Properties

Label 1638.2.dt.c.1369.3
Level $1638$
Weight $2$
Character 1638.1369
Analytic conductor $13.079$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1638,2,Mod(1297,1638)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1638, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1638.1297"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.dt (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,-20,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 46 x^{18} + 895 x^{16} + 9634 x^{14} + 62977 x^{12} + 257850 x^{10} + 656102 x^{8} + \cdots + 32041 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 182)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1369.3
Root \(-1.40613i\) of defining polynomial
Character \(\chi\) \(=\) 1638.1369
Dual form 1638.2.dt.c.1297.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000 q^{4} +(-0.552947 + 0.319244i) q^{5} +(2.23753 + 1.41189i) q^{7} +1.00000i q^{8} +(0.319244 + 0.552947i) q^{10} +(-3.93617 + 2.27255i) q^{11} +(2.48206 + 2.61522i) q^{13} +(1.41189 - 2.23753i) q^{14} +1.00000 q^{16} +0.708420 q^{17} +(-6.36190 - 3.67305i) q^{19} +(0.552947 - 0.319244i) q^{20} +(2.27255 + 3.93617i) q^{22} -6.50552 q^{23} +(-2.29617 + 3.97708i) q^{25} +(2.61522 - 2.48206i) q^{26} +(-2.23753 - 1.41189i) q^{28} +(3.63276 - 6.29212i) q^{29} +(-5.75039 - 3.31999i) q^{31} -1.00000i q^{32} -0.708420i q^{34} +(-1.68797 - 0.0663824i) q^{35} +2.10463i q^{37} +(-3.67305 + 6.36190i) q^{38} +(-0.319244 - 0.552947i) q^{40} +(-4.62167 - 2.66832i) q^{41} +(-5.21162 - 9.02680i) q^{43} +(3.93617 - 2.27255i) q^{44} +6.50552i q^{46} +(-1.68367 + 0.972065i) q^{47} +(3.01312 + 6.31832i) q^{49} +(3.97708 + 2.29617i) q^{50} +(-2.48206 - 2.61522i) q^{52} +(-3.20071 + 5.54379i) q^{53} +(1.45099 - 2.51320i) q^{55} +(-1.41189 + 2.23753i) q^{56} +(-6.29212 - 3.63276i) q^{58} -3.31958i q^{59} +(-3.41517 + 5.91525i) q^{61} +(-3.31999 + 5.75039i) q^{62} -1.00000 q^{64} +(-2.20734 - 0.653698i) q^{65} +(-3.39810 + 1.96190i) q^{67} -0.708420 q^{68} +(-0.0663824 + 1.68797i) q^{70} +(9.11772 - 5.26412i) q^{71} +(-5.55335 - 3.20623i) q^{73} +2.10463 q^{74} +(6.36190 + 3.67305i) q^{76} +(-12.0159 - 0.472545i) q^{77} +(5.48418 + 9.49887i) q^{79} +(-0.552947 + 0.319244i) q^{80} +(-2.66832 + 4.62167i) q^{82} +2.41032i q^{83} +(-0.391718 + 0.226159i) q^{85} +(-9.02680 + 5.21162i) q^{86} +(-2.27255 - 3.93617i) q^{88} -5.53328i q^{89} +(1.86127 + 9.35605i) q^{91} +6.50552 q^{92} +(0.972065 + 1.68367i) q^{94} +4.69039 q^{95} +(-7.96131 + 4.59646i) q^{97} +(6.31832 - 3.01312i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 20 q^{4} + 2 q^{7} - 4 q^{10} + 6 q^{11} + 6 q^{13} + 4 q^{14} + 20 q^{16} - 20 q^{17} - 24 q^{19} + 2 q^{22} + 18 q^{25} - 6 q^{26} - 2 q^{28} - 2 q^{29} - 6 q^{31} + 14 q^{38} + 4 q^{40} - 18 q^{41}+ \cdots - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1638\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(703\) \(911\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) −0.552947 + 0.319244i −0.247285 + 0.142770i −0.618521 0.785769i \(-0.712268\pi\)
