Properties

Label 1274.2.m.f.491.4
Level $1274$
Weight $2$
Character 1274.491
Analytic conductor $10.173$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1274,2,Mod(491,1274)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1274, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1274.491"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1274 = 2 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1274.m (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,-2,10,0,0,0,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1729412175\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 46 x^{18} + 895 x^{16} + 9634 x^{14} + 62977 x^{12} + 257850 x^{10} + 656102 x^{8} + \cdots + 32041 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 182)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 491.4
Root \(-1.40613i\) of defining polynomial
Character \(\chi\) \(=\) 1274.491
Dual form 1274.2.m.f.589.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.703063 + 1.21774i) q^{3} +(0.500000 - 0.866025i) q^{4} +0.638488i q^{5} +(-1.21774 - 0.703063i) q^{6} +1.00000i q^{8} +(0.511405 - 0.885780i) q^{9} +(-0.319244 - 0.552947i) q^{10} +(-3.93617 + 2.27255i) q^{11} +1.40613 q^{12} +(-2.48206 + 2.61522i) q^{13} +(-0.777512 + 0.448897i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-0.354210 + 0.613510i) q^{17} +1.02281i q^{18} +(-6.36190 - 3.67305i) q^{19} +(0.552947 + 0.319244i) q^{20} +(2.27255 - 3.93617i) q^{22} +(-3.25276 - 5.63395i) q^{23} +(-1.21774 + 0.703063i) q^{24} +4.59233 q^{25} +(0.841912 - 3.50588i) q^{26} +5.65658 q^{27} +(-3.63276 - 6.29212i) q^{29} +(0.448897 - 0.777512i) q^{30} +6.63998i q^{31} +(0.866025 + 0.500000i) q^{32} +(-5.53475 - 3.19549i) q^{33} -0.708420i q^{34} +(-0.511405 - 0.885780i) q^{36} +(-1.82266 + 1.05231i) q^{37} +7.34609 q^{38} +(-4.92971 - 1.18383i) q^{39} -0.638488 q^{40} +(-4.62167 + 2.66832i) q^{41} +(-5.21162 + 9.02680i) q^{43} +4.54510i q^{44} +(0.565560 + 0.326526i) q^{45} +(5.63395 + 3.25276i) q^{46} +1.94413i q^{47} +(0.703063 - 1.21774i) q^{48} +(-3.97708 + 2.29617i) q^{50} -0.996127 q^{51} +(1.02382 + 3.45714i) q^{52} -6.40142 q^{53} +(-4.89874 + 2.82829i) q^{54} +(-1.45099 - 2.51320i) q^{55} -10.3295i q^{57} +(6.29212 + 3.63276i) q^{58} +(-2.87484 - 1.65979i) q^{59} +0.897794i q^{60} +(3.41517 - 5.91525i) q^{61} +(-3.31999 - 5.75039i) q^{62} -1.00000 q^{64} +(-1.66979 - 1.58476i) q^{65} +6.39098 q^{66} +(3.39810 - 1.96190i) q^{67} +(0.354210 + 0.613510i) q^{68} +(4.57379 - 7.92204i) q^{69} +(-9.11772 - 5.26412i) q^{71} +(0.885780 + 0.511405i) q^{72} +6.41246i q^{73} +(1.05231 - 1.82266i) q^{74} +(3.22870 + 5.59227i) q^{75} +(-6.36190 + 3.67305i) q^{76} +(4.86117 - 1.43962i) q^{78} -10.9684 q^{79} +(0.552947 - 0.319244i) q^{80} +(2.44271 + 4.23090i) q^{81} +(2.66832 - 4.62167i) q^{82} -2.41032i q^{83} +(-0.391718 - 0.226159i) q^{85} -10.4232i q^{86} +(5.10811 - 8.84751i) q^{87} +(-2.27255 - 3.93617i) q^{88} +(4.79196 - 2.76664i) q^{89} -0.653052 q^{90} -6.50552 q^{92} +(-8.08577 + 4.66832i) q^{93} +(-0.972065 - 1.68367i) q^{94} +(2.34519 - 4.06200i) q^{95} +1.40613i q^{96} +(7.96131 + 4.59646i) q^{97} +4.64877i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 2 q^{3} + 10 q^{4} - 16 q^{9} + 4 q^{10} + 6 q^{11} - 4 q^{12} - 6 q^{13} - 12 q^{15} - 10 q^{16} + 10 q^{17} - 24 q^{19} + 2 q^{22} - 36 q^{25} + 28 q^{27} + 2 q^{29} - 2 q^{30} + 12 q^{33} + 16 q^{36}+ \cdots - 78 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1274\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) 0.703063 + 1.21774i 0.405914 + 0.703063i 0.994427 0.105424i \(-0.0336201\pi\)
−0.588514 + 0.808487i \(0.700287\pi\)
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 0.638488i 0.285540i 0.989756 + 0.142770i \(0.0456010\pi\)
−0.989756 + 0.142770i \(0.954399\pi\)
\(6\) −1.21774 0.703063i −0.497141 0.287024i
\(7\) 0 0
\(8\) 1.00000i 0.353553i
\(9\) 0.511405 0.885780i 0.170468 0.295260i
\(10\) −0.319244 0.552947i −0.100954 0.174857i
\(11\) −3.93617 + 2.27255i −1.18680 + 0.685199i −0.957578 0.288175i \(-0.906952\pi\)
−0.229222 + 0.973374i \(0.573618\pi\)
\(12\) 1.40613 0.405914
\(13\) −2.48206 + 2.61522i −0.688399 + 0.725333i
\(14\) 0 0
\(15\) −0.777512 + 0.448897i −0.200753 + 0.115905i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −0.354210 + 0.613510i −0.0859085 + 0.148798i −0.905778 0.423753i \(-0.860713\pi\)
0.819869 + 0.572550i \(0.194046\pi\)
\(18\) 1.02281i 0.241079i
\(19\) −6.36190 3.67305i −1.45952 0.842654i −0.460533 0.887643i \(-0.652342\pi\)
−0.998988 + 0.0449884i \(0.985675\pi\)
\(20\) 0.552947 + 0.319244i 0.123643 + 0.0713851i
\(21\) 0 0
\(22\) 2.27255 3.93617i 0.484509 0.839194i
\(23\) −3.25276 5.63395i −0.678248 1.17476i −0.975508 0.219963i \(-0.929406\pi\)
0.297261 0.954796i \(-0.403927\pi\)
\(24\) −1.21774 + 0.703063i −0.248570 + 0.143512i
\(25\) 4.59233 0.918467
\(26\) 0.841912 3.50588i 0.165113 0.687559i
\(27\) 5.65658 1.08861
\(28\) 0 0
\(29\) −3.63276 6.29212i −0.674586 1.16842i −0.976590 0.215111i \(-0.930989\pi\)
0.302003 0.953307i \(-0.402345\pi\)
\(30\) 0.448897 0.777512i 0.0819570 0.141954i
\(31\) 6.63998i 1.19258i 0.802771 + 0.596288i \(0.203358\pi\)
−0.802771 + 0.596288i \(0.796642\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) −5.53475 3.19549i −0.963476 0.556263i
\(34\) 0.708420i 0.121493i
\(35\) 0 0
\(36\) −0.511405 0.885780i −0.0852342 0.147630i
\(37\) −1.82266 + 1.05231i −0.299643 + 0.172999i −0.642283 0.766468i \(-0.722012\pi\)
0.342639 + 0.939467i \(0.388679\pi\)
\(38\) 7.34609 1.19169
\(39\) −4.92971 1.18383i −0.789385 0.189565i
\(40\) −0.638488 −0.100954
\(41\) −4.62167 + 2.66832i −0.721783 + 0.416722i −0.815409 0.578886i \(-0.803488\pi\)
0.0936256 + 0.995607i \(0.470154\pi\)
\(42\) 0 0
\(43\) −5.21162 + 9.02680i −0.794765 + 1.37657i 0.128223 + 0.991745i \(0.459073\pi\)
−0.922988 + 0.384828i \(0.874261\pi\)
\(44\) 4.54510i 0.685199i
\(45\) 0.565560 + 0.326526i 0.0843086 + 0.0486756i
\(46\) 5.63395 + 3.25276i 0.830680 + 0.479594i
\(47\) 1.94413i 0.283580i 0.989897 + 0.141790i \(0.0452858\pi\)
−0.989897 + 0.141790i \(0.954714\pi\)
\(48\) 0.703063 1.21774i 0.101478 0.175766i
\(49\) 0 0
\(50\) −3.97708 + 2.29617i −0.562444 + 0.324727i
\(51\) −0.996127 −0.139486
\(52\) 1.02382 + 3.45714i 0.141979 + 0.479418i
\(53\) −6.40142 −0.879303 −0.439652 0.898168i \(-0.644898\pi\)
−0.439652 + 0.898168i \(0.644898\pi\)
\(54\) −4.89874 + 2.82829i −0.666634 + 0.384881i
\(55\) −1.45099 2.51320i −0.195652 0.338879i
\(56\) 0 0
\(57\) 10.3295i 1.36818i
\(58\) 6.29212 + 3.63276i 0.826196 + 0.477005i
\(59\) −2.87484 1.65979i −0.374272 0.216086i 0.301051 0.953608i \(-0.402663\pi\)
−0.675323 + 0.737522i \(0.735996\pi\)
\(60\) 0.897794i 0.115905i
\(61\) 3.41517 5.91525i 0.437268 0.757370i −0.560210 0.828351i \(-0.689280\pi\)
