
\(237\) −12.0978 −0.785839
\(238\) 0 0
\(239\) 15.6136i 1.00996i 0.863132 + 0.504979i \(0.168500\pi\)
−0.863132 + 0.504979i \(0.831500\pi\)
\(240\) 0.385418 0.222521i 0.0248786 0.0143637i
\(241\) −14.4159 8.32304i −0.928612 0.536134i −0.0422397 0.999108i \(-0.513449\pi\)
−0.886372 + 0.462973i \(0.846783\pi\)
\(242\) −4.13975 2.39008i −0.266113 0.153640i
\(243\) 7.89762 + 13.6791i 0.506632 + 0.877513i
\(244\) −14.6896 −0.940407
\(245\) 0 0
\(246\) −3.78017 −0.241015
\(247\) 7.27670 + 7.45877i 0.463005 + 0.474590i
\(248\) 3.99396 6.91774i 0.253617 0.439277i
\(249\) 8.05887 + 4.65279i 0.510710 + 0.294859i
\(250\) −2.68933 4.65806i −0.170088 0.294602i
\(251\) −11.9336 −0.753244 −0.376622 0.926367i \(-0.622914\pi\)
−0.376622 + 0.926367i \(0.622914\pi\)
\(252\) 0 0
\(253\) 15.2078i 0.956103i
\(254\) −2.12212 + 1.22521i −0.133154 + 0.0768765i
\(255\) 2.25502 + 1.30194i 0.141215 + 0.0815305i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 0.634375 + 1.09877i 0.0395712 + 0.0685394i 0.885133 0.465339i \(-0.154067\pi\)
−0.845561 + 0.533878i \(0.820734\pi\)
\(258\) 4.84117i 0.301398i
\(259\) 0 0
\(260\) −1.93900 + 0.493959i −0.120252 + 0.0306340i
\(261\) 7.39373 + 12.8063i 0.457660 + 0.792691i
\(262\) −3.51693 2.03050i −0.217277 0.125445i
\(263\) −2.65279 + 4.59477i −0.163578 + 0.283326i −0.936149 0.351602i \(-0.885637\pi\)
0.772571 + 0.634928i \(0.218970\pi\)
\(264\) −1.00000 1.73205i −0.0615457 0.106600i
\(265\) 1.84787i 0.113514i
\(266\) 0 0
\(267\) 7.12929i 0.436306i
\(268\) 1.81678 1.04892i 0.110977 0.0640728i
\(269\) −13.0097 + 22.5334i −0.793215 + 1.37389i 0.130752 + 0.991415i \(0.458261\pi\)
−0.923967 + 0.382473i \(0.875072\pi\)
\(270\) −1.19202 + 2.06464i −0.0725441 + 0.125650i
\(271\) −21.0446 + 12.1501i −1.27837 + 0.738066i −0.976548 0.215299i \(-0.930928\pi\)
−0.301820 + 0.953365i \(0.597594\pi\)
\(272\) −5.85086 −0.354760
\(273\) 0 0
\(274\) 10.2741 0.620683
\(275\) −10.1340 + 5.85086i −0.611102 + 0.352820i
\(276\) −2.44504 + 4.23494i −0.147174 + 0.254913i
\(277\) −0.939001 + 1.62640i −0.0564191 + 0.0977208i −0.892856 0.450343i \(-0.851302\pi\)
0.836436 + 0.548064i \(0.184635\pi\)
\(278\) −2.76380 + 1.59568i −0.165762 + 0.0957025i
\(279\) 18.8267i 1.12712i
\(280\) 0 0
\(281\) 31.9081i 1.90348i −0.306906 0.951740i \(-0.599294\pi\)
0.306906 0.951740i \(-0.400706\pi\)
\(282\) −0.0990311 0.171527i −0.00589722 0.0102143i
\(283\) −14.7681 + 25.5791i −0.877872 + 1.52052i −0.0241996 + 0.999707i \(0.507704\pi\)
−0.853672 + 0.520811i \(0.825630\pi\)
\(284\) −2.13632 1.23341i −0.126767 0.0731892i
\(285\) 0.643104 + 1.11389i 0.0380942 + 0.0659811i
\(286\) 2.21983 + 8.71379i 0.131261 + 0.515257i
\(287\) 0 0
\(288\) 2.35690i 0.138881i
\(289\) −8.61625 14.9238i −0.506838 0.877870i
\(290\) −1.74094 + 3.01539i −0.102231 + 0.177070i
\(291\) 6.61539 + 3.81940i 0.387801 + 0.223897i
\(292\) 3.03632 1.75302i 0.177687 0.102588i
\(293\) 8.69932i 0.508220i −0.967175 0.254110i \(-0.918218\pi\)
0.967175 0.254110i \(-0.0817825\pi\)
\(294\) 0 0
\(295\) 3.62804 0.211233
\(296\) 4.55980 + 7.89781i 0.265033 + 0.459051i
\(297\) 9.27842 + 5.35690i 0.538388 + 0.310839i
\(298\) −11.9426 + 20.6853i −0.691819 + 1.19827i
\(299\) 15.7374 15.3532i 0.910117 0.887900i
\(300\) 3.76271 0.217240
\(301\) 0 0
\(302\) −14.6625 −0.843731
\(303\) 1.13706 + 1.96945i 0.0653226 + 0.113142i
\(304\) −2.50289 1.44504i −0.143550 0.0828788i
\(305\) 7.05995 + 4.07606i 0.404252 + 0.233395i
\(306\) 11.9424 6.89493i 0.682700 0.394157i
\(307\) 26.1521i 1.49258i −0.665620 0.746290i \(-0.731833\pi\)
0.665620 0.746290i \(-0.268167\pi\)
\(308\) 0 0
\(309\) 3.38404 0.192511
\(310\) −3.83906 + 2.21648i −0.218044 + 0.125888i
\(311\) 5.55496 9.62147i 0.314993 0.545583i −0.664443 0.747339i \(-0.731331\pi\)
0.979436 + 0.201755i \(0.0646646\pi\)
\(312\) 0.782807 2.78345i 0.0443177 0.157582i
\(313\) 3.91335 + 6.77811i 0.221195 + 0.383122i 0.955171 0.296054i \(-0.0956708\pi\)
−0.733976 + 0.679176i \(0.762337\pi\)
\(314\) 6.41550i 0.362048i
\(315\) 0 0
\(316\) −15.0858 −0.848640
\(317\) 9.83909 5.68060i 0.552619 0.319054i −0.197559 0.980291i \(-0.563301\pi\)
0.750177 + 0.661237i \(0.229968\pi\)
\(318\) −2.31251 1.33513i −0.129679 0.0748701i
\(319\) 13.5511 + 7.82371i 0.758714 + 0.438044i
\(320\) 0.480608 0.277479i 0.0268668 0.0155116i
\(321\) 11.1545 0.622585
\(322\) 0 0
\(323\) 16.9095i 0.940868i
\(324\) 1.81282 + 3.13990i 0.100712 + 0.174439i
\(325\) −16.2855 4.58009i −0.903359 0.254058i
\(326\) 4.98792 8.63933i 0.276255 0.478488i
\(327\) 1.70647 0.985230i 0.0943679 0.0544833i
\(328\) −4.71379 −0.260276
\(329\) 0 0
\(330\) 1.10992i 0.0610989i
\(331\) 17.5579 10.1371i 0.965070 0.557183i 0.0673402 0.997730i \(-0.478549\pi\)
0.897730 + 0.440547i \(0.145215\pi\)
\(332\) 10.0493 + 5.80194i 0.551524 + 0.318423i
\(333\) −18.6143 10.7470i −1.02006 0.588931i