0.371235 + 0.928539i \(0.378934\pi\)
\(6\) 0 0
\(7\) 2.23753 + 1.41189i 0.845708 + 0.533645i
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 0.319244 + 0.552947i 0.100954 + 0.174857i
\(11\) −3.93617 + 2.27255i −1.18680 + 0.685199i −0.957578 0.288175i \(-0.906952\pi\)
−0.229222 + 0.973374i \(0.573618\pi\)
\(12\) 0 0
\(13\) 2.48206 + 2.61522i 0.688399 + 0.725333i
\(14\) 1.41189 2.23753i 0.377344 0.598006i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 0.708420 0.171817 0.0859085 0.996303i \(-0.472621\pi\)
0.0859085 + 0.996303i \(0.472621\pi\)
\(18\) 0 0
\(19\) −6.36190 3.67305i −1.45952 0.842654i −0.460533 0.887643i \(-0.652342\pi\)
−0.998988 + 0.0449884i \(0.985675\pi\)
\(20\) 0.552947 0.319244i 0.123643 0.0713851i
\(21\) 0 0
\(22\) 2.27255 + 3.93617i 0.484509 + 0.839194i
\(23\) −6.50552 −1.35650 −0.678248 0.734833i \(-0.737260\pi\)
−0.678248 + 0.734833i \(0.737260\pi\)
\(24\) 0 0
\(25\) −2.29617 + 3.97708i −0.459233 + 0.795415i
\(26\) 2.61522 2.48206i 0.512888 0.486771i
\(27\) 0 0
\(28\) −2.23753 1.41189i −0.422854 0.266823i
\(29\) 3.63276 6.29212i 0.674586 1.16842i −0.302003 0.953307i \(-0.597655\pi\)
0.976590 0.215111i \(-0.0690113\pi\)
\(30\) 0 0
\(31\) −5.75039 3.31999i −1.03280 0.596288i −0.115015 0.993364i \(-0.536692\pi\)
−0.917786 + 0.397076i \(0.870025\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 0.708420i 0.121493i
\(35\) −1.68797 0.0663824i −0.285320 0.0112207i
\(36\) 0 0
\(37\) 2.10463i 0.345998i 0.984922 + 0.172999i \(0.0553458\pi\)
−0.984922 + 0.172999i \(0.944654\pi\)
\(38\) −3.67305 + 6.36190i −0.595847 + 1.03204i
\(39\) 0 0
\(40\) −0.319244 0.552947i −0.0504769 0.0874285i
\(41\) −4.62167 2.66832i −0.721783 0.416722i 0.0936256 0.995607i \(-0.470154\pi\)
−0.815409 + 0.578886i \(0.803488\pi\)
\(42\) 0 0
\(43\) −5.21162 9.02680i −0.794765 1.37657i −0.922988 0.384828i \(-0.874261\pi\)
0.128223 0.991745i \(-0.459073\pi\)
\(44\) 3.93617 2.27255i 0.593400 0.342600i
\(45\) 0 0
\(46\) 6.50552i 0.959187i
\(47\) −1.68367 + 0.972065i −0.245588 + 0.141790i −0.617742 0.786381i \(-0.711953\pi\)
0.372154 + 0.928171i \(0.378619\pi\)
\(48\) 0 0
\(49\) 3.01312 + 6.31832i 0.430445 + 0.902617i
\(50\) 3.97708 + 2.29617i 0.562444 + 0.324727i
\(51\) 0 0
\(52\) −2.48206 2.61522i −0.344199 0.362666i
\(53\) −3.20071 + 5.54379i −0.439652 + 0.761499i −0.997662 0.0683348i \(-0.978231\pi\)
0.558011 + 0.829834i \(0.311565\pi\)