0.997478 + 0.0709807i \(0.0226129\pi\)
\(62\) −3.31999 5.75039i −0.421639 0.730300i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −1.66979 1.58476i −0.207112 0.196566i
\(66\) 6.39098 0.786675
\(67\) 3.39810 1.96190i 0.415144 0.239684i −0.277853 0.960624i \(-0.589623\pi\)
0.692998 + 0.720940i \(0.256290\pi\)
\(68\) 0.354210 + 0.613510i 0.0429543 + 0.0743990i
\(69\) 4.57379 7.92204i 0.550620 0.953701i
\(70\) 0 0
\(71\) −9.11772 5.26412i −1.08207 0.624736i −0.150619 0.988592i \(-0.548127\pi\)
−0.931455 + 0.363856i \(0.881460\pi\)
\(72\) 0.885780 + 0.511405i 0.104390 + 0.0602697i
\(73\) 6.41246i 0.750521i 0.926919 + 0.375261i \(0.122447\pi\)
−0.926919 + 0.375261i \(0.877553\pi\)
\(74\) 1.05231 1.82266i 0.122329 0.211880i
\(75\) 3.22870 + 5.59227i 0.372818 + 0.645740i
\(76\) −6.36190 + 3.67305i −0.729760 + 0.421327i
\(77\) 0 0
\(78\) 4.86117 1.43962i 0.550419 0.163005i
\(79\) −10.9684 −1.23404 −0.617018 0.786949i \(-0.711659\pi\)
−0.617018 + 0.786949i \(0.711659\pi\)
\(80\) 0.552947 0.319244i 0.0618213 0.0356925i
\(81\) 2.44271 + 4.23090i 0.271413 + 0.470100i
\(82\) 2.66832 4.62167i 0.294667 0.510378i
\(83\) 2.41032i 0.264567i −0.991212 0.132283i \(-0.957769\pi\)
0.991212 0.132283i \(-0.0422309\pi\)
\(84\) 0 0
\(85\) −0.391718 0.226159i −0.0424878 0.0245304i
\(86\) 10.4232i 1.12397i
\(87\) 5.10811 8.84751i 0.547647 0.948553i
\(88\) −2.27255 3.93617i −0.242254 0.419597i
\(89\) 4.79196 2.76664i 0.507947 0.293263i −0.224043 0.974579i \(-0.571925\pi\)
0.731989 + 0.681316i \(0.238592\pi\)
\(90\) −0.653052 −0.0688377
\(91\) 0 0
\(92\) −6.50552 −0.678248
\(93\) −8.08577 + 4.66832i −0.838455 + 0.484082i
\(94\) −0.972065 1.68367i −0.100261 0.173657i
\(95\) 2.34519 4.06200i 0.240612 0.416752i
\(96\) 1.40613i 0.143512i
\(97\) 7.96131 + 4.59646i 0.808348 + 0.466700i 0.846382 0.532576i \(-0.178776\pi\)
−0.0380337 + 0.999276i \(0.512109\pi\)
\(98\) 0 0
\(99\) 4.64877i 0.467219i
\(100\) 2.29617 3.97708i 0.229617 0.397708i
\(101\) 6.85500 + 11.8732i 0.682098 + 1.18143i 0.974339 + 0.225084i \(0.0722657\pi\)
−0.292241 + 0.956345i \(0.594401\pi\)
\(102\) 0.862672 0.498064i 0.0854172 0.0493157i
\(103\) 10.8070 1.06485 0.532425 0.846477i \(-0.321281\pi\)
0.532425 + 0.846477i \(0.321281\pi\)
\(104\) −2.61522 2.48206i −0.256444 0.243386i
\(105\) 0 0
\(106\) 5.54379 3.20071i 0.538461 0.310881i
\(107\) −7.66173 13.2705i −0.740687 1.28291i −0.952183 0.305529i \(-0.901167\pi\)
0.211495 0.977379i \(-0.432167\pi\)
\(108\) 2.82829 4.89874i 0.272152 0.471381i
\(109\) 1.77368i 0.169888i −0.996386 0.0849438i \(-0.972929\pi\)
0.996386 0.0849438i \(-0.0270711\pi\)
\(110\) 2.51320 + 1.45099i 0.239624 + 0.138347i
\(111\) −2.56289 1.47968i −0.243259 0.140445i
\(112\) 0 0
\(113\) 2.62152 4.54061i 0.246612 0.427145i −0.715971 0.698130i \(-0.754016\pi\)
0.962584 + 0.270985i \(0.0873493\pi\)
\(114\) 5.16476 + 8.94563i 0.483724 + 0.837835i
\(115\) 3.59721 2.07685i 0.335441 0.193667i
\(116\) −7.26552 −0.674586
\(117\) 1.04718 + 3.53600i 0.0968114 + 0.326903i
\(118\) 3.31958 0.305592
\(119\) 0 0
\(120\) −0.448897 0.777512i −0.0409785 0.0709768i
\(121\) 4.82895 8.36399i 0.438996 0.760363i
\(122\) 6.83034i 0.618390i
\(123\) −6.49864 3.75199i −0.585963 0.338306i
\(124\) 5.75039 + 3.31999i 0.516400 + 0.298144i
\(125\) 6.12459i 0.547800i
\(126\) 0 0
\(127\) 0.366918 + 0.635520i 0.0325587 + 0.0563933i 0.881846 0.471538i \(-0.156301\pi\)
−0.849287 + 0.527932i \(0.822968\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) −14.6564 −1.29042
\(130\) 2.23846 + 0.537551i 0.196326 + 0.0471463i
\(131\) −19.8711 −1.73615 −0.868074 0.496435i \(-0.834642\pi\)
−0.868074 + 0.496435i \(0.834642\pi\)
\(132\) −5.53475 + 3.19549i −0.481738 + 0.278132i
\(133\) 0 0
\(134\) −1.96190 + 3.39810i −0.169482 + 0.293551i
\(135\) 3.61166i 0.310842i
\(136\) −0.613510 0.354210i −0.0526080 0.0303733i
\(137\) −9.06177 5.23181i −0.774199 0.446984i 0.0601714 0.998188i \(-0.480835\pi\)
−0.834370 + 0.551204i \(0.814169\pi\)
\(138\) 9.14758i 0.778694i
\(139\) −0.0315662 + 0.0546743i −0.00267741 + 0.00463741i −0.867361 0.497680i \(-0.834186\pi\)
0.864684 + 0.502317i \(0.167519\pi\)
\(140\) 0 0
\(141\) −2.36744 + 1.36684i −0.199375 + 0.115109i
\(142\) 10.5282 0.883510
\(143\) 3.82657 15.9346i 0.319994 1.33251i
\(144\) −1.02281 −0.0852342
\(145\) 4.01744 2.31947i 0.333630 0.192622i
\(146\) −3.20623 5.55335i −0.265349 0.459599i
\(147\) 0 0
\(148\) 2.10463i 0.172999i
\(149\) 7.69244 + 4.44123i 0.630189 + 0.363840i 0.780825 0.624749i \(-0.214799\pi\)
−0.150636 + 0.988589i \(0.548132\pi\)
\(150\) −5.59227 3.22870i −0.456607 0.263622i
\(151\) 13.2306i 1.07669i −0.842724 0.538345i \(-0.819050\pi\)
0.842724 0.538345i \(-0.180950\pi\)
\(152\) 3.67305 6.36190i 0.297923 0.516018i
\(153\) 0.362290 + 0.627504i 0.0292894 + 0.0507307i
\(154\) 0 0
\(155\) −4.23954 −0.340528
\(156\) −3.49008 + 3.67733i −0.279430 + 0.294422i
\(157\) −2.98372 −0.238127 −0.119063 0.992887i \(-0.537989\pi\)
−0.119063 + 0.992887i \(0.537989\pi\)
\(158\) 9.49887 5.48418i 0.755690 0.436298i
\(159\) −4.50060 7.79527i −0.356921 0.618205i
\(160\) −0.319244 + 0.552947i −0.0252384 + 0.0437143i
\(161\) 0 0
\(162\) −4.23090 2.44271i −0.332411 0.191918i
\(163\) 8.59086 + 4.95993i 0.672888 + 0.388492i 0.797170 0.603755i \(-0.206329\pi\)
−0.124282 + 0.992247i \(0.539663\pi\)
\(164\) 5.33664i 0.416722i
\(165\) 2.04028 3.53387i 0.158836 0.275111i
\(166\) 1.20516 + 2.08740i 0.0935384 + 0.162013i
\(167\) 10.4096 6.01000i 0.805521 0.465068i −0.0398771 0.999205i \(-0.512697\pi\)
0.845398 + 0.534137i \(0.179363\pi\)
\(168\) 0 0
\(169\) −0.678789 12.9823i −0.0522146 0.998636i
\(170\) 0.452317 0.0346912
\(171\) −6.50702 + 3.75683i −0.497604 + 0.287292i
\(172\) 5.21162 + 9.02680i 0.397383 + 0.688287i
\(173\) −9.75761 + 16.9007i −0.741857 + 1.28493i 0.209792 + 0.977746i \(0.432721\pi\)
−0.951649 + 0.307188i \(0.900612\pi\)
\(174\) 10.2162i 0.774490i
\(175\) 0 0
\(176\) 3.93617 + 2.27255i 0.296700 + 0.171300i
\(177\) 4.66775i 0.350849i
\(178\) −2.76664 + 4.79196i −0.207368 + 0.359173i
\(179\) 8.07581 + 13.9877i 0.603615 + 1.04549i 0.992269 + 0.124108i \(0.0396068\pi\)
−0.388654 + 0.921384i \(0.627060\pi\)
\(180\) 0.565560 0.326526i 0.0421543 0.0243378i
\(181\) −0.281865 −0.0209509 −0.0104754 0.999945i \(-0.503334\pi\)
−0.0104754 + 0.999945i \(0.503334\pi\)
\(182\) 0 0
\(183\) 9.60432 0.709972
\(184\) 5.63395 3.25276i 0.415340 0.239797i
\(185\) −0.671889 1.16375i −0.0493983 0.0855603i
\(186\) 4.66832 8.08577i 0.342298 0.592877i
\(187\) 3.21984i 0.235458i
\(188\) 1.68367 + 0.972065i 0.122794 + 0.0708951i
\(189\) 0 0
\(190\) 4.69039i 0.340277i
\(191\) −6.21334 + 10.7618i −0.449581 + 0.778698i −0.998359 0.0572709i \(-0.981760\pi\)
0.548777 + 0.835969i \(0.315093\pi\)
\(192\) −0.703063 1.21774i −0.0507392 0.0878829i