\(334\) −3.40217 5.89272i −0.186158 0.322435i
\(335\) −1.16421 −0.0636076
\(336\) 0 0
\(337\) −18.6963 −1.01845 −0.509227 0.860632i \(-0.670069\pi\)
−0.509227 + 0.860632i \(0.670069\pi\)
\(338\) −6.77620 + 11.0943i −0.368577 + 0.603449i
\(339\) 4.71864 8.17292i 0.256281 0.443892i
\(340\) 2.81197 + 1.62349i 0.152500 + 0.0880461i
\(341\) 9.96077 + 17.2526i 0.539406 + 0.934279i
\(342\) 6.81163 0.368331
\(343\) 0 0
\(344\) 6.03684i 0.325484i
\(345\) 2.35021 1.35690i 0.126531 0.0730528i
\(346\) 2.84594 + 1.64310i 0.152999 + 0.0883338i
\(347\) 6.59999 11.4315i 0.354306 0.613676i −0.632693 0.774403i \(-0.718050\pi\)
0.986999 + 0.160727i \(0.0513838\pi\)
\(348\) −2.51573 4.35737i −0.134857 0.233580i
\(349\) 33.2349i 1.77902i −0.456912 0.889512i \(-0.651045\pi\)
0.456912 0.889512i \(-0.348955\pi\)
\(350\) 0 0
\(351\) 3.82371 + 15.0097i 0.204094 + 0.801158i
\(352\) −1.24698 2.15983i −0.0664642 0.115119i
\(353\) −16.8886 9.75063i −0.898889 0.518974i −0.0220491 0.999757i \(-0.507019\pi\)
−0.876839 + 0.480783i \(0.840352\pi\)
\(354\) −2.62133 + 4.54028i −0.139322 + 0.241313i
\(355\) 0.684489 + 1.18557i 0.0363289 + 0.0629235i
\(356\) 8.89008i 0.471173i
\(357\) 0 0
\(358\) 5.84117i 0.308715i
\(359\) −3.77991 + 2.18233i −0.199496 + 0.115179i −0.596420 0.802672i \(-0.703411\pi\)
0.396924 + 0.917851i \(0.370078\pi\)
\(360\) −0.653989 + 1.13274i −0.0344683 + 0.0597008i
\(361\) −5.32371 + 9.22093i −0.280195 + 0.485312i
\(362\) −9.24071 + 5.33513i −0.485681 + 0.280408i
\(363\) −3.83340 −0.201201
\(364\) 0 0
\(365\) −1.94571 −0.101843
\(366\) −10.2019 + 5.89008i −0.533263 + 0.307880i
\(367\) −14.7506 + 25.5488i −0.769976 + 1.33364i 0.167599 + 0.985855i \(0.446399\pi\)
−0.937575 + 0.347783i \(0.886935\pi\)
\(368\) −3.04892 + 5.28088i −0.158936 + 0.275285i
\(369\) 9.62147 5.55496i 0.500874 0.289180i
\(370\) 5.06100i 0.263109i
\(371\) 0 0
\(372\) 6.40581i 0.332126i
\(373\) −4.94869 8.57138i −0.256233 0.443809i 0.708996 0.705212i \(-0.249148\pi\)
−0.965230 + 0.261403i \(0.915815\pi\)
\(374\) 7.29590 12.6369i 0.377262 0.653437i
\(375\) −3.73548 2.15668i −0.192899 0.111370i
\(376\) −0.123490 0.213891i −0.00636850 0.0110306i
\(377\) 5.58450 + 21.9215i 0.287616 + 1.12902i
\(378\) 0 0
\(379\) 20.2935i 1.04241i 0.853432 + 0.521204i \(0.174517\pi\)
−0.853432 + 0.521204i \(0.825483\pi\)
\(380\) 0.801938 + 1.38900i 0.0411385 + 0.0712540i
\(381\) −0.982542 + 1.70181i −0.0503371 + 0.0871865i
\(382\) 19.9928 + 11.5429i 1.02292 + 0.590585i
\(383\) 14.3773 8.30074i 0.734646 0.424148i −0.0854734 0.996340i \(-0.527240\pi\)
0.820119 + 0.572192i \(0.193907\pi\)
\(384\) 0.801938i 0.0409237i
\(385\) 0 0
\(386\) −13.2862 −0.676250
\(387\) 7.11410 + 12.3220i 0.361630 + 0.626361i
\(388\) 8.24925 + 4.76271i 0.418792 + 0.241790i
\(389\) 11.2174 19.4292i 0.568747 0.985098i −0.427943 0.903805i \(-0.640762\pi\)
0.996690 0.0812928i \(-0.0259049\pi\)
\(390\) −1.14857 + 1.12053i −0.0581602 + 0.0567404i
\(391\) −35.6775 −1.80429
\(392\) 0 0
\(393\) −3.25667 −0.164277
\(394\) −7.44169 12.8894i −0.374907 0.649358i
\(395\) 7.25033 + 4.18598i 0.364804 + 0.210620i
\(396\) 5.09050 + 2.93900i 0.255807 + 0.147690i
\(397\) 17.9073 10.3388i 0.898741 0.518888i 0.0219493 0.999759i \(-0.493013\pi\)
0.876791 + 0.480871i \(0.159679\pi\)
\(398\) 7.54958i 0.378426i
\(399\) 0 0
\(400\) 4.69202 0.234601
\(401\) −27.4336 + 15.8388i −1.36997 + 0.790951i −0.990923 0.134428i \(-0.957080\pi\)
−0.379043 + 0.925379i \(0.623747\pi\)
\(402\) 0.841166 1.45694i 0.0419536 0.0726657i
\(403\) −7.79736 + 27.7253i −0.388414 + 1.38109i
\(404\) 1.41789 + 2.45587i 0.0705429 + 0.122184i
\(405\) 2.01208i 0.0999811i
\(406\) 0 0
\(407\) −22.7439 −1.12737
\(408\) −4.06341 + 2.34601i −0.201169 + 0.116145i
\(409\) 6.32682 + 3.65279i 0.312841 + 0.180619i 0.648197 0.761473i \(-0.275523\pi\)
−0.335356 + 0.942091i \(0.608857\pi\)
\(410\) 2.26549 + 1.30798i 0.111884 + 0.0645965i
\(411\) 7.13537 4.11960i 0.351962 0.203205i
\(412\) 4.21983 0.207896
\(413\) 0 0
\(414\) 14.3720i 0.706343i
\(415\) −3.21983 5.57691i −0.158055 0.273760i
\(416\) 0.976144 3.47090i 0.0478594 0.170175i
\(417\) −1.27963 + 2.21639i −0.0626640 + 0.108537i
\(418\) 6.24210 3.60388i 0.305311 0.176271i
\(419\) 31.5381 1.54074 0.770368 0.637599i \(-0.220072\pi\)
0.770368 + 0.637599i \(0.220072\pi\)
\(420\) 0 0
\(421\) 0.359289i 0.0175107i 0.999962 + 0.00875533i \(0.00278694\pi\)
−0.999962 + 0.00875533i \(0.997213\pi\)
\(422\) −2.33602 + 1.34870i −0.113715 + 0.0656536i
\(423\) 0.504118 + 0.291053i 0.0245111 + 0.0141515i
\(424\) −2.88365 1.66487i −0.140042 0.0808534i
\(425\) 13.7262 + 23.7744i 0.665817 + 1.15323i
\(426\) −1.97823 −0.0958455
\(427\) 0 0
\(428\) 13.9095 0.672339
\(429\) 5.03563 + 5.16163i 0.243122 + 0.249206i
\(430\) −1.67510 + 2.90135i −0.0807803 + 0.139916i