\(54\) 0 0
\(55\) 1.45099 2.51320i 0.195652 0.338879i
\(56\) −1.41189 + 2.23753i −0.188672 + 0.299003i
\(57\) 0 0
\(58\) −6.29212 3.63276i −0.826196 0.477005i
\(59\) 3.31958i 0.432172i −0.976374 0.216086i \(-0.930671\pi\)
0.976374 0.216086i \(-0.0693292\pi\)
\(60\) 0 0
\(61\) −3.41517 + 5.91525i −0.437268 + 0.757370i −0.997478 0.0709807i \(-0.977387\pi\)
0.560210 + 0.828351i \(0.310720\pi\)
\(62\) −3.31999 + 5.75039i −0.421639 + 0.730300i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −2.20734 0.653698i −0.273787 0.0810812i
\(66\) 0 0
\(67\) −3.39810 + 1.96190i −0.415144 + 0.239684i −0.692998 0.720940i \(-0.743710\pi\)
0.277853 + 0.960624i \(0.410377\pi\)
\(68\) −0.708420 −0.0859085
\(69\) 0 0
\(70\) −0.0663824 + 1.68797i −0.00793421 + 0.201752i
\(71\) 9.11772 5.26412i 1.08207 0.624736i 0.150619 0.988592i \(-0.451873\pi\)
0.931455 + 0.363856i \(0.118540\pi\)
\(72\) 0 0
\(73\) −5.55335 3.20623i −0.649971 0.375261i 0.138474 0.990366i \(-0.455780\pi\)
−0.788445 + 0.615105i \(0.789113\pi\)
\(74\) 2.10463 0.244658
\(75\) 0 0
\(76\) 6.36190 + 3.67305i 0.729760 + 0.421327i
\(77\) −12.0159 0.472545i −1.36934 0.0538515i
\(78\) 0 0
\(79\) 5.48418 + 9.49887i 0.617018 + 1.06871i 0.990027 + 0.140879i \(0.0449928\pi\)
−0.373009 + 0.927828i \(0.621674\pi\)
\(80\) −0.552947 + 0.319244i −0.0618213 + 0.0356925i
\(81\) 0 0
\(82\) −2.66832 + 4.62167i −0.294667 + 0.510378i
\(83\) 2.41032i 0.264567i 0.991212 + 0.132283i \(0.0422309\pi\)
−0.991212 + 0.132283i \(0.957769\pi\)
\(84\) 0 0
\(85\) −0.391718 + 0.226159i −0.0424878 + 0.0245304i
\(86\) −9.02680 + 5.21162i −0.973384 + 0.561984i
\(87\) 0 0
\(88\) −2.27255 3.93617i −0.242254 0.419597i
\(89\) 5.53328i 0.586526i −0.956032 0.293263i \(-0.905259\pi\)
0.956032 0.293263i \(-0.0947412\pi\)
\(90\) 0 0
\(91\) 1.86127 + 9.35605i 0.195114 + 0.980781i
\(92\) 6.50552 0.678248
\(93\) 0 0
\(94\) 0.972065 + 1.68367i 0.100261 + 0.173657i
\(95\) 4.69039 0.481224
\(96\) 0 0
\(97\) −7.96131 + 4.59646i −0.808348 + 0.466700i −0.846382 0.532576i \(-0.821224\pi\)
0.0380337 + 0.999276i \(0.487891\pi\)
\(98\) 6.31832 3.01312i 0.638246 0.304371i
\(99\) 0 0
\(100\) 2.29617 3.97708i 0.229617 0.397708i
\(101\) 6.85500 + 11.8732i 0.682098 + 1.18143i 0.974339 + 0.225084i \(0.0722657\pi\)
−0.292241 + 0.956345i \(0.594401\pi\)
\(102\) 0 0
\(103\) 5.40352 + 9.35918i 0.532425 + 0.922187i 0.999283 + 0.0378550i \(0.0120525\pi\)
−0.466858 + 0.884332i \(0.654614\pi\)
\(104\) −2.61522 + 2.48206i −0.256444 + 0.243386i
\(105\) 0 0
\(106\) 5.54379 + 3.20071i 0.538461 + 0.310881i
\(107\) −15.3235 −1.48137 −0.740687 0.671850i \(-0.765500\pi\)
−0.740687 + 0.671850i \(0.765500\pi\)
\(108\) 0 0
\(109\) −1.53605 0.886839i −0.147127 0.0849438i 0.424629 0.905367i \(-0.360404\pi\)