\(193\) −10.0807 + 5.82010i −0.725626 + 0.418940i −0.816820 0.576893i \(-0.804265\pi\)
0.0911941 + 0.995833i \(0.470932\pi\)
\(194\) −9.19293 −0.660014
\(195\) 0.755864 3.14756i 0.0541285 0.225401i
\(196\) 0 0
\(197\) 4.59712 2.65415i 0.327531 0.189100i −0.327213 0.944950i \(-0.606110\pi\)
0.654744 + 0.755850i \(0.272776\pi\)
\(198\) −2.32439 4.02596i −0.165187 0.286112i
\(199\) 6.87462 11.9072i 0.487329 0.844078i −0.512565 0.858648i \(-0.671305\pi\)
0.999894 + 0.0145702i \(0.00463799\pi\)
\(200\) 4.59233i 0.324727i
\(201\) 4.77816 + 2.75867i 0.337025 + 0.194582i
\(202\) −11.8732 6.85500i −0.835396 0.482316i
\(203\) 0 0
\(204\) −0.498064 + 0.862672i −0.0348714 + 0.0603991i
\(205\) −1.70369 2.95088i −0.118991 0.206098i
\(206\) −9.35918 + 5.40352i −0.652085 + 0.376481i
\(207\) −6.65392 −0.462479
\(208\) 3.50588 + 0.841912i 0.243089 + 0.0583761i
\(209\) 33.3887 2.30954
\(210\) 0 0
\(211\) 3.91287 + 6.77729i 0.269373 + 0.466568i 0.968700 0.248234i \(-0.0798502\pi\)
−0.699327 + 0.714802i \(0.746517\pi\)
\(212\) −3.20071 + 5.54379i −0.219826 + 0.380749i
\(213\) 14.8040i 1.01436i
\(214\) 13.2705 + 7.66173i 0.907153 + 0.523745i
\(215\) −5.76350 3.32756i −0.393067 0.226938i
\(216\) 5.65658i 0.384881i
\(217\) 0 0
\(218\) 0.886839 + 1.53605i 0.0600643 + 0.104034i
\(219\) −7.80871 + 4.50836i −0.527664 + 0.304647i
\(220\) −2.90199 −0.195652
\(221\) −0.725296 2.44910i −0.0487887 0.164745i
\(222\) 2.95937 0.198620
\(223\) −16.9201 + 9.76882i −1.13305 + 0.654169i −0.944701 0.327933i \(-0.893648\pi\)
−0.188353 + 0.982101i \(0.560315\pi\)
\(224\) 0 0
\(225\) 2.34854 4.06780i 0.156570 0.271186i
\(226\) 5.24305i 0.348762i
\(227\) −4.26499 2.46239i −0.283077 0.163435i 0.351738 0.936098i \(-0.385591\pi\)
−0.634816 + 0.772664i \(0.718924\pi\)
\(228\) −8.94563 5.16476i −0.592439 0.342045i
\(229\) 15.9722i 1.05547i 0.849408 + 0.527736i \(0.176959\pi\)
−0.849408 + 0.527736i \(0.823041\pi\)
\(230\) −2.07685 + 3.59721i −0.136943 + 0.237193i
\(231\) 0 0
\(232\) 6.29212 3.63276i 0.413098 0.238502i
\(233\) −5.24006 −0.343288 −0.171644 0.985159i \(-0.554908\pi\)
−0.171644 + 0.985159i \(0.554908\pi\)
\(234\) −2.67488 2.53867i −0.174862 0.165958i
\(235\) −1.24130 −0.0809737
\(236\) −2.87484 + 1.65979i −0.187136 + 0.108043i
\(237\) −7.71144 13.3566i −0.500912 0.867605i
\(238\) 0 0
\(239\) 23.4449i 1.51652i 0.651952 + 0.758261i \(0.273951\pi\)
−0.651952 + 0.758261i \(0.726049\pi\)
\(240\) 0.777512 + 0.448897i 0.0501882 + 0.0289762i
\(241\) −9.57480 5.52801i −0.616767 0.356091i 0.158842 0.987304i \(-0.449224\pi\)
−0.775609 + 0.631213i \(0.782557\pi\)
\(242\) 9.65791i 0.620834i
\(243\) 5.05010 8.74704i 0.323964 0.561123i
\(244\) −3.41517 5.91525i −0.218634 0.378685i
\(245\) 0 0
\(246\) 7.50399 0.478437
\(247\) 25.3964 7.52109i 1.61594 0.478555i
\(248\) −6.63998 −0.421639
\(249\) 2.93514 1.69460i 0.186007 0.107391i
\(250\) −3.06229 5.30405i −0.193676 0.335457i
\(251\) −12.9898 + 22.4990i −0.819907 + 1.42012i 0.0858425 + 0.996309i \(0.472642\pi\)
−0.905750 + 0.423813i \(0.860692\pi\)
\(252\) 0 0
\(253\) 25.6068 + 14.7841i 1.60989 + 0.929469i
\(254\) −0.635520 0.366918i −0.0398761 0.0230225i
\(255\) 0.636015i 0.0398288i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 0.886678 + 1.53577i 0.0553095 + 0.0957988i 0.892354 0.451335i \(-0.149052\pi\)
−0.837045 + 0.547134i \(0.815719\pi\)
\(258\) 12.6928 7.32820i 0.790220 0.456234i
\(259\) 0 0
\(260\) −2.20734 + 0.653698i −0.136893 + 0.0405406i
\(261\) −7.43125 −0.459983
\(262\) 17.2089 9.93556i 1.06317 0.613821i
\(263\) −2.81508 4.87586i −0.173585 0.300658i 0.766086 0.642739i \(-0.222202\pi\)
−0.939671 + 0.342080i \(0.888869\pi\)
\(264\) 3.19549 5.53475i 0.196669 0.340640i
\(265\) 4.08723i 0.251077i
\(266\) 0 0
\(267\) 6.73810 + 3.89024i 0.412365 + 0.238079i
\(268\) 3.92379i 0.239684i
\(269\) 0.334197 0.578847i 0.0203764 0.0352929i −0.855657 0.517543i \(-0.826847\pi\)
0.876034 + 0.482250i \(0.160180\pi\)
\(270\) −1.80583 3.12779i −0.109899 0.190351i
\(271\) −18.0500 + 10.4212i −1.09646 + 0.633040i −0.935288 0.353886i \(-0.884860\pi\)
−0.161170 + 0.986927i \(0.551527\pi\)
\(272\) 0.708420 0.0429543
\(273\) 0 0
\(274\) 10.4636 0.632131
\(275\) −18.0762 + 10.4363i −1.09004 + 0.629333i
\(276\) −4.57379 7.92204i −0.275310 0.476851i
\(277\) 3.82091 6.61801i 0.229576 0.397638i −0.728106 0.685464i \(-0.759599\pi\)
0.957683 + 0.287826i \(0.0929326\pi\)
\(278\) 0.0631324i 0.00378643i
\(279\) 5.88156 + 3.39572i 0.352120 + 0.203296i
\(280\) 0 0
\(281\) 4.17663i 0.249157i 0.992210 + 0.124578i \(0.0397578\pi\)
−0.992210 + 0.124578i \(0.960242\pi\)
\(282\) 1.36684 2.36744i 0.0813944 0.140979i
\(283\) 3.44853 + 5.97302i 0.204994 + 0.355059i 0.950131 0.311852i \(-0.100949\pi\)
−0.745137 + 0.666911i \(0.767616\pi\)
\(284\) −9.11772 + 5.26412i −0.541037 + 0.312368i
\(285\) 6.59528 0.390670
\(286\) 4.65337 + 15.7130i 0.275159 + 0.929130i
\(287\) 0 0
\(288\) 0.885780 0.511405i 0.0521951 0.0301348i
\(289\) 8.24907 + 14.2878i 0.485239 + 0.840459i
\(290\) −2.31947 + 4.01744i −0.136204 + 0.235912i
\(291\) 12.9264i 0.757760i
\(292\) 5.55335 + 3.20623i 0.324985 + 0.187630i
\(293\) −13.3859 7.72837i −0.782014 0.451496i 0.0551294 0.998479i \(-0.482443\pi\)
−0.837144 + 0.546983i \(0.815776\pi\)
\(294\) 0 0
\(295\) 1.05976 1.83555i 0.0617013 0.106870i
\(296\) −1.05231 1.82266i −0.0611645 0.105940i
\(297\) −22.2652 + 12.8548i −1.29196 + 0.745914i
\(298\) −8.88246 −0.514547
\(299\) 22.8076 + 5.47708i 1.31900 + 0.316748i
\(300\) 6.45740 0.372818
\(301\) 0 0
\(302\) 6.61530 + 11.4580i 0.380668 + 0.659336i
\(303\) −9.63900 + 16.6952i −0.553746 + 0.959116i
\(304\) 7.34609i 0.421327i
\(305\) 3.77681 + 2.18054i 0.216260 + 0.124858i
\(306\) −0.627504 0.362290i −0.0358720 0.0207107i
\(307\) 25.0571i 1.43008i 0.699082 + 0.715042i \(0.253592\pi\)
−0.699082 + 0.715042i \(0.746408\pi\)
\(308\) 0 0
\(309\) 7.59803 + 13.1602i 0.432237 + 0.748656i
\(310\) 3.67155 2.11977i 0.208530 0.120395i
\(311\) −2.14555 −0.121663 −0.0608315 0.998148i \(-0.519375\pi\)
−0.0608315 + 0.998148i \(0.519375\pi\)
\(312\) 1.18383 4.92971i 0.0670214 0.279090i
\(313\) 29.7469 1.68139 0.840696 0.541507i \(-0.182146\pi\)
0.840696 + 0.541507i \(0.182146\pi\)
\(314\) 2.58398 1.49186i 0.145822 0.0841906i
\(315\) 0 0
\(316\) −5.48418 + 9.49887i −0.308509 + 0.534353i
\(317\) 6.15558i 0.345732i 0.984945 + 0.172866i \(0.0553027\pi\)
−0.984945 + 0.172866i \(0.944697\pi\)
\(318\) 7.79527 + 4.50060i 0.437137 + 0.252381i
\(319\) 28.5983 + 16.5112i 1.60120 + 0.924452i
\(320\) 0.638488i 0.0356925i
\(321\) 10.7734 18.6600i 0.601310 1.04150i
\(322\) 0 0
\(323\) 4.50690 2.60206i 0.250770 0.144782i
\(324\) 4.88543 0.271413
\(325\) −11.3984 + 12.0100i −0.632271 + 0.666194i
\(326\) −9.91987 −0.549411
\(327\) 2.15988 1.24701i 0.119442 0.0689597i
\(328\) −2.66832 4.62167i −0.147333 0.255189i