\(431\) −31.0259 17.9128i −1.49447 0.862830i −0.494485 0.869186i \(-0.664643\pi\)
−0.999980 + 0.00635609i \(0.997977\pi\)
\(432\) −2.14795 3.72036i −0.103343 0.178996i
\(433\) −4.89977 −0.235468 −0.117734 0.993045i \(-0.537563\pi\)
−0.117734 + 0.993045i \(0.537563\pi\)
\(434\) 0 0
\(435\) 2.79225i 0.133878i
\(436\) 2.12793 1.22856i 0.101909 0.0588374i
\(437\) −15.2622 8.81163i −0.730089 0.421517i
\(438\) 1.40581 2.43494i 0.0671724 0.116346i
\(439\) −19.5646 33.8870i −0.933770 1.61734i −0.776813 0.629731i \(-0.783165\pi\)
−0.156956 0.987606i \(-0.550168\pi\)
\(440\) 1.38404i 0.0659817i
\(441\) 0 0
\(442\) 20.4426 5.20775i 0.972358 0.247707i
\(443\) 0.269282 + 0.466411i 0.0127940 + 0.0221598i 0.872352 0.488879i \(-0.162594\pi\)
−0.859558 + 0.511039i \(0.829261\pi\)
\(444\) 6.33355 + 3.65668i 0.300577 + 0.173538i
\(445\) 2.46681 4.27264i 0.116938 0.202543i
\(446\) 1.31282 + 2.27388i 0.0621640 + 0.107671i
\(447\) 19.1545i 0.905978i
\(448\) 0 0
\(449\) 14.0194i 0.661615i −0.943698 0.330808i \(-0.892679\pi\)
0.943698 0.330808i \(-0.107321\pi\)
\(450\) −9.57703 + 5.52930i −0.451466 + 0.260654i
\(451\) 5.87800 10.1810i 0.276784 0.479404i
\(452\) 5.88404 10.1915i 0.276762 0.479366i
\(453\) −10.1831 + 5.87920i −0.478442 + 0.276229i
\(454\) 9.12929 0.428459
\(455\) 0 0
\(456\) −2.31767 −0.108535
\(457\) 1.67342 0.966148i 0.0782792 0.0451945i −0.460350 0.887738i \(-0.652276\pi\)
0.538629 + 0.842543i \(0.318943\pi\)
\(458\) −5.35205 + 9.27003i −0.250085 + 0.433160i
\(459\) 12.5673 21.7673i 0.586593 1.01601i
\(460\) 2.93067 1.69202i 0.136643 0.0788909i
\(461\) 28.6926i 1.33635i −0.744005 0.668174i \(-0.767076\pi\)
0.744005 0.668174i \(-0.232924\pi\)
\(462\) 0 0
\(463\) 27.7198i 1.28825i 0.764922 + 0.644123i \(0.222778\pi\)
−0.764922 + 0.644123i \(0.777222\pi\)
\(464\) −3.13706 5.43355i −0.145635 0.252246i
\(465\) −1.77748 + 3.07868i −0.0824286 + 0.142771i
\(466\) −6.14898 3.55011i −0.284846 0.164456i
\(467\) −11.2513 19.4878i −0.520648 0.901788i −0.999712 0.0240083i \(-0.992357\pi\)
0.479064 0.877780i \(-0.340976\pi\)
\(468\) 2.09783 + 8.23490i 0.0969724 + 0.380658i
\(469\) 0 0
\(470\) 0.137063i 0.00632226i
\(471\) 2.57242 + 4.45556i 0.118531 + 0.205301i
\(472\) −3.26875 + 5.66164i −0.150456 + 0.260598i
\(473\) 13.0386 + 7.52781i 0.599513 + 0.346129i
\(474\) −10.4770 + 6.04892i −0.481226 + 0.277836i
\(475\) 13.5603i 0.622191i
\(476\) 0 0
\(477\) 7.84787 0.359329
\(478\) 7.80678 + 13.5217i 0.357074 + 0.618470i
\(479\) 7.43232 + 4.29105i 0.339591 + 0.196063i 0.660091 0.751185i \(-0.270518\pi\)
−0.320500 + 0.947249i \(0.603851\pi\)
\(480\) 0.222521 0.385418i 0.0101566 0.0175918i
\(481\) −22.9615 23.5360i −1.04695 1.07315i
\(482\) −16.6461 −0.758209
\(483\) 0 0
\(484\) −4.78017 −0.217280
\(485\) −2.64310 4.57799i −0.120017 0.207876i
\(486\) 13.6791 + 7.89762i 0.620495 + 0.358243i
\(487\) −13.9400 8.04825i −0.631681 0.364701i 0.149722 0.988728i \(-0.452162\pi\)
−0.781403 + 0.624027i \(0.785496\pi\)
\(488\) −12.7216 + 7.34481i −0.575879 + 0.332484i
\(489\) 8.00000i 0.361773i
\(490\) 0 0
\(491\) −11.0382 −0.498145 −0.249073 0.968485i \(-0.580126\pi\)
−0.249073 + 0.968485i \(0.580126\pi\)
\(492\) −3.27372 + 1.89008i −0.147591 + 0.0852116i
\(493\) 18.3545 31.7909i 0.826645 1.43179i
\(494\) 10.0312 + 2.82114i 0.451325 + 0.126929i
\(495\) −1.63102 2.82501i −0.0733090 0.126975i
\(496\) 7.98792i 0.358668i
\(497\) 0 0
\(498\) 9.30559 0.416993
\(499\) 11.9340 6.89008i 0.534238 0.308443i −0.208502 0.978022i \(-0.566859\pi\)
0.742741 + 0.669579i \(0.233526\pi\)
\(500\) −4.65806 2.68933i −0.208315 0.120271i
\(501\) −4.72560 2.72832i −0.211124 0.121893i
\(502\) −10.3348 + 5.96681i −0.461266 + 0.266312i
\(503\) 28.1823 1.25658 0.628292 0.777977i \(-0.283754\pi\)
0.628292 + 0.777977i \(0.283754\pi\)
\(504\) 0 0
\(505\) 1.57374i 0.0700307i
\(506\) −7.60388 13.1703i −0.338033 0.585491i
\(507\) −0.257597 + 10.4220i −0.0114403 + 0.462858i
\(508\) −1.22521 + 2.12212i −0.0543599 + 0.0941541i
\(509\) −20.0776 + 11.5918i −0.889923 + 0.513797i −0.873917 0.486075i \(-0.838428\pi\)
−0.0160056 + 0.999872i \(0.505095\pi\)
\(510\) 2.60388 0.115302
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) 10.7521 6.20775i 0.474719 0.274079i
\(514\) 1.09877 + 0.634375i 0.0484647 + 0.0279811i
\(515\) −2.02808 1.17092i −0.0893681 0.0515967i
\(516\) −2.42058 4.19257i −0.106560 0.184568i
\(517\) 0.615957 0.0270898
\(518\) 0 0
\(519\) 2.63533 0.115678
\(520\) −1.43224 + 1.39728i −0.0628081 + 0.0612749i
\(521\) 7.74578 13.4161i 0.339349 0.587770i −0.644961 0.764215i \(-0.723127\pi\)
0.984310 + 0.176445i \(0.0564599\pi\)
\(522\) 12.8063 + 7.39373i 0.560517 + 0.323615i
\(523\) 20.6129 + 35.7026i 0.901339 + 1.56117i 0.825757 + 0.564026i \(0.190748\pi\)
0.0755819 + 0.997140i \(0.475919\pi\)
\(524\) −4.06100 −0.177406
\(525\) 0 0
\(526\) 5.30559i 0.231335i