−0.571756 + 0.820423i \(0.693738\pi\)
\(110\) −2.51320 1.45099i −0.239624 0.138347i
\(111\) 0 0
\(112\) 2.23753 + 1.41189i 0.211427 + 0.133411i
\(113\) −2.62152 4.54061i −0.246612 0.427145i 0.715971 0.698130i \(-0.245984\pi\)
−0.962584 + 0.270985i \(0.912651\pi\)
\(114\) 0 0
\(115\) 3.59721 2.07685i 0.335441 0.193667i
\(116\) −3.63276 + 6.29212i −0.337293 + 0.584209i
\(117\) 0 0
\(118\) −3.31958 −0.305592
\(119\) 1.58511 + 1.00021i 0.145307 + 0.0916894i
\(120\) 0 0
\(121\) 4.82895 8.36399i 0.438996 0.760363i
\(122\) 5.91525 + 3.41517i 0.535541 + 0.309195i
\(123\) 0 0
\(124\) 5.75039 + 3.31999i 0.516400 + 0.298144i
\(125\) 6.12459i 0.547800i
\(126\) 0 0
\(127\) 0.366918 0.635520i 0.0325587 0.0563933i −0.849287 0.527932i \(-0.822968\pi\)
0.881846 + 0.471538i \(0.156301\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) −0.653698 + 2.20734i −0.0573331 + 0.193596i
\(131\) 9.93556 + 17.2089i 0.868074 + 1.50355i 0.863962 + 0.503556i \(0.167975\pi\)
0.00411136 + 0.999992i \(0.498691\pi\)
\(132\) 0 0
\(133\) −9.04902 17.2009i −0.784650 1.49151i
\(134\) 1.96190 + 3.39810i 0.169482 + 0.293551i
\(135\) 0 0
\(136\) 0.708420i 0.0607465i
\(137\) 10.4636i 0.893968i 0.894542 + 0.446984i \(0.147502\pi\)
−0.894542 + 0.446984i \(0.852498\pi\)
\(138\) 0 0
\(139\) 0.0315662 + 0.0546743i 0.00267741 + 0.00463741i 0.867361 0.497680i \(-0.165814\pi\)
−0.864684 + 0.502317i \(0.832481\pi\)
\(140\) 1.68797 + 0.0663824i 0.142660 + 0.00561033i
\(141\) 0 0
\(142\) −5.26412 9.11772i −0.441755 0.765142i
\(143\) −15.7130 4.65337i −1.31399 0.389134i
\(144\) 0 0
\(145\) 4.63894i 0.385243i
\(146\) −3.20623 + 5.55335i −0.265349 + 0.459599i
\(147\) 0 0
\(148\) 2.10463i 0.172999i
\(149\) 7.69244 + 4.44123i 0.630189 + 0.363840i 0.780825 0.624749i \(-0.214799\pi\)
−0.150636 + 0.988589i \(0.548132\pi\)
\(150\) 0 0
\(151\) −11.4580 6.61530i −0.932441 0.538345i −0.0448584 0.998993i \(-0.514284\pi\)
−0.887583 + 0.460648i \(0.847617\pi\)
\(152\) 3.67305 6.36190i 0.297923 0.516018i
\(153\) 0 0
\(154\) −0.472545 + 12.0159i −0.0380788 + 0.968269i
\(155\) 4.23954 0.340528
\(156\) 0 0
\(157\) −1.49186 + 2.58398i −0.119063 + 0.206224i −0.919397 0.393331i \(-0.871323\pi\)
0.800333 + 0.599555i \(0.204656\pi\)
\(158\) 9.49887 5.48418i 0.755690 0.436298i
\(159\) 0 0
\(160\) 0.319244 + 0.552947i 0.0252384 + 0.0437143i
\(161\) −14.5563 9.18510i −1.14720 0.723887i
\(162\) 0 0
\(163\) −8.59086 4.95993i −0.672888 0.388492i 0.124282 0.992247i \(-0.460337\pi\)
−0.797170 + 0.603755i \(0.793671\pi\)
\(164\) 4.62167 + 2.66832i 0.360891 + 0.208361i
\(165\) 0 0
\(166\) 2.41032 0.187077
\(167\) 10.4096 + 6.01000i 0.805521 + 0.465068i 0.845398 0.534137i \(-0.179363\pi\)
−0.0398771 + 0.999205i \(0.512697\pi\)
\(168\) 0 0