\(329\) 0 0
\(330\) 4.08056i 0.224627i
\(331\) 24.8252 + 14.3328i 1.36452 + 0.787804i 0.990221 0.139505i \(-0.0445511\pi\)
0.374296 + 0.927309i \(0.377884\pi\)
\(332\) −2.08740 1.20516i −0.114561 0.0661417i
\(333\) 2.15263i 0.117964i
\(334\) −6.01000 + 10.4096i −0.328853 + 0.569589i
\(335\) 1.25265 + 2.16965i 0.0684394 + 0.118540i
\(336\) 0 0
\(337\) 21.2688 1.15859 0.579294 0.815119i \(-0.303328\pi\)
0.579294 + 0.815119i \(0.303328\pi\)
\(338\) 7.07898 + 10.9036i 0.385046 + 0.593076i
\(339\) 7.37238 0.400413
\(340\) −0.391718 + 0.226159i −0.0212439 + 0.0122652i
\(341\) −15.0897 26.1361i −0.817151 1.41535i
\(342\) 3.75683 6.50702i 0.203146 0.351859i
\(343\) 0 0
\(344\) −9.02680 5.21162i −0.486692 0.280992i
\(345\) 5.05812 + 2.92031i 0.272320 + 0.157224i
\(346\) 19.5152i 1.04914i
\(347\) −6.95294 + 12.0428i −0.373253 + 0.646494i −0.990064 0.140618i \(-0.955091\pi\)
0.616811 + 0.787112i \(0.288424\pi\)
\(348\) −5.10811 8.84751i −0.273824 0.474277i
\(349\) −5.92236 + 3.41927i −0.317016 + 0.183030i −0.650062 0.759881i \(-0.725257\pi\)
0.333045 + 0.942911i \(0.391924\pi\)
\(350\) 0 0
\(351\) −14.0399 + 14.7932i −0.749397 + 0.789603i
\(352\) −4.54510 −0.242254
\(353\) 12.1206 6.99785i 0.645116 0.372458i −0.141467 0.989943i \(-0.545182\pi\)
0.786583 + 0.617485i \(0.211848\pi\)
\(354\) 2.33387 + 4.04239i 0.124044 + 0.214850i
\(355\) 3.36107 5.82155i 0.178387 0.308976i
\(356\) 5.53328i 0.293263i
\(357\) 0 0
\(358\) −13.9877 8.07581i −0.739274 0.426820i
\(359\) 1.35528i 0.0715287i 0.999360 + 0.0357644i \(0.0113866\pi\)
−0.999360 + 0.0357644i \(0.988613\pi\)
\(360\) −0.326526 + 0.565560i −0.0172094 + 0.0298076i
\(361\) 17.4825 + 30.2806i 0.920133 + 1.59372i
\(362\) 0.244102 0.140933i 0.0128297 0.00740725i
\(363\) 13.5802 0.712777
\(364\) 0 0
\(365\) −4.09427 −0.214304
\(366\) −8.31758 + 4.80216i −0.434767 + 0.251013i
\(367\) −5.92951 10.2702i −0.309518 0.536101i 0.668739 0.743497i \(-0.266834\pi\)
−0.978257 + 0.207396i \(0.933501\pi\)
\(368\) −3.25276 + 5.63395i −0.169562 + 0.293690i
\(369\) 5.45837i 0.284151i
\(370\) 1.16375 + 0.671889i 0.0605003 + 0.0349298i
\(371\) 0 0
\(372\) 9.33664i 0.484082i
\(373\) 19.0720 33.0337i 0.987511 1.71042i 0.357315 0.933984i \(-0.383692\pi\)
0.630197 0.776436i \(-0.282974\pi\)
\(374\) 1.60992 + 2.78846i 0.0832469 + 0.144188i
\(375\) −7.45816 + 4.30597i −0.385138 + 0.222359i
\(376\) −1.94413 −0.100261
\(377\) 25.4720 + 6.11693i 1.31188 + 0.315038i
\(378\) 0 0
\(379\) −27.4201 + 15.8310i −1.40848 + 0.813185i −0.995242 0.0974383i \(-0.968935\pi\)
−0.413237 + 0.910624i \(0.635602\pi\)
\(380\) −2.34519 4.06200i −0.120306 0.208376i
\(381\) −0.515932 + 0.893621i −0.0264320 + 0.0457816i
\(382\) 12.4267i 0.635804i
\(383\) 12.6943 + 7.32908i 0.648650 + 0.374498i 0.787939 0.615753i \(-0.211148\pi\)
−0.139289 + 0.990252i \(0.544482\pi\)
\(384\) 1.21774 + 0.703063i 0.0621426 + 0.0358780i
\(385\) 0 0
\(386\) 5.82010 10.0807i 0.296235 0.513095i
\(387\) 5.33050 + 9.23270i 0.270965 + 0.469325i
\(388\) 7.96131 4.59646i 0.404174 0.233350i
\(389\) 16.4655 0.834835 0.417418 0.908715i \(-0.362935\pi\)
0.417418 + 0.908715i \(0.362935\pi\)
\(390\) 0.919181 + 3.10380i 0.0465445 + 0.157167i
\(391\) 4.60864 0.233069
\(392\) 0 0
\(393\) −13.9706 24.1979i −0.704726 1.22062i
\(394\) −2.65415 + 4.59712i −0.133714 + 0.231599i
\(395\) 7.00316i 0.352367i
\(396\) 4.02596 + 2.32439i 0.202312 + 0.116805i
\(397\) −14.1163 8.15004i −0.708476 0.409039i 0.102020 0.994782i \(-0.467469\pi\)
−0.810497 + 0.585743i \(0.800803\pi\)
\(398\) 13.7492i 0.689187i
\(399\) 0 0
\(400\) −2.29617 3.97708i −0.114808 0.198854i
\(401\) 18.0562 10.4248i 0.901684 0.520588i 0.0239381 0.999713i \(-0.492380\pi\)
0.877746 + 0.479126i \(0.159046\pi\)
\(402\) −5.51734 −0.275180
\(403\) −17.3650 16.4808i −0.865013 0.820967i
\(404\) 13.7100 0.682098
\(405\) −2.70138 + 1.55964i −0.134233 + 0.0774993i
\(406\) 0 0
\(407\) 4.78287 8.28417i 0.237078 0.410631i
\(408\) 0.996127i 0.0493157i
\(409\) 1.03993 + 0.600406i 0.0514214 + 0.0296882i 0.525490 0.850800i \(-0.323882\pi\)
−0.474069 + 0.880488i \(0.657215\pi\)
\(410\) 2.95088 + 1.70369i 0.145733 + 0.0841392i
\(411\) 14.7132i 0.725747i
\(412\) 5.40352 9.35918i 0.266212 0.461094i
\(413\) 0 0
\(414\) 5.76246 3.32696i 0.283210 0.163511i
\(415\) 1.53896 0.0755445
\(416\) −3.45714 + 1.02382i −0.169500 + 0.0501970i
\(417\) −0.0887721 −0.00434719
\(418\) −28.9155 + 16.6943i −1.41430 + 0.816547i
\(419\) −9.29434 16.0983i −0.454058 0.786452i 0.544575 0.838712i \(-0.316691\pi\)
−0.998634 + 0.0522602i \(0.983357\pi\)
\(420\) 0 0
\(421\) 21.9581i 1.07017i 0.844797 + 0.535087i \(0.179721\pi\)
−0.844797 + 0.535087i \(0.820279\pi\)
\(422\) −6.77729 3.91287i −0.329913 0.190476i
\(423\) 1.72207 + 0.994238i 0.0837299 + 0.0483415i
\(424\) 6.40142i 0.310881i
\(425\) −1.62665 + 2.81744i −0.0789041 + 0.136666i
\(426\) 7.40201 + 12.8207i 0.358629 + 0.621163i
\(427\) 0 0
\(428\) −15.3235 −0.740687
\(429\) 22.0945 6.54322i 1.06673 0.315910i
\(430\) 6.65511 0.320938
\(431\) 23.8430 13.7658i 1.14848 0.663074i 0.199962 0.979804i \(-0.435918\pi\)
0.948516 + 0.316730i \(0.102585\pi\)
\(432\) −2.82829 4.89874i −0.136076 0.235691i
\(433\) −16.4667 + 28.5212i −0.791339 + 1.37064i 0.133799 + 0.991008i \(0.457282\pi\)
−0.925138 + 0.379631i \(0.876051\pi\)
\(434\) 0 0
\(435\) 5.64903 + 3.26147i 0.270850 + 0.156375i
\(436\) −1.53605 0.886839i −0.0735635 0.0424719i
\(437\) 47.7902i 2.28611i
\(438\) 4.50836 7.80871i 0.215418 0.373115i
\(439\) 6.35859 + 11.0134i 0.303479 + 0.525641i 0.976921 0.213599i \(-0.0685185\pi\)
−0.673443 + 0.739239i \(0.735185\pi\)
\(440\) 2.51320 1.45099i 0.119812 0.0691734i
\(441\) 0 0
\(442\) 1.85268 + 1.75834i 0.0881228 + 0.0836356i
\(443\) −28.9869 −1.37721 −0.688604 0.725138i \(-0.741776\pi\)
−0.688604 + 0.725138i \(0.741776\pi\)
\(444\) −2.56289 + 1.47968i −0.121629 + 0.0702227i
\(445\) 1.76647 + 3.05961i 0.0837385 + 0.145039i
\(446\) 9.76882 16.9201i 0.462567 0.801190i
\(447\) 12.4899i 0.590750i
\(448\) 0 0
\(449\) −0.0241096 0.0139197i −0.00113780 0.000656909i 0.499431 0.866354i \(-0.333542\pi\)
−0.500569 + 0.865697i \(0.666876\pi\)
\(450\) 4.69709i 0.221423i
\(451\) 12.1278 21.0059i 0.571075 0.989130i
\(452\) −2.62152 4.54061i −0.123306 0.213572i
\(453\) 16.1114 9.30194i 0.756981 0.437043i
\(454\) 4.92479 0.231132
\(455\) 0 0
\(456\) 10.3295 0.483724
\(457\) 26.6615 15.3931i 1.24717 0.720057i 0.276630 0.960977i \(-0.410782\pi\)
0.970545 + 0.240920i \(0.0774491\pi\)
\(458\) −7.98610 13.8323i −0.373166 0.646342i
\(459\) −2.00362 + 3.47036i −0.0935208 + 0.161983i
\(460\) 4.15370i 0.193667i
\(461\) −32.8804 18.9835i −1.53139 0.884149i −0.999298 0.0374628i \(-0.988072\pi\)
−0.532093 0.846686i \(-0.678594\pi\)
\(462\) 0 0
\(463\) 13.3969i 0.622608i −0.950310 0.311304i \(-0.899234\pi\)