\(527\) 40.4747 23.3681i 1.76311 1.01793i
\(528\) −1.73205 1.00000i −0.0753778 0.0435194i
\(529\) −7.09179 + 12.2833i −0.308339 + 0.534059i
\(530\) 0.923936 + 1.60030i 0.0401332 + 0.0695127i
\(531\) 15.4082i 0.668659i
\(532\) 0 0
\(533\) 16.4698 4.19567i 0.713386 0.181735i
\(534\) 3.56465 + 6.17415i 0.154257 + 0.267182i
\(535\) −6.68500 3.85958i −0.289018 0.166864i
\(536\) 1.04892 1.81678i 0.0453063 0.0784729i
\(537\) 2.34213 + 4.05668i 0.101070 + 0.175059i
\(538\) 26.0194i 1.12178i
\(539\) 0 0
\(540\) 2.38404i 0.102593i
\(541\) 7.66392 4.42476i 0.329497 0.190235i −0.326121 0.945328i \(-0.605742\pi\)
0.655618 + 0.755093i \(0.272408\pi\)
\(542\) −12.1501 + 21.0446i −0.521892 + 0.903943i
\(543\) −4.27844 + 7.41047i −0.183605 + 0.318014i
\(544\) −5.06699 + 2.92543i −0.217245 + 0.125427i
\(545\) −1.36360 −0.0584102
\(546\) 0 0
\(547\) 21.6329 0.924958 0.462479 0.886630i \(-0.346960\pi\)
0.462479 + 0.886630i \(0.346960\pi\)
\(548\) 8.89765 5.13706i 0.380089 0.219444i
\(549\) 17.3110 29.9835i 0.738814 1.27966i
\(550\) −5.85086 + 10.1340i −0.249481 + 0.432114i
\(551\) 15.7034 9.06638i 0.668988 0.386241i
\(552\) 4.89008i 0.208136i
\(553\) 0 0
\(554\) 1.87800i 0.0797887i
\(555\) −2.02930 3.51486i −0.0861391 0.149197i
\(556\) −1.59568 + 2.76380i −0.0676719 + 0.117211i
\(557\) −21.5848 12.4620i −0.914576 0.528031i −0.0326751 0.999466i \(-0.510403\pi\)
−0.881901 + 0.471436i \(0.843736\pi\)
\(558\) 9.41335 + 16.3044i 0.398499 + 0.690220i
\(559\) 5.37329 + 21.0925i 0.227266 + 0.892116i
\(560\) 0 0
\(561\) 11.7017i 0.494047i
\(562\) −15.9541 27.6333i −0.672982 1.16564i
\(563\) 12.0305 20.8374i 0.507025 0.878193i −0.492942 0.870062i \(-0.664078\pi\)
0.999967 0.00813097i \(-0.00258820\pi\)
\(564\) −0.171527 0.0990311i −0.00722259 0.00416996i
\(565\) −5.65583 + 3.26540i −0.237943 + 0.137376i
\(566\) 29.5362i 1.24150i
\(567\) 0 0
\(568\) −2.46681 −0.103505
\(569\) 16.8470 + 29.1798i 0.706262 + 1.22328i 0.966234 + 0.257665i \(0.0829532\pi\)
−0.259973 + 0.965616i \(0.583714\pi\)
\(570\) 1.11389 + 0.643104i 0.0466557 + 0.0269367i
\(571\) −2.19083 + 3.79462i −0.0916832 + 0.158800i −0.908219 0.418494i \(-0.862558\pi\)
0.816536 + 0.577294i \(0.195891\pi\)
\(572\) 6.27933 + 6.43645i 0.262552 + 0.269121i
\(573\) 18.5133 0.773406
\(574\) 0 0
\(575\) 28.6112 1.19317
\(576\) −1.17845 2.04113i −0.0491020 0.0850472i
\(577\) −31.3254 18.0858i −1.30410 0.752920i −0.322991 0.946402i \(-0.604689\pi\)
−0.981104 + 0.193482i \(0.938022\pi\)
\(578\) −14.9238 8.61625i −0.620748 0.358389i
\(579\) −9.22725 + 5.32736i −0.383471 + 0.221397i
\(580\) 3.48188i 0.144577i
\(581\) 0 0
\(582\) 7.63879 0.316638
\(583\) 7.19170 4.15213i 0.297850 0.171964i
\(584\) 1.75302 3.03632i 0.0725405 0.125644i
\(585\) 1.27678 4.53986i 0.0527882 0.187700i
\(586\) −4.34966 7.53383i −0.179683 0.311220i
\(587\) 35.0616i 1.44715i −0.690248 0.723573i \(-0.742498\pi\)
0.690248 0.723573i \(-0.257502\pi\)
\(588\) 0 0
\(589\) 23.0858 0.951232
\(590\) 3.14197 1.81402i 0.129353 0.0746820i
\(591\) −10.3365 5.96777i −0.425186 0.245481i
\(592\) 7.89781 + 4.55980i 0.324598 + 0.187407i
\(593\) −21.1444 + 12.2078i −0.868298 + 0.501312i −0.866782 0.498687i \(-0.833816\pi\)
−0.00151591 + 0.999999i \(0.500483\pi\)
\(594\) 10.7138 0.439592
\(595\) 0 0
\(596\) 23.8853i 0.978380i
\(597\) −3.02715 5.24317i −0.123893 0.214589i
\(598\) 5.95237 21.1650i 0.243410 0.865500i
\(599\) −16.3002 + 28.2328i −0.666008 + 1.15356i 0.313002 + 0.949752i \(0.398665\pi\)
−0.979011 + 0.203808i \(0.934668\pi\)
\(600\) 3.25860 1.88135i 0.133032 0.0768060i
\(601\) −15.9989 −0.652610 −0.326305 0.945265i \(-0.605804\pi\)
−0.326305 + 0.945265i \(0.605804\pi\)
\(602\) 0 0
\(603\) 4.94438i 0.201351i
\(604\) −12.6981 + 7.33124i −0.516678 + 0.298304i
\(605\) 2.29739 + 1.32640i 0.0934020 + 0.0539257i
\(606\) 1.96945 + 1.13706i 0.0800035 + 0.0461900i
\(607\) 8.79656 + 15.2361i 0.357041 + 0.618414i 0.987465 0.157837i \(-0.0504522\pi\)
−0.630424 + 0.776251i \(0.717119\pi\)
\(608\) −2.89008 −0.117208
\(609\) 0 0
\(610\) 8.15213 0.330070
\(611\) 0.621849 + 0.637409i 0.0251573 + 0.0257868i
\(612\) 6.89493 11.9424i 0.278711 0.482742i
\(613\) −14.8635 8.58144i −0.600331 0.346601i 0.168841 0.985643i \(-0.445998\pi\)
−0.769172 + 0.639042i \(0.779331\pi\)
\(614\) −13.0761 22.6484i −0.527707 0.914015i
\(615\) 2.09783 0.0845929
\(616\) 0 0
\(617\) 29.5797i 1.19083i 0.803417 + 0.595417i \(0.203013\pi\)
−0.803417 + 0.595417i \(0.796987\pi\)
\(618\) 2.93067 1.69202i 0.117889 0.0680631i
\(619\) 30.5076 + 17.6136i 1.22620 + 0.707949i 0.966234 0.257668i \(-0.0829540\pi\)
0.259970 + 0.965617i \(0.416287\pi\)
\(620\) −2.21648 + 3.83906i −0.0890160 + 0.154180i
\(621\) −13.0978 22.6861i −0.525598 0.910362i
\(622\) 11.1099i 0.445467i
\(623\) 0 0
\(624\) −0.713792 2.80194i −0.0285745 0.112167i
\(625\) −10.2376 17.7320i −0.409503 0.709281i