\(169\) −0.678789 + 12.9823i −0.0522146 + 0.998636i
\(170\) 0.226159 + 0.391718i 0.0173456 + 0.0300434i
\(171\) 0 0
\(172\) 5.21162 + 9.02680i 0.397383 + 0.688287i
\(173\) −9.75761 + 16.9007i −0.741857 + 1.28493i 0.209792 + 0.977746i \(0.432721\pi\)
−0.951649 + 0.307188i \(0.900612\pi\)
\(174\) 0 0
\(175\) −10.7530 + 5.65690i −0.812847 + 0.427622i
\(176\) −3.93617 + 2.27255i −0.296700 + 0.171300i
\(177\) 0 0
\(178\) −5.53328 −0.414737
\(179\) −8.07581 13.9877i −0.603615 1.04549i −0.992269 0.124108i \(-0.960393\pi\)
0.388654 0.921384i \(-0.372940\pi\)
\(180\) 0 0
\(181\) 0.281865 0.0209509 0.0104754 0.999945i \(-0.496666\pi\)
0.0104754 + 0.999945i \(0.496666\pi\)
\(182\) 9.35605 1.86127i 0.693517 0.137967i
\(183\) 0 0
\(184\) 6.50552i 0.479594i
\(185\) −0.671889 1.16375i −0.0493983 0.0855603i
\(186\) 0 0
\(187\) −2.78846 + 1.60992i −0.203912 + 0.117729i
\(188\) 1.68367 0.972065i 0.122794 0.0708951i
\(189\) 0 0
\(190\) 4.69039i 0.340277i
\(191\) 6.21334 10.7618i 0.449581 0.778698i −0.548777 0.835969i \(-0.684907\pi\)
0.998359 + 0.0572709i \(0.0182399\pi\)
\(192\) 0 0
\(193\) 10.0807 5.82010i 0.725626 0.418940i −0.0911941 0.995833i \(-0.529068\pi\)
0.816820 + 0.576893i \(0.195735\pi\)
\(194\) 4.59646 + 7.96131i 0.330007 + 0.571589i
\(195\) 0 0
\(196\) −3.01312 6.31832i −0.215223 0.451308i
\(197\) −4.59712 2.65415i −0.327531 0.189100i 0.327213 0.944950i \(-0.393890\pi\)
−0.654744 + 0.755850i \(0.727224\pi\)
\(198\) 0 0
\(199\) 13.7492 0.974658 0.487329 0.873219i \(-0.337971\pi\)
0.487329 + 0.873219i \(0.337971\pi\)
\(200\) −3.97708 2.29617i −0.281222 0.162364i
\(201\) 0 0
\(202\) 11.8732 6.85500i 0.835396 0.482316i
\(203\) 17.0122 8.94977i 1.19402 0.628151i
\(204\) 0 0
\(205\) 3.40738 0.237982
\(206\) 9.35918 5.40352i 0.652085 0.376481i
\(207\) 0 0
\(208\) 2.48206 + 2.61522i 0.172100 + 0.181333i
\(209\) 33.3887 2.30954
\(210\) 0 0
\(211\) 3.91287 6.77729i 0.269373 0.466568i −0.699327 0.714802i \(-0.746517\pi\)
0.968700 + 0.248234i \(0.0798502\pi\)
\(212\) 3.20071 5.54379i 0.219826 0.380749i
\(213\) 0 0
\(214\) 15.3235i 1.04749i
\(215\) 5.76350 + 3.32756i 0.393067 + 0.226938i
\(216\) 0 0
\(217\) −8.17922 15.5475i −0.555242 1.05543i
\(218\) −0.886839 + 1.53605i −0.0600643 + 0.104034i
\(219\) 0 0
\(220\) −1.45099 + 2.51320i −0.0978260 + 0.169440i
\(221\) 1.75834 + 1.85268i 0.118279 + 0.124624i
\(222\) 0 0
\(223\) 16.9201 + 9.76882i 1.13305 + 0.654169i 0.944701 0.327933i \(-0.106352\pi\)
0.188353 + 0.982101i \(0.439685\pi\)
\(224\) 1.41189 2.23753i 0.0943361 0.149502i
\(225\) 0 0
\(226\) −4.54061 + 2.62152i −0.302037 + 0.174381i
\(227\) 4.92479i 0.326870i −0.986554 0.163435i \(-0.947743\pi\)
0.986554 0.163435i \(-0.0522574\pi\)
\(228\) 0 0
\(229\) 13.8323 7.98610i 0.914066 0.527736i 0.0323288 0.999477i \(-0.489708\pi\)