0.950310 0.311304i \(-0.100766\pi\)
\(464\) −3.63276 + 6.29212i −0.168647 + 0.292104i
\(465\) −2.98067 5.16266i −0.138225 0.239413i
\(466\) 4.53803 2.62003i 0.210220 0.121371i
\(467\) −25.9151 −1.19921 −0.599603 0.800298i \(-0.704675\pi\)
−0.599603 + 0.800298i \(0.704675\pi\)
\(468\) 3.58585 + 0.861117i 0.165756 + 0.0398051i
\(469\) 0 0
\(470\) 1.07500 0.620651i 0.0495860 0.0286285i
\(471\) −2.09774 3.63340i −0.0966590 0.167418i
\(472\) 1.65979 2.87484i 0.0763980 0.132325i
\(473\) 47.3747i 2.17829i
\(474\) 13.3566 + 7.71144i 0.613489 + 0.354198i
\(475\) −29.2160 16.8678i −1.34052 0.773950i
\(476\) 0 0
\(477\) −3.27372 + 5.67025i −0.149893 + 0.259623i
\(478\) −11.7224 20.3038i −0.536171 0.928676i
\(479\) −0.219038 + 0.126461i −0.0100081 + 0.00577817i −0.504996 0.863122i \(-0.668506\pi\)
0.494988 + 0.868900i \(0.335173\pi\)
\(480\) −0.897794 −0.0409785
\(481\) 1.77191 7.37856i 0.0807922 0.336434i
\(482\) 11.0560 0.503588
\(483\) 0 0
\(484\) −4.82895 8.36399i −0.219498 0.380181i
\(485\) −2.93479 + 5.08320i −0.133262 + 0.230816i
\(486\) 10.1002i 0.458155i
\(487\) −26.2897 15.1783i −1.19130 0.687796i −0.232697 0.972549i \(-0.574755\pi\)
−0.958601 + 0.284753i \(0.908088\pi\)
\(488\) 5.91525 + 3.41517i 0.267771 + 0.154598i
\(489\) 13.9486i 0.630777i
\(490\) 0 0
\(491\) −6.74228 11.6780i −0.304275 0.527019i 0.672825 0.739802i \(-0.265081\pi\)
−0.977100 + 0.212782i \(0.931747\pi\)
\(492\) −6.49864 + 3.75199i −0.292981 + 0.169153i
\(493\) 5.14704 0.231811
\(494\) −18.2334 + 19.2117i −0.820360 + 0.864374i
\(495\) −2.96818 −0.133410
\(496\) 5.75039 3.31999i 0.258200 0.149072i
\(497\) 0 0
\(498\) −1.69460 + 2.93514i −0.0759370 + 0.131527i
\(499\) 2.02110i 0.0904767i 0.998976 + 0.0452383i \(0.0144047\pi\)
−0.998976 + 0.0452383i \(0.985595\pi\)
\(500\) 5.30405 + 3.06229i 0.237204 + 0.136950i
\(501\) 14.6372 + 8.45081i 0.653944 + 0.377555i
\(502\) 25.9796i 1.15952i
\(503\) 2.81234 4.87112i 0.125396 0.217192i −0.796492 0.604650i \(-0.793313\pi\)
0.921888 + 0.387457i \(0.126646\pi\)
\(504\) 0 0
\(505\) −7.58090 + 4.37684i −0.337346 + 0.194767i
\(506\) −29.5682 −1.31447
\(507\) 15.3318 9.95394i 0.680909 0.442070i
\(508\) 0.733835 0.0325587
\(509\) 14.0634 8.11950i 0.623348 0.359890i −0.154823 0.987942i \(-0.549481\pi\)
0.778171 + 0.628052i \(0.216147\pi\)
\(510\) 0.318008 + 0.550805i 0.0140816 + 0.0243901i
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) −35.9866 20.7769i −1.58885 0.917321i
\(514\) −1.53577 0.886678i −0.0677400 0.0391097i
\(515\) 6.90017i 0.304058i
\(516\) −7.32820 + 12.6928i −0.322606 + 0.558770i
\(517\) −4.41813 7.65242i −0.194309 0.336553i
\(518\) 0 0
\(519\) −27.4408 −1.20452
\(520\) 1.58476 1.66979i 0.0694964 0.0732251i
\(521\) 16.6470 0.729319 0.364659 0.931141i \(-0.381185\pi\)
0.364659 + 0.931141i \(0.381185\pi\)
\(522\) 6.43565 3.71562i 0.281681 0.162628i
\(523\) 6.40753 + 11.0982i 0.280182 + 0.485289i 0.971429 0.237329i \(-0.0762720\pi\)
−0.691248 + 0.722618i \(0.742939\pi\)
\(524\) −9.93556 + 17.2089i −0.434037 + 0.751774i
\(525\) 0 0
\(526\) 4.87586 + 2.81508i 0.212598 + 0.122743i
\(527\) −4.07369 2.35195i −0.177453 0.102452i
\(528\) 6.39098i 0.278132i
\(529\) −9.66092 + 16.7332i −0.420040 + 0.727530i
\(530\) 2.04361 + 3.53964i 0.0887690 + 0.153752i
\(531\) −2.94042 + 1.69765i −0.127603 + 0.0736718i
\(532\) 0 0
\(533\) 4.49298 18.7096i 0.194613 0.810403i
\(534\) −7.78048 −0.336695
\(535\) 8.47305 4.89192i 0.366322 0.211496i
\(536\) 1.96190 + 3.39810i 0.0847410 + 0.146776i
\(537\) −11.3556 + 19.6685i −0.490031 + 0.848758i
\(538\) 0.668394i 0.0288165i
\(539\) 0 0
\(540\) 3.12779 + 1.80583i 0.134598 + 0.0777104i
\(541\) 6.90972i 0.297072i 0.988907 + 0.148536i \(0.0474561\pi\)
−0.988907 + 0.148536i \(0.952544\pi\)
\(542\) 10.4212 18.0500i 0.447627 0.775313i
\(543\) −0.198169 0.343239i −0.00850424 0.0147298i
\(544\) −0.613510 + 0.354210i −0.0263040 + 0.0151866i
\(545\) 1.13247 0.0485098
\(546\) 0 0
\(547\) 24.8868 1.06408 0.532041 0.846719i \(-0.321425\pi\)
0.532041 + 0.846719i \(0.321425\pi\)
\(548\) −9.06177 + 5.23181i −0.387100 + 0.223492i
\(549\) −3.49307 6.05018i −0.149081 0.258215i
\(550\) 10.4363 18.0762i 0.445005 0.770772i
\(551\) 53.3731i 2.27377i
\(552\) 7.92204 + 4.57379i 0.337184 + 0.194674i
\(553\) 0 0
\(554\) 7.64182i 0.324670i
\(555\) 0.944760 1.63637i 0.0401028 0.0694602i
\(556\) 0.0315662 + 0.0546743i 0.00133871 + 0.00231871i
\(557\) −10.1308 + 5.84900i −0.429254 + 0.247830i −0.699029 0.715094i \(-0.746384\pi\)
0.269775 + 0.962923i \(0.413051\pi\)
\(558\) −6.79144 −0.287505
\(559\) −10.6715 36.0346i −0.451358 1.52410i
\(560\) 0 0
\(561\) 3.92093 2.26375i 0.165542 0.0955755i
\(562\) −2.08831 3.61707i −0.0880903 0.152577i
\(563\) −12.5615 + 21.7572i −0.529404 + 0.916955i 0.470008 + 0.882662i \(0.344251\pi\)
−0.999412 + 0.0342927i \(0.989082\pi\)
\(564\) 2.73369i 0.115109i
\(565\) 2.89912 + 1.67381i 0.121967 + 0.0704177i
\(566\) −5.97302 3.44853i −0.251065 0.144952i
\(567\) 0 0
\(568\) 5.26412 9.11772i 0.220878 0.382571i
\(569\) 12.5379 + 21.7162i 0.525614 + 0.910391i 0.999555 + 0.0298340i \(0.00949788\pi\)
−0.473940 + 0.880557i \(0.657169\pi\)
\(570\) −5.71168 + 3.29764i −0.239236 + 0.138123i
\(571\) 9.12402 0.381828 0.190914 0.981607i \(-0.438855\pi\)
0.190914 + 0.981607i \(0.438855\pi\)
\(572\) −11.8864 11.2812i −0.496997 0.471690i
\(573\) −17.4735 −0.729964
\(574\) 0 0
\(575\) −14.9378 25.8730i −0.622948 1.07898i
\(576\) −0.511405 + 0.885780i −0.0213086 + 0.0369075i
\(577\) 12.8257i 0.533939i 0.963705 + 0.266970i \(0.0860224\pi\)
−0.963705 + 0.266970i \(0.913978\pi\)
\(578\) −14.2878 8.24907i −0.594295 0.343116i
\(579\) −14.1747 8.18380i −0.589082 0.340107i
\(580\) 4.63894i 0.192622i
\(581\) 0 0
\(582\) −6.46320 11.1946i −0.267908 0.464031i
\(583\) 25.1971 14.5475i 1.04356 0.602498i
\(584\) −6.41246 −0.265349
\(585\) −2.25769 + 0.668609i −0.0933440 + 0.0276436i
\(586\) 15.4567 0.638512
\(587\) 6.27507 3.62291i 0.259000 0.149534i −0.364878 0.931055i \(-0.618889\pi\)
0.623878 + 0.781522i \(0.285556\pi\)
\(588\) 0 0
\(589\) 24.3889 42.2429i 1.00493 1.74059i
\(590\) 2.11951i 0.0872589i
\(591\) 6.46413 + 3.73206i 0.265899 + 0.153517i
\(592\) 1.82266 + 1.05231i 0.0749109 + 0.0432498i
\(593\) 15.4794i 0.635664i 0.948147 + 0.317832i \(0.102955\pi\)
−0.948147 + 0.317832i \(0.897045\pi\)
\(594\) 12.8548 22.2652i 0.527441 0.913554i
\(595\) 0 0
\(596\) 7.69244 4.44123i 0.315095 0.181920i
\(597\) 19.3332 0.791253
\(598\) −22.4905 + 6.66050i −0.919704 + 0.272368i
\(599\) −43.0965 −1.76088 −0.880438 0.474162i \(-0.842751\pi\)
−0.880438 + 0.474162i \(0.842751\pi\)
\(600\) −5.59227 + 3.22870i −0.228303 + 0.131811i
\(601\) −11.6610 20.1975i −0.475664 0.823873i 0.523948 0.851750i \(-0.324459\pi\)
−0.999611 + 0.0278770i \(0.991125\pi\)
\(602\) 0 0
\(603\) 4.01330i 0.163434i