\(626\) 6.77811 + 3.91335i 0.270908 + 0.156409i
\(627\) 2.89008 5.00577i 0.115419 0.199911i
\(628\) 3.20775 + 5.55599i 0.128003 + 0.221708i
\(629\) 53.3575i 2.12750i
\(630\) 0 0
\(631\) 9.55065i 0.380205i 0.981764 + 0.190103i \(0.0608821\pi\)
−0.981764 + 0.190103i \(0.939118\pi\)
\(632\) −13.0646 + 7.54288i −0.519684 + 0.300040i
\(633\) −1.08157 + 1.87334i −0.0429887 + 0.0744585i
\(634\) 5.68060 9.83909i 0.225606 0.390760i
\(635\) 1.17769 0.679940i 0.0467352 0.0269826i
\(636\) −2.67025 −0.105882
\(637\) 0 0
\(638\) 15.6474 0.619487
\(639\) 5.03509 2.90701i 0.199185 0.115000i
\(640\) 0.277479 0.480608i 0.0109683 0.0189977i
\(641\) 10.6957 18.5254i 0.422454 0.731711i −0.573725 0.819048i \(-0.694502\pi\)
0.996179 + 0.0873368i \(0.0278356\pi\)
\(642\) 9.66010 5.57726i 0.381254 0.220117i
\(643\) 4.05429i 0.159886i 0.996799 + 0.0799429i \(0.0254738\pi\)
−0.996799 + 0.0799429i \(0.974526\pi\)
\(644\) 0 0
\(645\) 2.68664i 0.105787i
\(646\) −8.45473 14.6440i −0.332647 0.576161i
\(647\) 13.9366 24.1389i 0.547905 0.948999i −0.450513 0.892770i \(-0.648759\pi\)
0.998418 0.0562289i \(-0.0179077\pi\)
\(648\) 3.13990 + 1.81282i 0.123347 + 0.0712144i
\(649\) −8.15213 14.1199i −0.319999 0.554255i
\(650\) −16.3937 + 4.17629i −0.643015 + 0.163808i
\(651\) 0 0
\(652\) 9.97584i 0.390684i
\(653\) −4.73556 8.20223i −0.185317 0.320978i 0.758366 0.651829i \(-0.225998\pi\)
−0.943683 + 0.330850i \(0.892664\pi\)
\(654\) 0.985230 1.70647i 0.0385255 0.0667282i
\(655\) 1.95175 + 1.12684i 0.0762611 + 0.0440294i
\(656\) −4.08226 + 2.35690i −0.159386 + 0.0920213i
\(657\) 8.26337i 0.322385i
\(658\) 0 0
\(659\) 1.29829 0.0505742 0.0252871 0.999680i \(-0.491950\pi\)
0.0252871 + 0.999680i \(0.491950\pi\)
\(660\) 0.554958 + 0.961216i 0.0216017 + 0.0374153i
\(661\) −9.38292 5.41723i −0.364953 0.210706i 0.306298 0.951936i \(-0.400910\pi\)
−0.671251 + 0.741230i \(0.734243\pi\)
\(662\) 10.1371 17.5579i 0.393988 0.682408i
\(663\) 12.1092 11.8136i 0.470284 0.458804i
\(664\) 11.6039 0.450318
\(665\) 0 0
\(666\) −21.4940 −0.832874
\(667\) −19.1293 33.1329i −0.740689 1.28291i
\(668\) −5.89272 3.40217i −0.227996 0.131634i
\(669\) 1.82351 + 1.05280i 0.0705008 + 0.0407037i
\(670\) −1.00824 + 0.582105i −0.0389515 + 0.0224887i
\(671\) 36.6353i 1.41429i
\(672\) 0 0
\(673\) 17.8025 0.686237 0.343119 0.939292i \(-0.388517\pi\)
0.343119 + 0.939292i \(0.388517\pi\)
\(674\) −16.1915 + 9.34817i −0.623673 + 0.360078i
\(675\) −10.0782 + 17.4560i −0.387911 + 0.671881i
\(676\) −0.321218 + 12.9960i −0.0123545 + 0.499847i
\(677\) −17.0640 29.5557i −0.655822 1.13592i −0.981687 0.190501i \(-0.938989\pi\)
0.325865 0.945416i \(-0.394345\pi\)
\(678\) 9.43727i 0.362436i
\(679\) 0 0
\(680\) 3.24698 0.124516
\(681\) 6.34028 3.66056i 0.242960 0.140273i
\(682\) 17.2526 + 9.96077i 0.660635 + 0.381418i
\(683\) 20.3434 + 11.7453i 0.778417 + 0.449420i 0.835869 0.548929i \(-0.184964\pi\)
−0.0574517 + 0.998348i \(0.518298\pi\)
\(684\) 5.89904 3.40581i 0.225555 0.130225i
\(685\) −5.70171 −0.217851
\(686\) 0 0
\(687\) 8.58402i 0.327501i
\(688\) −3.01842 5.22805i −0.115076 0.199318i
\(689\) 11.5572 + 3.25032i 0.440295 + 0.123827i
\(690\) 1.35690 2.35021i 0.0516561 0.0894711i
\(691\) 20.7898 12.0030i 0.790880 0.456615i −0.0493920 0.998779i \(-0.515728\pi\)
0.840272 + 0.542164i \(0.182395\pi\)
\(692\) 3.28621 0.124923
\(693\) 0 0
\(694\) 13.2000i 0.501064i
\(695\) 1.53379 0.885535i 0.0581800 0.0335903i
\(696\) −4.35737 2.51573i −0.165166 0.0953585i
\(697\) −23.8847 13.7899i −0.904699 0.522328i
\(698\) −16.6174 28.7823i −0.628980 1.08942i
\(699\) −5.69394 −0.215365
\(700\) 0 0
\(701\) 3.28621 0.124118 0.0620592 0.998072i \(-0.480233\pi\)
0.0620592 + 0.998072i \(0.480233\pi\)
\(702\) 10.8163 + 11.0869i 0.408234 + 0.418449i
\(703\) −13.1782 + 22.8253i −0.497026 + 0.860874i
\(704\) −2.15983 1.24698i −0.0814017 0.0469973i
\(705\) 0.0549581 + 0.0951903i 0.00206984 + 0.00358507i
\(706\) −19.5013 −0.733939
\(707\) 0 0
\(708\) 5.24267i 0.197032i
\(709\) −20.6278 + 11.9095i −0.774693 + 0.447269i −0.834546 0.550938i \(-0.814270\pi\)
0.0598532 + 0.998207i \(0.480937\pi\)
\(710\) 1.18557 + 0.684489i 0.0444936 + 0.0256884i
\(711\) 17.7778 30.7920i 0.666719 1.15479i
\(712\) 4.44504 + 7.69904i 0.166585 + 0.288534i
\(713\) 48.7090i 1.82417i
\(714\) 0 0
\(715\) −1.23191 4.83579i −0.0460710 0.180848i
\(716\) 2.92058 + 5.05860i 0.109147 + 0.189049i
\(717\) 10.8436 + 6.26055i 0.404962 + 0.233805i
\(718\) −2.18233 + 3.77991i −0.0814439 + 0.141065i
\(719\) 16.9172 + 29.3015i 0.630906 + 1.09276i 0.987367 + 0.158451i \(0.0506501\pi\)
−0.356461 + 0.934310i \(0.616017\pi\)
\(720\) 1.30798i 0.0487455i
\(721\) 0 0
\(722\) 10.6474i 0.396256i
\(723\) −11.5607 + 6.67456i −0.429946 + 0.248230i
\(724\) −5.33513 + 9.24071i −0.198278 + 0.343428i
\(725\) −14.7192 + 25.4943i −0.546656 + 0.946836i