0.881737 + 0.471741i \(0.156374\pi\)
\(230\) −2.07685 3.59721i −0.136943 0.237193i
\(231\) 0 0
\(232\) 6.29212 + 3.63276i 0.413098 + 0.238502i
\(233\) −2.62003 4.53803i −0.171644 0.297296i 0.767351 0.641228i \(-0.221575\pi\)
−0.938995 + 0.343932i \(0.888241\pi\)
\(234\) 0 0
\(235\) 0.620651 1.07500i 0.0404868 0.0701252i
\(236\) 3.31958i 0.216086i
\(237\) 0 0
\(238\) 1.00021 1.58511i 0.0648342 0.102748i
\(239\) 23.4449i 1.51652i 0.651952 + 0.758261i \(0.273951\pi\)
−0.651952 + 0.758261i \(0.726049\pi\)
\(240\) 0 0
\(241\) 11.0560i 0.712181i 0.934451 + 0.356091i \(0.115891\pi\)
−0.934451 + 0.356091i \(0.884109\pi\)
\(242\) −8.36399 4.82895i −0.537658 0.310417i
\(243\) 0 0
\(244\) 3.41517 5.91525i 0.218634 0.378685i
\(245\) −3.68318 2.53177i −0.235310 0.161749i
\(246\) 0 0
\(247\) −6.18476 25.7545i −0.393527 1.63872i
\(248\) 3.31999 5.75039i 0.210819 0.365150i
\(249\) 0 0
\(250\) −6.12459 −0.387353
\(251\) −12.9898 22.4990i −0.819907 1.42012i −0.905750 0.423813i \(-0.860692\pi\)
0.0858425 0.996309i \(-0.472642\pi\)
\(252\) 0 0
\(253\) 25.6068 14.7841i 1.60989 0.929469i
\(254\) −0.635520 0.366918i −0.0398761 0.0230225i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −1.77336 −0.110619 −0.0553095 0.998469i \(-0.517615\pi\)
−0.0553095 + 0.998469i \(0.517615\pi\)
\(258\) 0 0
\(259\) −2.97151 + 4.70917i −0.184640 + 0.292614i
\(260\) 2.20734 + 0.653698i 0.136893 + 0.0405406i
\(261\) 0 0
\(262\) 17.2089 9.93556i 1.06317 0.613821i
\(263\) 2.81508 + 4.87586i 0.173585 + 0.300658i 0.939671 0.342080i \(-0.111131\pi\)
−0.766086 + 0.642739i \(0.777798\pi\)
\(264\) 0 0
\(265\) 4.08723i 0.251077i
\(266\) −17.2009 + 9.04902i −1.05465 + 0.554831i
\(267\) 0 0
\(268\) 3.39810 1.96190i 0.207572 0.119842i
\(269\) −0.668394 −0.0407527 −0.0203764 0.999792i \(-0.506486\pi\)
−0.0203764 + 0.999792i \(0.506486\pi\)
\(270\) 0 0
\(271\) 20.8423i 1.26608i −0.774119 0.633040i \(-0.781807\pi\)
0.774119 0.633040i \(-0.218193\pi\)
\(272\) 0.708420 0.0429543
\(273\) 0 0
\(274\) 10.4636 0.632131
\(275\) 20.8726i 1.25867i
\(276\) 0 0
\(277\) −7.64182 −0.459153 −0.229576 0.973291i \(-0.573734\pi\)
−0.229576 + 0.973291i \(0.573734\pi\)
\(278\) 0.0546743 0.0315662i 0.00327915 0.00189322i
\(279\) 0 0
\(280\) 0.0663824 1.68797i 0.00396710 0.100876i
\(281\) 4.17663i 0.249157i 0.992210 + 0.124578i \(0.0397578\pi\)
−0.992210 + 0.124578i \(0.960242\pi\)
\(282\) 0 0
\(283\) −3.44853 5.97302i −0.204994 0.355059i 0.745137 0.666911i \(-0.232384\pi\)
−0.950131 + 0.311852i \(0.899051\pi\)
\(284\) −9.11772 + 5.26412i −0.541037 + 0.312368i
\(285\) 0 0
\(286\) −4.65337 + 15.7130i −0.275159 + 0.929130i
\(287\) −6.57375 12.4958i −0.388036 0.737601i
\(288\) 0 0
\(289\) −16.4981 −0.970479