\(604\) −11.4580 6.61530i −0.466221 0.269173i
\(605\) 5.34031 + 3.08323i 0.217114 + 0.125351i
\(606\) 19.2780i 0.783115i
\(607\) 15.7844 27.3394i 0.640670 1.10967i −0.344614 0.938745i \(-0.611990\pi\)
0.985283 0.170928i \(-0.0546766\pi\)
\(608\) −3.67305 6.36190i −0.148962 0.258009i
\(609\) 0 0
\(610\) −4.36109 −0.176575
\(611\) −5.08433 4.82544i −0.205690 0.195216i
\(612\) 0.724579 0.0292894
\(613\) 13.6857 7.90145i 0.552761 0.319137i −0.197474 0.980308i \(-0.563274\pi\)
0.750235 + 0.661171i \(0.229940\pi\)
\(614\) −12.5285 21.7001i −0.505611 0.875744i
\(615\) 2.39560 4.14930i 0.0966000 0.167316i
\(616\) 0 0
\(617\) 14.3413 + 8.27996i 0.577360 + 0.333339i 0.760083 0.649826i \(-0.225158\pi\)
−0.182724 + 0.983164i \(0.558491\pi\)
\(618\) −13.1602 7.59803i −0.529380 0.305638i
\(619\) 20.0405i 0.805497i 0.915311 + 0.402749i \(0.131945\pi\)
−0.915311 + 0.402749i \(0.868055\pi\)
\(620\) −2.11977 + 3.67155i −0.0851321 + 0.147453i
\(621\) −18.3995 31.8689i −0.738346 1.27885i
\(622\) 1.85810 1.07278i 0.0745031 0.0430144i
\(623\) 0 0
\(624\) 1.43962 + 4.86117i 0.0576310 + 0.194602i
\(625\) 19.0512 0.762048
\(626\) −25.7615 + 14.8734i −1.02964 + 0.594462i
\(627\) 23.4743 + 40.6588i 0.937475 + 1.62375i
\(628\) −1.49186 + 2.58398i −0.0595317 + 0.103112i
\(629\) 1.49096i 0.0594484i
\(630\) 0 0
\(631\) −17.8127 10.2842i −0.709113 0.409407i 0.101620 0.994823i \(-0.467598\pi\)
−0.810733 + 0.585417i \(0.800931\pi\)
\(632\) 10.9684i 0.436298i
\(633\) −5.50199 + 9.52972i −0.218684 + 0.378772i
\(634\) −3.07779 5.33089i −0.122235 0.211717i
\(635\) −0.405772 + 0.234272i −0.0161026 + 0.00929682i
\(636\) −9.00120 −0.356921
\(637\) 0 0
\(638\) −33.0225 −1.30737
\(639\) −9.32570 + 5.38420i −0.368919 + 0.212996i
\(640\) 0.319244 + 0.552947i 0.0126192 + 0.0218571i
\(641\) 17.1856 29.7664i 0.678792 1.17570i −0.296553 0.955017i \(-0.595837\pi\)
0.975345 0.220686i \(-0.0708296\pi\)
\(642\) 21.5467i 0.850381i
\(643\) 7.68629 + 4.43768i 0.303118 + 0.175005i 0.643843 0.765158i \(-0.277339\pi\)
−0.340725 + 0.940163i \(0.610672\pi\)
\(644\) 0 0
\(645\) 9.35793i 0.368468i
\(646\) −2.60206 + 4.50690i −0.102377 + 0.177321i
\(647\) 2.26837 + 3.92893i 0.0891788 + 0.154462i 0.907164 0.420777i \(-0.138242\pi\)
−0.817985 + 0.575239i \(0.804909\pi\)
\(648\) −4.23090 + 2.44271i −0.166206 + 0.0959588i
\(649\) 15.0878 0.592248
\(650\) 3.86634 16.1002i 0.151650 0.631500i
\(651\) 0 0
\(652\) 8.59086 4.95993i 0.336444 0.194246i
\(653\) −13.5725 23.5083i −0.531133 0.919949i −0.999340 0.0363305i \(-0.988433\pi\)
0.468207 0.883619i \(-0.344900\pi\)
\(654\) −1.24701 + 2.15988i −0.0487619 + 0.0844580i
\(655\) 12.6875i 0.495740i
\(656\) 4.62167 + 2.66832i 0.180446 + 0.104180i
\(657\) 5.68003 + 3.27936i 0.221599 + 0.127940i
\(658\) 0 0
\(659\) −13.2645 + 22.9748i −0.516712 + 0.894972i 0.483099 + 0.875566i \(0.339511\pi\)
−0.999812 + 0.0194066i \(0.993822\pi\)
\(660\) −2.04028 3.53387i −0.0794178 0.137556i
\(661\) 26.9057 15.5340i 1.04651 0.604204i 0.124841 0.992177i \(-0.460158\pi\)
0.921671 + 0.387973i \(0.126825\pi\)
\(662\) −28.6657 −1.11412
\(663\) 2.47244 2.60510i 0.0960218 0.101174i
\(664\) 2.41032 0.0935384
\(665\) 0 0
\(666\) −1.07632 1.86424i −0.0417064 0.0722377i
\(667\) −23.6330 + 40.9335i −0.915073 + 1.58495i
\(668\) 12.0200i 0.465068i
\(669\) −23.7918 13.7362i −0.919844 0.531072i
\(670\) −2.16965 1.25265i −0.0838208 0.0483940i
\(671\) 31.0446i 1.19846i
\(672\) 0 0
\(673\) −9.48380 16.4264i −0.365574 0.633192i 0.623294 0.781987i \(-0.285794\pi\)
−0.988868 + 0.148795i \(0.952461\pi\)
\(674\) −18.4194 + 10.6344i −0.709487 + 0.409623i
\(675\) 25.9769 0.999851
\(676\) −11.5824 5.90328i −0.445476 0.227049i
\(677\) −16.7713 −0.644574 −0.322287 0.946642i \(-0.604452\pi\)
−0.322287 + 0.946642i \(0.604452\pi\)
\(678\) −6.38467 + 3.68619i −0.245202 + 0.141567i
\(679\) 0 0
\(680\) 0.226159 0.391718i 0.00867279 0.0150217i
\(681\) 6.92487i 0.265362i
\(682\) 26.1361 + 15.0897i 1.00080 + 0.577813i
\(683\) 6.44719 + 3.72228i 0.246695 + 0.142429i 0.618250 0.785982i \(-0.287842\pi\)
−0.371555 + 0.928411i \(0.621175\pi\)
\(684\) 7.51366i 0.287292i
\(685\) 3.34045 5.78583i 0.127632 0.221065i
\(686\) 0 0
\(687\) −19.4500 + 11.2295i −0.742063 + 0.428431i
\(688\) 10.4232 0.397383
\(689\) 15.8887 16.7412i 0.605311 0.637787i
\(690\) −5.84062 −0.222349
\(691\) −34.9257 + 20.1643i −1.32863 + 0.767088i −0.985089 0.172048i \(-0.944962\pi\)
−0.343546 + 0.939136i \(0.611628\pi\)
\(692\) 9.75761 + 16.9007i 0.370929 + 0.642467i
\(693\) 0 0
\(694\) 13.9059i 0.527860i
\(695\) −0.0349089 0.0201546i −0.00132417 0.000764509i
\(696\) 8.84751 + 5.10811i 0.335364 + 0.193623i
\(697\) 3.78058i 0.143200i
\(698\) 3.41927 5.92236i 0.129421 0.224165i
\(699\) −3.68409 6.38104i −0.139345 0.241353i
\(700\) 0 0
\(701\) 1.32063 0.0498794 0.0249397 0.999689i \(-0.492061\pi\)
0.0249397 + 0.999689i \(0.492061\pi\)
\(702\) 4.76234 19.8313i 0.179743 0.748483i
\(703\) 15.4608 0.583114
\(704\) 3.93617 2.27255i 0.148350 0.0856499i
\(705\) −0.872714 1.51158i −0.0328683 0.0569296i
\(706\) −6.99785 + 12.1206i −0.263367 + 0.456166i
\(707\) 0 0
\(708\) −4.04239 2.33387i −0.151922 0.0877123i
\(709\) −25.0311 14.4517i −0.940063 0.542746i −0.0500830 0.998745i \(-0.515949\pi\)
−0.889980 + 0.455999i \(0.849282\pi\)
\(710\) 6.72215i 0.252278i
\(711\) −5.60927 + 9.71555i −0.210364 + 0.364361i
\(712\) 2.76664 + 4.79196i 0.103684 + 0.179586i
\(713\) 37.4093 21.5983i 1.40099 0.808861i
\(714\) 0 0
\(715\) 10.1740 + 2.44322i 0.380487 + 0.0913712i
\(716\) 16.1516 0.603615
\(717\) −28.5497 + 16.4832i −1.06621 + 0.615577i
\(718\) −0.677638 1.17370i −0.0252892 0.0438022i
\(719\) −15.7289 + 27.2433i −0.586590 + 1.01600i 0.408086 + 0.912944i \(0.366197\pi\)
−0.994675 + 0.103059i \(0.967137\pi\)
\(720\) 0.653052i 0.0243378i
\(721\) 0 0
\(722\) −30.2806 17.4825i −1.12693 0.650632i
\(723\) 15.5462i 0.578168i
\(724\) −0.140933 + 0.244102i −0.00523772 + 0.00907199i
\(725\) −16.6828 28.8955i −0.619585 1.07315i
\(726\) −11.7608 + 6.79012i −0.436485 + 0.252005i
\(727\) −15.8625 −0.588306 −0.294153 0.955758i \(-0.595038\pi\)
−0.294153 + 0.955758i \(0.595038\pi\)
\(728\) 0 0
\(729\) 28.8584 1.06883
\(730\) 3.54575 2.04714i 0.131234 0.0757680i
\(731\) −3.69202 6.39476i −0.136554 0.236519i
\(732\) 4.80216 8.31758i 0.177493 0.307427i
\(733\) 34.7482i 1.28345i −0.766933 0.641727i \(-0.778218\pi\)
0.766933 0.641727i \(-0.221782\pi\)
\(734\) 10.2702 + 5.92951i 0.379081 + 0.218862i
\(735\) 0 0
\(736\) 6.50552i 0.239797i
\(737\) −8.91701 + 15.4447i −0.328462 + 0.568913i
\(738\) −2.72919 4.72709i −0.100463 0.174007i
\(739\) 21.7681 12.5678i 0.800753 0.462315i −0.0429812 0.999076i \(-0.513686\pi\)
0.843735 + 0.536761i \(0.180352\pi\)
\(740\) −1.34378 −0.0493983
\(741\) 27.0140 + 25.6385i 0.992385 + 0.941853i
\(742\) 0 0