\(726\) −3.31982 + 1.91670i −0.123210 + 0.0711353i
\(727\) −19.3163 −0.716403 −0.358202 0.933644i \(-0.616610\pi\)
−0.358202 + 0.933644i \(0.616610\pi\)
\(728\) 0 0
\(729\) 1.78986 0.0662910
\(730\) −1.68503 + 0.972853i −0.0623658 + 0.0360069i
\(731\) 17.6603 30.5886i 0.653191 1.13136i
\(732\) −5.89008 + 10.2019i −0.217704 + 0.377074i
\(733\) 14.0233 8.09634i 0.517962 0.299045i −0.218139 0.975918i \(-0.569999\pi\)
0.736100 + 0.676873i \(0.236665\pi\)
\(734\) 29.5013i 1.08891i
\(735\) 0 0
\(736\) 6.09783i 0.224769i
\(737\) 2.61596 + 4.53097i 0.0963600 + 0.166900i
\(738\) 5.55496 9.62147i 0.204481 0.354171i
\(739\) −29.2075 16.8629i −1.07441 0.620313i −0.145030 0.989427i \(-0.546328\pi\)
−0.929384 + 0.369114i \(0.879661\pi\)
\(740\) −2.53050 4.38295i −0.0930230 0.161121i
\(741\) 8.09783 2.06292i 0.297481 0.0757832i
\(742\) 0 0
\(743\) 32.5512i 1.19419i 0.802171 + 0.597095i \(0.203678\pi\)
−0.802171 + 0.597095i \(0.796322\pi\)
\(744\) −3.20291 5.54760i −0.117424 0.203385i
\(745\) 6.62767 11.4795i 0.242819 0.420575i
\(746\) −8.57138 4.94869i −0.313821 0.181184i
\(747\) −23.6850 + 13.6746i −0.866590 + 0.500326i
\(748\) 14.5918i 0.533529i
\(749\) 0 0
\(750\) −4.31336 −0.157501
\(751\) −20.8780 36.1618i −0.761849 1.31956i −0.941896 0.335903i \(-0.890958\pi\)
0.180047 0.983658i \(-0.442375\pi\)
\(752\) −0.213891 0.123490i −0.00779979 0.00450321i
\(753\) −4.78501 + 8.28788i −0.174376 + 0.302027i
\(754\) 15.7971 + 16.1924i 0.575296 + 0.589691i
\(755\) 8.13706 0.296138
\(756\) 0 0
\(757\) 29.9603 1.08893 0.544463 0.838785i \(-0.316734\pi\)
0.544463 + 0.838785i \(0.316734\pi\)
\(758\) 10.1468 + 17.5747i 0.368547 + 0.638341i
\(759\) −10.5618 6.09783i −0.383368 0.221337i
\(760\) 1.38900 + 0.801938i 0.0503842 + 0.0290893i
\(761\) 45.5040 26.2717i 1.64952 0.952350i 0.672255 0.740320i \(-0.265326\pi\)
0.977263 0.212030i \(-0.0680073\pi\)
\(762\) 1.96508i 0.0711875i
\(763\) 0 0
\(764\) 23.0858 0.835213
\(765\) −6.62751 + 3.82640i −0.239618 + 0.138344i
\(766\) 8.30074 14.3773i 0.299918 0.519473i
\(767\) 6.38154 22.6910i 0.230424 0.819325i
\(768\) 0.400969 + 0.694498i 0.0144687 + 0.0250606i
\(769\) 2.92021i 0.105306i 0.998613 + 0.0526528i \(0.0167677\pi\)
−0.998613 + 0.0526528i \(0.983232\pi\)
\(770\) 0 0
\(771\) 1.01746 0.0366429
\(772\) −11.5062 + 6.64310i −0.414117 + 0.239091i
\(773\) −5.06118 2.92208i −0.182038 0.105100i 0.406212 0.913779i \(-0.366850\pi\)
−0.588250 + 0.808679i \(0.700183\pi\)
\(774\) 12.3220 + 7.11410i 0.442904 + 0.255711i
\(775\) −32.4582 + 18.7397i −1.16593 + 0.673151i
\(776\) 9.52542 0.341943
\(777\) 0 0
\(778\) 22.4349i 0.804329i
\(779\) −6.81163 11.7981i −0.244052 0.422710i
\(780\) −0.434425 + 1.54470i −0.0155549 + 0.0553090i
\(781\) 3.07606 5.32790i 0.110070 0.190647i
\(782\) −30.8977 + 17.8388i −1.10490 + 0.637913i
\(783\) 26.9530 0.963222
\(784\) 0 0
\(785\) 3.56033i 0.127074i
\(786\) −2.82036 + 1.62833i −0.100599 + 0.0580808i
\(787\) 30.5639 + 17.6461i 1.08949 + 0.629015i 0.933440 0.358735i \(-0.116792\pi\)
0.156047 + 0.987750i \(0.450125\pi\)
\(788\) −12.8894 7.44169i −0.459165 0.265099i
\(789\) 2.12737 + 3.68472i 0.0757365 + 0.131180i
\(790\) 8.37196 0.297861
\(791\) 0 0
\(792\) 5.87800 0.208866
\(793\) 37.9112 36.9858i 1.34627 1.31340i
\(794\) 10.3388 17.9073i 0.366909 0.635506i
\(795\) 1.28334 + 0.740939i 0.0455155 + 0.0262784i
\(796\) −3.77479 6.53813i −0.133794 0.231738i
\(797\) 35.4228 1.25474 0.627370 0.778721i \(-0.284131\pi\)
0.627370 + 0.778721i \(0.284131\pi\)
\(798\) 0 0
\(799\) 1.44504i 0.0511219i
\(800\) 4.06341 2.34601i 0.143663 0.0829440i
\(801\) −18.1458 10.4765i −0.641151 0.370169i
\(802\) −15.8388 + 27.4336i −0.559287 + 0.968713i
\(803\) 4.37196 + 7.57246i 0.154283 + 0.267226i
\(804\) 1.68233i 0.0593313i
\(805\) 0 0
\(806\) 7.10992 + 27.9095i 0.250436 + 0.983069i
\(807\) 10.4330 + 18.0704i 0.367258 + 0.636109i
\(808\) 2.45587 + 1.41789i 0.0863971 + 0.0498814i
\(809\) −0.0199098 + 0.0344848i −0.000699992 + 0.00121242i −0.866375 0.499394i \(-0.833556\pi\)
0.865675 + 0.500606i \(0.166889\pi\)
\(810\) −1.00604 1.74251i −0.0353487 0.0612257i
\(811\) 16.4638i 0.578123i 0.957310 + 0.289062i \(0.0933432\pi\)
−0.957310 + 0.289062i \(0.906657\pi\)
\(812\) 0 0
\(813\) 19.4873i 0.683448i
\(814\) −19.6968 + 11.3720i −0.690373 + 0.398587i
\(815\) −2.76809 + 4.79447i −0.0969618 + 0.167943i
\(816\) −2.34601 + 4.06341i −0.0821268 + 0.142248i
\(817\) 15.1095 8.72348i 0.528615 0.305196i
\(818\) 7.30559 0.255434
\(819\) 0 0
\(820\) 2.61596 0.0913532
\(821\) −11.0584 + 6.38458i −0.385941 + 0.222823i −0.680400 0.732841i \(-0.738194\pi\)
0.294459 + 0.955664i \(0.404861\pi\)
\(822\) 4.11960 7.13537i 0.143688 0.248874i
\(823\) −10.1468 + 17.5747i −0.353694 + 0.612615i −0.986893 0.161373i \(-0.948408\pi\)
0.633200 + 0.773988i \(0.281741\pi\)
\(824\) 3.65448 2.10992i 0.127310 0.0735024i