\(290\) 4.63894 0.272408
\(291\) 0 0
\(292\) 5.55335 + 3.20623i 0.324985 + 0.187630i
\(293\) −13.3859 + 7.72837i −0.782014 + 0.451496i −0.837144 0.546983i \(-0.815776\pi\)
0.0551294 + 0.998479i \(0.482443\pi\)
\(294\) 0 0
\(295\) 1.05976 + 1.83555i 0.0617013 + 0.106870i
\(296\) −2.10463 −0.122329
\(297\) 0 0
\(298\) 4.44123 7.69244i 0.257274 0.445611i
\(299\) −16.1471 17.0134i −0.933810 0.983910i
\(300\) 0 0
\(301\) 1.08369 27.5560i 0.0624626 1.58830i
\(302\) −6.61530 + 11.4580i −0.380668 + 0.659336i
\(303\) 0 0
\(304\) −6.36190 3.67305i −0.364880 0.210664i
\(305\) 4.36109i 0.249715i
\(306\) 0 0
\(307\) 25.0571i 1.43008i 0.699082 + 0.715042i \(0.253592\pi\)
−0.699082 + 0.715042i \(0.746408\pi\)
\(308\) 12.0159 + 0.472545i 0.684670 + 0.0269258i
\(309\) 0 0
\(310\) 4.23954i 0.240790i
\(311\) 1.07278 1.85810i 0.0608315 0.105363i −0.834006 0.551756i \(-0.813958\pi\)
0.894837 + 0.446392i \(0.147291\pi\)
\(312\) 0 0
\(313\) 14.8734 + 25.7615i 0.840696 + 1.45613i 0.889307 + 0.457311i \(0.151187\pi\)
−0.0486108 + 0.998818i \(0.515479\pi\)
\(314\) 2.58398 + 1.49186i 0.145822 + 0.0841906i
\(315\) 0 0
\(316\) −5.48418 9.49887i −0.308509 0.534353i
\(317\) 5.33089 3.07779i 0.299413 0.172866i −0.342766 0.939421i \(-0.611364\pi\)
0.642179 + 0.766555i \(0.278031\pi\)
\(318\) 0 0
\(319\) 33.0225i 1.84890i
\(320\) 0.552947 0.319244i 0.0309107 0.0178463i
\(321\) 0 0
\(322\) −9.18510 + 14.5563i −0.511866 + 0.811193i
\(323\) −4.50690 2.60206i −0.250770 0.144782i
\(324\) 0 0
\(325\) −16.1002 + 3.86634i −0.893076 + 0.214466i
\(326\) −4.95993 + 8.59086i −0.274705 + 0.475804i
\(327\) 0 0
\(328\) 2.66832 4.62167i 0.147333 0.255189i
\(329\) −5.13971 0.202127i −0.283361 0.0111436i
\(330\) 0 0
\(331\) −24.8252 14.3328i −1.36452 0.787804i −0.374296 0.927309i \(-0.622116\pi\)
−0.990221 + 0.139505i \(0.955449\pi\)
\(332\) 2.41032i 0.132283i
\(333\) 0 0
\(334\) 6.01000 10.4096i 0.328853 0.569589i
\(335\) 1.25265 2.16965i 0.0684394 0.118540i
\(336\) 0 0
\(337\) 21.2688 1.15859 0.579294 0.815119i \(-0.303328\pi\)
0.579294 + 0.815119i \(0.303328\pi\)
\(338\) 12.9823 + 0.678789i 0.706142 + 0.0369213i
\(339\) 0 0
\(340\) 0.391718 0.226159i 0.0212439 0.0122652i
\(341\) 30.1793 1.63430
\(342\) 0 0
\(343\) −2.17883 + 18.3916i −0.117646 + 0.993056i
\(344\) 9.02680 5.21162i 0.486692 0.280992i
\(345\) 0 0
\(346\) 16.9007 + 9.75761i 0.908586 + 0.524572i
\(347\) −13.9059 −0.746507 −0.373253 0.927729i \(-0.621758\pi\)
−0.373253 + 0.927729i \(0.621758\pi\)
\(348\) 0 0
\(349\) 5.92236 + 3.41927i 0.317016 + 0.183030i 0.650062 0.759881i \(-0.274743\pi\)
−0.333045 + 0.942911i \(0.608076\pi\)
\(350\) 5.65690 + 10.7530i 0.302374 + 0.574770i
\(351\) 0 0
\(352\) 2.27255 + 3.93617i 0.121127 + 0.209799i