\(743\) −23.3693 + 13.4923i −0.857336 + 0.494983i −0.863119 0.505000i \(-0.831492\pi\)
0.00578361 + 0.999983i \(0.498159\pi\)
\(744\) −4.66832 8.08577i −0.171149 0.296439i
\(745\) −2.83567 + 4.91153i −0.103891 + 0.179944i
\(746\) 38.1440i 1.39655i
\(747\) −2.13501 1.23265i −0.0781159 0.0451003i
\(748\) −2.78846 1.60992i −0.101956 0.0588645i
\(749\) 0 0
\(750\) 4.30597 7.45816i 0.157232 0.272333i
\(751\) −8.27299 14.3292i −0.301886 0.522881i 0.674678 0.738113i \(-0.264283\pi\)
−0.976563 + 0.215232i \(0.930949\pi\)
\(752\) 1.68367 0.972065i 0.0613970 0.0354475i
\(753\) −36.5305 −1.33125
\(754\) −25.1179 + 7.43859i −0.914739 + 0.270898i
\(755\) 8.44757 0.307439
\(756\) 0 0
\(757\) −21.1295 36.5974i −0.767965 1.33015i −0.938665 0.344832i \(-0.887936\pi\)
0.170699 0.985323i \(-0.445397\pi\)
\(758\) 15.8310 27.4201i 0.575009 0.995945i
\(759\) 41.5767i 1.50914i
\(760\) 4.06200 + 2.34519i 0.147344 + 0.0850691i
\(761\) −19.6009 11.3166i −0.710531 0.410225i 0.100726 0.994914i \(-0.467883\pi\)
−0.811258 + 0.584689i \(0.801217\pi\)
\(762\) 1.03186i 0.0373805i
\(763\) 0 0
\(764\) 6.21334 + 10.7618i 0.224791 + 0.389349i
\(765\) −0.400654 + 0.231317i −0.0144857 + 0.00836330i
\(766\) −14.6582 −0.529621
\(767\) 11.4762 3.39866i 0.414383 0.122718i
\(768\) −1.40613 −0.0507392
\(769\) −38.9093 + 22.4643i −1.40311 + 0.810084i −0.994710 0.102721i \(-0.967245\pi\)
−0.408396 + 0.912805i \(0.633912\pi\)
\(770\) 0 0
\(771\) −1.24678 + 2.15949i −0.0449017 + 0.0777721i
\(772\) 11.6402i 0.418940i
\(773\) −44.7057 25.8108i −1.60795 0.928351i −0.989828 0.142270i \(-0.954560\pi\)
−0.618124 0.786081i \(-0.712107\pi\)
\(774\) −9.23270 5.33050i −0.331863 0.191601i
\(775\) 30.4930i 1.09534i
\(776\) −4.59646 + 7.96131i −0.165003 + 0.285794i
\(777\) 0 0
\(778\) −14.2596 + 8.23276i −0.511230 + 0.295159i
\(779\) 39.2034 1.40461
\(780\) −2.34793 2.22838i −0.0840695 0.0797886i
\(781\) 47.8519 1.71227
\(782\) −3.99120 + 2.30432i −0.142725 + 0.0824023i
\(783\) −20.5490 35.5919i −0.734361 1.27195i
\(784\) 0 0
\(785\) 1.90507i 0.0679949i
\(786\) 24.1979 + 13.9706i 0.863109 + 0.498316i
\(787\) 8.71313 + 5.03053i 0.310589 + 0.179319i 0.647190 0.762329i \(-0.275944\pi\)
−0.336601 + 0.941647i \(0.609277\pi\)
\(788\) 5.30829i 0.189100i
\(789\) 3.95836 6.85607i 0.140921 0.244083i
\(790\) 3.50158 + 6.06491i 0.124581 + 0.215780i
\(791\) 0 0
\(792\) −4.64877 −0.165187
\(793\) 6.99305 + 23.6134i 0.248331 + 0.838537i
\(794\) 16.3001 0.578469
\(795\) 4.97719 2.87358i 0.176523 0.101915i
\(796\) −6.87462 11.9072i −0.243664 0.422039i
\(797\) 17.7635 30.7672i 0.629214 1.08983i −0.358495 0.933532i \(-0.616710\pi\)
0.987710 0.156300i \(-0.0499566\pi\)
\(798\) 0 0
\(799\) −1.19274 0.688630i −0.0421962 0.0243620i
\(800\) 3.97708 + 2.29617i 0.140611 + 0.0811818i
\(801\) 5.65950i 0.199968i
\(802\) −10.4248 + 18.0562i −0.368111 + 0.637587i
\(803\) −14.5726 25.2405i −0.514257 0.890718i
\(804\) 4.77816 2.75867i 0.168513 0.0972909i
\(805\) 0 0
\(806\) 23.2790 + 5.59028i 0.819966 + 0.196909i
\(807\) 0.939847 0.0330842
\(808\) −11.8732 + 6.85500i −0.417698 + 0.241158i
\(809\) 23.7244 + 41.0918i 0.834104 + 1.44471i 0.894758 + 0.446551i \(0.147348\pi\)
−0.0606541 + 0.998159i \(0.519319\pi\)
\(810\) 1.55964 2.70138i 0.0548003 0.0949168i
\(811\) 24.4360i 0.858063i 0.903289 + 0.429032i \(0.141145\pi\)
−0.903289 + 0.429032i \(0.858855\pi\)
\(812\) 0 0
\(813\) −25.3805 14.6535i −0.890134 0.513919i
\(814\) 9.56573i 0.335279i
\(815\) −3.16686 + 5.48516i −0.110930 + 0.192137i
\(816\) 0.498064 + 0.862672i 0.0174357 + 0.0301995i
\(817\) 66.3117 38.2851i 2.31995 1.33942i
\(818\) −1.20081 −0.0419854
\(819\) 0 0
\(820\) −3.40738 −0.118991
\(821\) −41.3331 + 23.8637i −1.44253 + 0.832848i −0.998018 0.0629230i \(-0.979958\pi\)
−0.444516 + 0.895771i \(0.646624\pi\)
\(822\) 7.35659 + 12.7420i 0.256590 + 0.444428i
\(823\) 8.53356 14.7806i 0.297461 0.515218i −0.678093 0.734976i \(-0.737193\pi\)
0.975554 + 0.219758i \(0.0705268\pi\)
\(824\) 10.8070i 0.376481i
\(825\) −25.4174 14.6748i −0.884921 0.510909i
\(826\) 0 0
\(827\) 4.18226i 0.145431i 0.997353 + 0.0727157i \(0.0231666\pi\)
−0.997353 + 0.0727157i \(0.976833\pi\)
\(828\) −3.32696 + 5.76246i −0.115620 + 0.200259i
\(829\) −3.34360 5.79129i −0.116128 0.201140i 0.802102 0.597187i \(-0.203715\pi\)
−0.918230 + 0.396047i \(0.870382\pi\)
\(830\) −1.33278 + 0.769479i −0.0462613 + 0.0267090i
\(831\) 10.7454 0.372753
\(832\) 2.48206 2.61522i 0.0860498 0.0906666i
\(833\) 0 0
\(834\) 0.0768789 0.0443861i 0.00266210 0.00153696i
\(835\) 3.83731 + 6.64642i 0.132796 + 0.230009i
\(836\) 16.6943 28.9155i 0.577386 1.00006i
\(837\) 37.5595i 1.29825i
\(838\) 16.0983 + 9.29434i 0.556105 + 0.321068i
\(839\) −37.8216 21.8363i −1.30575 0.753874i −0.324364 0.945932i \(-0.605150\pi\)
−0.981383 + 0.192059i \(0.938484\pi\)
\(840\) 0 0
\(841\) −11.8939 + 20.6008i −0.410133 + 0.710372i
\(842\) −10.9791 19.0163i −0.378363 0.655345i
\(843\) −5.08605 + 2.93643i −0.175173 + 0.101136i
\(844\) 7.82574 0.269373
\(845\) 8.28902 0.433399i 0.285151 0.0149094i
\(846\) −1.98848 −0.0683652
\(847\) 0 0
\(848\) 3.20071 + 5.54379i 0.109913 + 0.190375i
\(849\) −4.84906 + 8.39882i −0.166419 + 0.288247i
\(850\) 3.25330i 0.111587i
\(851\) 11.8574 + 6.84585i 0.406465 + 0.234673i
\(852\) −12.8207 7.40201i −0.439229 0.253589i
\(853\) 5.72664i 0.196076i −0.995183 0.0980382i \(-0.968743\pi\)
0.995183 0.0980382i \(-0.0312567\pi\)
\(854\) 0 0
\(855\) −2.39869 4.15465i −0.0820334 0.142086i
\(856\) 13.2705 7.66173i 0.453577 0.261873i
\(857\) 30.3635 1.03720 0.518599 0.855018i \(-0.326454\pi\)
0.518599 + 0.855018i \(0.326454\pi\)
\(858\) −15.8628 + 16.7138i −0.541546 + 0.570601i
\(859\) 26.4676 0.903062 0.451531 0.892255i \(-0.350878\pi\)
0.451531 + 0.892255i \(0.350878\pi\)
\(860\) −5.76350 + 3.32756i −0.196534 + 0.113469i
\(861\) 0 0
\(862\) −13.7658 + 23.8430i −0.468864 + 0.812096i
\(863\) 17.8703i 0.608311i −0.952622 0.304156i \(-0.901626\pi\)
0.952622 0.304156i \(-0.0983743\pi\)
\(864\) 4.89874 + 2.82829i 0.166659 + 0.0962203i
\(865\) −10.7909 6.23011i −0.366901 0.211830i
\(866\) 32.9334i 1.11912i
\(867\) −11.5992 + 20.0905i −0.393931 + 0.682308i
\(868\) 0 0
\(869\) 43.1733 24.9261i 1.46455 0.845560i
\(870\) −6.52294 −0.221148
\(871\) −3.30349 + 13.7563i −0.111934 + 0.466116i
\(872\) 1.77368 0.0600643
\(873\) 8.14291 4.70131i 0.275596 0.159115i
\(874\) −23.8951 41.3875i −0.808263 1.39995i
\(875\) 0 0
\(876\) 9.01672i 0.304647i
\(877\) −22.4495 12.9612i −0.758065 0.437669i 0.0705353 0.997509i \(-0.477529\pi\)
−0.828601 + 0.559840i \(0.810863\pi\)
\(878\) −11.0134 6.35859i −0.371684 0.214592i
\(879\) 21.7341i 0.733074i
\(880\) −1.45099 + 2.51320i −0.0489130 + 0.0847198i
\(881\) 7.54044 + 13.0604i 0.254044 + 0.440017i 0.964635 0.263588i \(-0.0849059\pi\)
−0.710592 + 0.703605i \(0.751573\pi\)
\(882\) 0 0