\(825\) 9.38404i 0.326710i
\(826\) 0 0
\(827\) 27.4711i 0.955265i −0.878560 0.477632i \(-0.841495\pi\)
0.878560 0.477632i \(-0.158505\pi\)
\(828\) −7.18598 12.4465i −0.249730 0.432545i
\(829\) −15.3545 + 26.5948i −0.533284 + 0.923675i 0.465960 + 0.884806i \(0.345709\pi\)
−0.999244 + 0.0388693i \(0.987624\pi\)
\(830\) −5.57691 3.21983i −0.193577 0.111762i
\(831\) 0.753020 + 1.30427i 0.0261220 + 0.0452446i
\(832\) −0.890084 3.49396i −0.0308581 0.121131i
\(833\) 0 0
\(834\) 2.55927i 0.0886203i
\(835\) 1.88806 + 3.27021i 0.0653390 + 0.113170i
\(836\) 3.60388 6.24210i 0.124643 0.215887i
\(837\) 29.7179 + 17.1576i 1.02720 + 0.593055i
\(838\) 27.3128 15.7690i 0.943505 0.544733i
\(839\) 42.5991i 1.47068i 0.677696 + 0.735342i \(0.262978\pi\)
−0.677696 + 0.735342i \(0.737022\pi\)
\(840\) 0 0
\(841\) 10.3647 0.357402
\(842\) 0.179644 + 0.311153i 0.00619095 + 0.0107230i
\(843\) −22.1601 12.7942i −0.763236 0.440655i
\(844\) −1.34870 + 2.33602i −0.0464241 + 0.0804090i
\(845\) 3.76051 6.15686i 0.129365 0.211803i
\(846\) 0.582105 0.0200132
\(847\) 0 0
\(848\) −3.32975 −0.114344
\(849\) 11.8431 + 20.5128i 0.406454 + 0.703998i
\(850\) 23.7744 + 13.7262i 0.815456 + 0.470804i
\(851\) 48.1595 + 27.8049i 1.65089 + 0.953140i
\(852\) −1.71320 + 0.989115i −0.0586932 + 0.0338865i
\(853\) 39.2524i 1.34398i −0.740562 0.671988i \(-0.765441\pi\)
0.740562 0.671988i \(-0.234559\pi\)
\(854\) 0 0
\(855\) −3.78017 −0.129279
\(856\) 12.0459 6.95473i 0.411722 0.237708i
\(857\) −2.56033 + 4.43463i −0.0874594 + 0.151484i −0.906437 0.422342i \(-0.861208\pi\)
0.818977 + 0.573826i \(0.194541\pi\)
\(858\) 6.94180 + 1.95229i 0.236989 + 0.0666500i
\(859\) 1.14310 + 1.97991i 0.0390022 + 0.0675538i 0.884868 0.465843i \(-0.154249\pi\)
−0.845865 + 0.533396i \(0.820915\pi\)
\(860\) 3.35019i 0.114241i
\(861\) 0 0
\(862\) −35.8256 −1.22023
\(863\) 32.1726 18.5749i 1.09517 0.632296i 0.160221 0.987081i \(-0.448779\pi\)
0.934948 + 0.354785i \(0.115446\pi\)
\(864\) −3.72036 2.14795i −0.126569 0.0730747i
\(865\) −1.57938 0.911854i −0.0537004 0.0310040i
\(866\) −4.24333 + 2.44989i −0.144194 + 0.0832505i
\(867\) −13.8194 −0.469331
\(868\) 0 0
\(869\) 37.6233i 1.27628i
\(870\) 1.39612 + 2.41816i 0.0473331 + 0.0819833i
\(871\) −2.04779 + 7.28137i −0.0693867 + 0.246720i
\(872\) 1.22856 2.12793i 0.0416043 0.0720608i
\(873\) −19.4426 + 11.2252i −0.658033 + 0.379916i
\(874\) −17.6233 −0.596115
\(875\) 0 0
\(876\) 2.81163i 0.0949961i
\(877\) −1.16672 + 0.673604i −0.0393972 + 0.0227460i −0.519569 0.854428i \(-0.673908\pi\)
0.480172 + 0.877174i \(0.340574\pi\)
\(878\) −33.8870 19.5646i −1.14363 0.660275i
\(879\) −6.04166 3.48816i −0.203780 0.117653i
\(880\) 0.692021 + 1.19862i 0.0233280 + 0.0404053i
\(881\) −29.5157 −0.994410 −0.497205 0.867633i \(-0.665640\pi\)
−0.497205 + 0.867633i \(0.665640\pi\)
\(882\) 0 0
\(883\) −16.0968 −0.541699 −0.270850 0.962622i \(-0.587305\pi\)
−0.270850 + 0.962622i \(0.587305\pi\)
\(884\) 15.1000 14.7314i 0.507867 0.495470i
\(885\) 1.45473 2.51967i 0.0489002 0.0846977i
\(886\) 0.466411 + 0.269282i 0.0156694 + 0.00904672i
\(887\) −11.8116 20.4583i −0.396596 0.686924i 0.596708 0.802459i \(-0.296475\pi\)
−0.993303 + 0.115535i \(0.963142\pi\)
\(888\) 7.31336 0.245420
\(889\) 0 0
\(890\) 4.93362i 0.165375i
\(891\) −7.83079 + 4.52111i −0.262341 + 0.151463i
\(892\) 2.27388 + 1.31282i 0.0761350 + 0.0439566i
\(893\) 0.356896 0.618162i 0.0119431 0.0206860i
\(894\) 9.57726 + 16.5883i 0.320312 + 0.554796i
\(895\) 3.24160i 0.108355i
\(896\) 0 0
\(897\) −4.35258 17.0858i −0.145329 0.570477i
\(898\) −7.00969 12.1411i −0.233916 0.405155i
\(899\) 43.4028 + 25.0586i 1.44756 + 0.835751i
\(900\) −5.52930 + 9.57703i −0.184310 + 0.319234i
\(901\) −9.74094 16.8718i −0.324518 0.562081i
\(902\) 11.7560i 0.391432i
\(903\) 0 0
\(904\) 11.7681i 0.391401i
\(905\) 5.12821 2.96077i 0.170467 0.0984194i
\(906\) −5.87920 + 10.1831i −0.195323 + 0.338310i
\(907\) 12.7927 22.1576i 0.424774 0.735730i −0.571625 0.820515i \(-0.693687\pi\)
0.996399 + 0.0847848i \(0.0270203\pi\)
\(908\) 7.90620 4.56465i 0.262376 0.151483i
\(909\) −6.68366 −0.221683
\(910\) 0 0
\(911\) −51.8732 −1.71864 −0.859318 0.511441i \(-0.829112\pi\)
−0.859318 + 0.511441i \(0.829112\pi\)
\(912\) −2.00716 + 1.15883i −0.0664637 + 0.0383728i
\(913\) −14.4698 + 25.0624i −0.478880 + 0.829445i
\(914\) 0.966148 1.67342i 0.0319573 0.0553517i
\(915\) 5.66164 3.26875i 0.187168 0.108062i
\(916\) 10.7041i 0.353674i
\(917\) 0 0
\(918\) 25.1347i 0.829568i
\(919\) 9.79954 + 16.9733i 0.323257 + 0.559898i 0.981158 0.193207i \(-0.0618888\pi\)
−0.657901 + 0.753104i \(0.728555\pi\)
\(920\) 1.69202 2.93067i 0.0557843 0.0966212i
\(921\) −18.1626 10.4862i −0.598478 0.345532i
\(922\) −14.3463 24.8485i −0.472470 0.818343i
\(923\) 8.61894 2.19567i 0.283696 0.0722713i
\(924\) 0 0
\(925\) 42.7894i 1.40691i
\(926\) 13.8599 + 24.0060i 0.455464 + 0.788887i
\(927\) −4.97285 + 8.61323i −0.163330 + 0.282896i
\(928\) −5.43355 3.13706i −0.178365 0.102979i
\(929\) 3.03218 1.75063i 0.0994825 0.0574362i −0.449433 0.893314i \(-0.648374\pi\)
0.548916 + 0.835878i \(0.315041\pi\)
\(930\) 3.55496i 0.116572i
\(931\) 0 0
\(932\) −7.10023 −0.232576
\(933\) −4.45473 7.71582i −0.145841 0.252605i
\(934\) −19.4878 11.2513i −0.637661 0.368154i
\(935\) −4.04892 + 7.01293i −0.132414 + 0.229347i
\(936\) 5.93423 + 6.08271i 0.193966 + 0.198820i
\(937\) 12.9129 0.421847 0.210923 0.977503i \(-0.432353\pi\)
0.210923 + 0.977503i \(0.432353\pi\)
\(938\) 0 0
\(939\) 6.27652 0.204826
\(940\) 0.0685317 + 0.118700i 0.00223526 + 0.00387158i
\(941\) 6.76133 + 3.90366i 0.220413 + 0.127256i 0.606142 0.795357i \(-0.292716\pi\)
−0.385728 + 0.922612i \(0.626050\pi\)
\(942\) 4.45556 + 2.57242i 0.145170 + 0.0838139i
\(943\) −24.8930 + 14.3720i −0.810627 + 0.468015i
\(944\) 6.53750i 0.212777i
\(945\) 0 0
\(946\) 15.0556 0.489500
\(947\) 16.6889 9.63533i 0.542316 0.313106i −0.203701 0.979033i \(-0.565297\pi\)
0.746017 + 0.665927i \(0.231964\pi\)
\(948\) −6.04892 + 10.4770i −0.196460 + 0.340278i
\(949\) −3.42240 + 12.1691i −0.111096 + 0.395026i
\(950\) 6.78017 + 11.7436i 0.219978 + 0.381013i
\(951\) 9.11098i 0.295444i
\(952\) 0 0
\(953\) 45.7482 1.48193 0.740965 0.671543i \(-0.234368\pi\)
0.740965 + 0.671543i \(0.234368\pi\)
\(954\) 6.79646 3.92394i 0.220043 0.127042i
\(955\) −11.0952 6.40581i −0.359032 0.207287i
\(956\) 13.5217 + 7.80678i 0.437324 + 0.252489i
\(957\) 10.8671 6.27413i 0.351284 0.202814i
\(958\) 8.58211 0.277275
\(959\) 0 0
\(960\) 0.445042i 0.0143637i
\(961\) 16.4034 + 28.4116i 0.529143 + 0.916502i
\(962\) −31.6532 8.90205i −1.02054 0.287014i
\(963\) −16.3916 + 28.3910i −0.528211 + 0.914889i
\(964\) −14.4159 + 8.32304i −0.464306 + 0.268067i
\(965\) 7.37329 0.237355
\(966\) 0 0
\(967\) 49.4838i 1.59129i 0.605762 + 0.795646i \(0.292868\pi\)
−0.605762 + 0.795646i \(0.707132\pi\)
\(968\) −4.13975 + 2.39008i −0.133056 + 0.0768202i
\(969\) −11.7436 6.78017i −0.377259 0.217810i
\(970\) −4.57799 2.64310i −0.146990 0.0848650i
\(971\) −1.34093 2.32256i −0.0430325 0.0745344i 0.843707 0.536804i \(-0.180369\pi\)
−0.886739 + 0.462270i \(0.847035\pi\)
\(972\) 15.7952 0.506632
\(973\) 0 0
\(974\) −16.0965 −0.515765
\(975\) −9.71086 + 9.47380i −0.310996 + 0.303405i
\(976\) −7.34481 + 12.7216i −0.235102 + 0.407208i
\(977\) 46.8930 + 27.0737i 1.50024 + 0.866163i 1.00000 0.000276237i \(8.79291e-5\pi\)
0.500239 + 0.865887i \(0.333245\pi\)
\(978\) −4.00000 6.92820i −0.127906 0.221540i
\(979\) −22.1715 −0.708604
\(980\) 0 0
\(981\) 5.79118i 0.184898i
\(982\) −9.55933 + 5.51908i −0.305050 + 0.176121i
\(983\) 29.1061 + 16.8044i 0.928339 + 0.535977i 0.886286 0.463139i \(-0.153277\pi\)
0.0420531 + 0.999115i \(0.486610\pi\)
\(984\) −1.89008 + 3.27372i −0.0602537 + 0.104362i
\(985\) 4.12983 + 7.15307i 0.131587 + 0.227916i
\(986\) 36.7090i 1.16905i
\(987\) 0 0
\(988\) 10.0978 2.57242i 0.321255 0.0818395i
\(989\) −18.4058 31.8798i −0.585271 1.01372i
\(990\) −2.82501 1.63102i −0.0897848 0.0518373i
\(991\) 17.7560 30.7543i 0.564038 0.976943i −0.433100 0.901346i \(-0.642580\pi\)
0.997138 0.0755969i \(-0.0240862\pi\)
\(992\) −3.99396 6.91774i −0.126808 0.219638i
\(993\) 16.2586i 0.515951i
\(994\) 0 0
\(995\) 4.18970i 0.132822i
\(996\) 8.05887 4.65279i 0.255355 0.147429i
\(997\) 30.5743 52.9563i 0.968299 1.67714i 0.267821 0.963469i \(-0.413696\pi\)
0.700478 0.713674i \(-0.252970\pi\)
\(998\) 6.89008 11.9340i 0.218102 0.377763i
\(999\) −33.9282 + 19.5884i −1.07344 + 0.619751i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1274.2.n.l.753.6 12
7.2 even 3 inner 1274.2.n.l.961.3 12
7.3 odd 6 1274.2.d.k.883.6 6
7.4 even 3 1274.2.d.m.883.4 6
7.5 odd 6 182.2.n.b.51.1 yes 12
7.6 odd 2 182.2.n.b.25.4 yes 12
13.12 even 2 inner 1274.2.n.l.753.3 12
21.5 even 6 1638.2.dm.d.415.5 12
21.20 even 2 1638.2.dm.d.1117.2 12
91.12 odd 6 182.2.n.b.51.4 yes 12
91.25 even 6 1274.2.d.m.883.1 6
91.38 odd 6 1274.2.d.k.883.3 6
91.51 even 6 inner 1274.2.n.l.961.6 12
91.90 odd 2 182.2.n.b.25.1 12
273.194 even 6 1638.2.dm.d.415.2 12
273.272 even 2 1638.2.dm.d.1117.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
182.2.n.b.25.1 12 91.90 odd 2
182.2.n.b.25.4 yes 12 7.6 odd 2
182.2.n.b.51.1 yes 12 7.5 odd 6
182.2.n.b.51.4 yes 12 91.12 odd 6
1274.2.d.k.883.3 6 91.38 odd 6
1274.2.d.k.883.6 6 7.3 odd 6
1274.2.d.m.883.1 6 91.25 even 6
1274.2.d.m.883.4 6 7.4 even 3
1274.2.n.l.753.3 12 13.12 even 2 inner
1274.2.n.l.753.6 12 1.1 even 1 trivial
1274.2.n.l.961.3 12 7.2 even 3 inner
1274.2.n.l.961.6 12 91.51 even 6 inner
1638.2.dm.d.415.2 12 273.194 even 6
1638.2.dm.d.415.5 12 21.5 even 6
1638.2.dm.d.1117.2 12 21.20 even 2
1638.2.dm.d.1117.5 12 273.272 even 2