\(883\) −30.6339 −1.03091 −0.515457 0.856916i \(-0.672378\pi\)
−0.515457 + 0.856916i \(0.672378\pi\)
\(884\) −2.48363 0.596427i −0.0835336 0.0200600i
\(885\) 2.98030 0.100182
\(886\) 25.1034 14.4934i 0.843364 0.486916i
\(887\) 7.73363 + 13.3950i 0.259670 + 0.449761i 0.966153 0.257968i \(-0.0830529\pi\)
−0.706484 + 0.707729i \(0.749720\pi\)
\(888\) 1.47968 2.56289i 0.0496550 0.0860049i
\(889\) 0 0
\(890\) −3.05961 1.76647i −0.102558 0.0592120i
\(891\) −19.2299 11.1024i −0.644225 0.371943i
\(892\) 19.5376i 0.654169i
\(893\) 7.14087 12.3684i 0.238960 0.413891i
\(894\) −6.24493 10.8165i −0.208862 0.361759i
\(895\) −8.93099 + 5.15631i −0.298530 + 0.172356i
\(896\) 0 0
\(897\) 9.36549 + 31.6244i 0.312705 + 1.05591i
\(898\) 0.0278393 0.000929010
\(899\) 41.7795 24.1214i 1.39343 0.804495i
\(900\) −2.34854 4.06780i −0.0782848 0.135593i
\(901\) 2.26745 3.92733i 0.0755396 0.130838i
\(902\) 24.2555i 0.807621i
\(903\) 0 0
\(904\) 4.54061 + 2.62152i 0.151019 + 0.0871906i
\(905\) 0.179967i 0.00598232i
\(906\) −9.30194 + 16.1114i −0.309036 + 0.535266i
\(907\) 23.7055 + 41.0591i 0.787127 + 1.36334i 0.927720 + 0.373277i \(0.121766\pi\)
−0.140593 + 0.990068i \(0.544901\pi\)
\(908\) −4.26499 + 2.46239i −0.141539 + 0.0817174i
\(909\) 14.0227 0.465105
\(910\) 0 0
\(911\) 36.5790 1.21192 0.605958 0.795496i \(-0.292790\pi\)
0.605958 + 0.795496i \(0.292790\pi\)
\(912\) −8.94563 + 5.16476i −0.296219 + 0.171022i
\(913\) 5.47756 + 9.48742i 0.181281 + 0.313988i
\(914\) −15.3931 + 26.6615i −0.509157 + 0.881886i
\(915\) 6.13224i 0.202726i
\(916\) 13.8323 + 7.98610i 0.457033 + 0.263868i
\(917\) 0 0
\(918\) 4.00723i 0.132258i
\(919\) −3.53379 + 6.12071i −0.116569 + 0.201904i −0.918406 0.395639i \(-0.870523\pi\)
0.801837 + 0.597543i \(0.203856\pi\)
\(920\) 2.07685 + 3.59721i 0.0684717 + 0.118596i
\(921\) −30.5130 + 17.6167i −1.00544 + 0.580490i
\(922\) 37.9670 1.25038
\(923\) 36.3975 10.7790i 1.19804 0.354796i
\(924\) 0 0
\(925\) −8.37026 + 4.83257i −0.275213 + 0.158894i
\(926\) 6.69846 + 11.6021i 0.220125 + 0.381268i
\(927\) 5.52678 9.57267i 0.181523 0.314408i
\(928\) 7.26552i 0.238502i
\(929\) −41.4922 23.9555i −1.36131 0.785955i −0.371515 0.928427i \(-0.621162\pi\)
−0.989799 + 0.142472i \(0.954495\pi\)
\(930\) 5.16266 + 2.98067i 0.169290 + 0.0977399i
\(931\) 0 0
\(932\) −2.62003 + 4.53803i −0.0858220 + 0.148648i
\(933\) −1.50846 2.61272i −0.0493847 0.0855367i
\(934\) 22.4431 12.9575i 0.734360 0.423983i
\(935\) 2.05583 0.0672327
\(936\) −3.53600 + 1.04718i −0.115578 + 0.0342280i
\(937\) 7.37114 0.240805 0.120402 0.992725i \(-0.461582\pi\)
0.120402 + 0.992725i \(0.461582\pi\)
\(938\) 0 0
\(939\) 20.9139 + 36.2240i 0.682500 + 1.18212i
\(940\) −0.620651 + 1.07500i −0.0202434 + 0.0350626i
\(941\) 0.767551i 0.0250214i 0.999922 + 0.0125107i \(0.00398239\pi\)
−0.999922 + 0.0125107i \(0.996018\pi\)
\(942\) 3.63340 + 2.09774i 0.118383 + 0.0683482i
\(943\) 30.0664 + 17.3588i 0.979095 + 0.565281i
\(944\) 3.31958i 0.108043i
\(945\) 0 0
\(946\) 23.6873 + 41.0277i 0.770142 + 1.33392i
\(947\) 27.8306 16.0680i 0.904372 0.522139i 0.0257556 0.999668i \(-0.491801\pi\)
0.878616 + 0.477529i \(0.158467\pi\)
\(948\) −15.4229 −0.500912
\(949\) −16.7700 15.9161i −0.544378 0.516658i
\(950\) 33.7357 1.09453
\(951\) −7.49590 + 4.32776i −0.243071 + 0.140337i
\(952\) 0 0
\(953\) −9.10361 + 15.7679i −0.294895 + 0.510773i −0.974960 0.222378i \(-0.928618\pi\)
0.680065 + 0.733151i \(0.261951\pi\)
\(954\) 6.54744i 0.211981i
\(955\) −6.87129 3.96714i −0.222350 0.128374i
\(956\) 20.3038 + 11.7224i 0.656673 + 0.379130i
\(957\) 46.4338i 1.50099i
\(958\) 0.126461 0.219038i 0.00408578 0.00707678i
\(959\) 0 0
\(960\) 0.777512 0.448897i 0.0250941 0.0144881i
\(961\) −13.0893 −0.422235
\(962\) 2.15476 + 7.27598i 0.0694723 + 0.234587i
\(963\) −15.6730 −0.505055
\(964\) −9.57480 + 5.52801i −0.308384 + 0.178045i
\(965\) −3.71606 6.43641i −0.119624 0.207195i
\(966\) 0 0
\(967\) 20.3286i 0.653724i −0.945072 0.326862i \(-0.894009\pi\)
0.945072 0.326862i \(-0.105991\pi\)
\(968\) 8.36399 + 4.82895i 0.268829 + 0.155208i
\(969\) 6.33726 + 3.65882i 0.203582 + 0.117538i
\(970\) 5.86957i 0.188461i
\(971\) 22.3535 38.7173i 0.717356 1.24250i −0.244687 0.969602i \(-0.578685\pi\)
0.962044 0.272896i \(-0.0879814\pi\)
\(972\) −5.05010 8.74704i −0.161982 0.280561i
\(973\) 0 0
\(974\) 30.3567 0.972691
\(975\) −22.6389 5.43656i −0.725024 0.174109i
\(976\) −6.83034 −0.218634
\(977\) 17.8956 10.3320i 0.572531 0.330551i −0.185629 0.982620i \(-0.559432\pi\)
0.758160 + 0.652069i \(0.226099\pi\)
\(978\) −6.97429 12.0798i −0.223013 0.386270i
\(979\) −12.5746 + 21.7799i −0.401887 + 0.696089i
\(980\) 0 0
\(981\) −1.57109 0.907069i −0.0501610 0.0289605i
\(982\) 11.6780 + 6.74228i 0.372659 + 0.215155i
\(983\) 56.0189i 1.78673i −0.449335 0.893363i \(-0.648339\pi\)
0.449335 0.893363i \(-0.351661\pi\)
\(984\) 3.75199 6.49864i 0.119609 0.207169i
\(985\) 1.69464 + 2.93520i 0.0539957 + 0.0935234i
\(986\) −4.45746 + 2.57352i −0.141955 + 0.0819575i
\(987\) 0 0
\(988\) 6.18476 25.7545i 0.196764 0.819360i
\(989\) 67.8087 2.15619
\(990\) 2.57052 1.48409i 0.0816966 0.0471676i
\(991\) −2.57214 4.45508i −0.0817068 0.141520i 0.822276 0.569088i \(-0.192704\pi\)
−0.903983 + 0.427568i \(0.859370\pi\)
\(992\) −3.31999 + 5.75039i −0.105410 + 0.182575i
\(993\) 40.3076i 1.27912i
\(994\) 0 0
\(995\) 7.60259 + 4.38936i 0.241018 + 0.139152i
\(996\) 3.38921i 0.107391i
\(997\) 11.2980 19.5687i 0.357812 0.619748i −0.629783 0.776771i \(-0.716856\pi\)
0.987595 + 0.157023i \(0.0501896\pi\)
\(998\) −1.01055 1.75032i −0.0319883 0.0554054i
\(999\) −10.3100 + 5.95249i −0.326194 + 0.188328i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1274.2.m.f.491.4 20
7.2 even 3 1274.2.v.h.361.7 20
7.3 odd 6 182.2.o.a.23.2 20
7.4 even 3 1274.2.o.h.569.4 20
7.5 odd 6 182.2.v.a.179.9 yes 20
7.6 odd 2 1274.2.m.g.491.2 20
13.4 even 6 inner 1274.2.m.f.589.4 20
21.5 even 6 1638.2.cr.c.361.3 20
21.17 even 6 1638.2.dt.c.1297.8 20
91.4 even 6 1274.2.v.h.667.7 20
91.17 odd 6 182.2.v.a.121.9 yes 20
91.30 even 6 1274.2.o.h.459.9 20
91.69 odd 6 1274.2.m.g.589.2 20
91.82 odd 6 182.2.o.a.95.7 yes 20
273.17 even 6 1638.2.cr.c.667.3 20
273.173 even 6 1638.2.dt.c.1369.3 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
182.2.o.a.23.2 20 7.3 odd 6
182.2.o.a.95.7 yes 20 91.82 odd 6
182.2.v.a.121.9 yes 20 91.17 odd 6
182.2.v.a.179.9 yes 20 7.5 odd 6
1274.2.m.f.491.4 20 1.1 even 1 trivial
1274.2.m.f.589.4 20 13.4 even 6 inner
1274.2.m.g.491.2 20 7.6 odd 2
1274.2.m.g.589.2 20 91.69 odd 6
1274.2.o.h.459.9 20 91.30 even 6
1274.2.o.h.569.4 20 7.4 even 3
1274.2.v.h.361.7 20 7.2 even 3
1274.2.v.h.667.7 20 91.4 even 6
1638.2.cr.c.361.3 20 21.5 even 6
1638.2.cr.c.667.3 20 273.17 even 6
1638.2.dt.c.1297.8 20 21.17 even 6
1638.2.dt.c.1369.3 20 273.173 even 6