\(353\) −12.1206 + 6.99785i −0.645116 + 0.372458i −0.786583 0.617485i \(-0.788152\pi\)
0.141467 + 0.989943i \(0.454818\pi\)
\(354\) 0 0
\(355\) −3.36107 + 5.82155i −0.178387 + 0.308976i
\(356\) 5.53328i 0.293263i
\(357\) 0 0
\(358\) −13.9877 + 8.07581i −0.739274 + 0.426820i
\(359\) 1.17370 0.677638i 0.0619457 0.0357644i −0.468707 0.883354i \(-0.655280\pi\)
0.530653 + 0.847589i \(0.321947\pi\)
\(360\) 0 0
\(361\) 17.4825 + 30.2806i 0.920133 + 1.59372i
\(362\) 0.281865i 0.0148145i
\(363\) 0 0
\(364\) −1.86127 9.35605i −0.0975571 0.490390i
\(365\) 4.09427 0.214304
\(366\) 0 0
\(367\) 5.92951 + 10.2702i 0.309518 + 0.536101i 0.978257 0.207396i \(-0.0664990\pi\)
−0.668739 + 0.743497i \(0.733166\pi\)
\(368\) −6.50552 −0.339124
\(369\) 0 0
\(370\) −1.16375 + 0.671889i −0.0605003 + 0.0349298i
\(371\) −14.9889 + 7.88537i −0.778187 + 0.409388i
\(372\) 0 0
\(373\) 19.0720 33.0337i 0.987511 1.71042i 0.357315 0.933984i \(-0.383692\pi\)
0.630197 0.776436i \(-0.282974\pi\)
\(374\) 1.60992 + 2.78846i 0.0832469 + 0.144188i
\(375\) 0 0
\(376\) −0.972065 1.68367i −0.0501304 0.0868284i
\(377\) 25.4720 6.11693i 1.31188 0.315038i
\(378\) 0 0
\(379\) −27.4201 15.8310i −1.40848 0.813185i −0.413237 0.910624i \(-0.635602\pi\)
−0.995242 + 0.0974383i \(0.968935\pi\)
\(380\) −4.69039 −0.240612
\(381\) 0 0
\(382\) −10.7618 6.21334i −0.550622 0.317902i
\(383\) −12.6943 7.32908i −0.648650 0.374498i 0.139289 0.990252i \(-0.455518\pi\)
−0.787939 + 0.615753i \(0.788852\pi\)
\(384\) 0 0
\(385\) 6.79501 3.57471i 0.346306 0.182184i
\(386\) −5.82010 10.0807i −0.296235 0.513095i
\(387\) 0 0
\(388\) 7.96131 4.59646i 0.404174 0.233350i
\(389\) 8.23276 14.2596i 0.417418 0.722989i −0.578261 0.815852i \(-0.696269\pi\)
0.995679 + 0.0928631i \(0.0296019\pi\)
\(390\) 0 0
\(391\) −4.60864 −0.233069
\(392\) −6.31832 + 3.01312i −0.319123 + 0.152185i
\(393\) 0 0
\(394\) −2.65415 + 4.59712i −0.133714 + 0.231599i
\(395\) −6.06491 3.50158i −0.305159 0.176184i
\(396\) 0 0
\(397\) −14.1163 8.15004i −0.708476 0.409039i 0.102020 0.994782i \(-0.467469\pi\)
−0.810497 + 0.585743i \(0.800803\pi\)
\(398\) 13.7492i 0.689187i
\(399\) 0 0
\(400\) −2.29617 + 3.97708i −0.114808 + 0.198854i
\(401\) 20.8495i 1.04118i 0.853808 + 0.520588i \(0.174287\pi\)
−0.853808 + 0.520588i \(0.825713\pi\)
\(402\) 0 0
\(403\) −5.59028 23.2790i −0.278472 1.15961i
\(404\) −6.85500 11.8732i −0.341049 0.590714i
\(405\) 0 0
\(406\) −8.94977 17.0122i −0.444170 0.844302i
\(407\) −4.78287 8.28417i −0.237078 0.410631i
\(408\) 0 0
\(409\) 1.20081i 0.0593763i −0.999559 0.0296882i \(-0.990549\pi\)
0.999559 0.0296882i \(-0.00945142\pi\)
\(410\) 3.40738i 0.168278i
\(411\) 0 0
\(412\) −5.40352 9.35918i −0.266212 0.461094i
\(413\) 4.68689 7.42767i 0.230627 0.365492i
\(414\) 0 0
\(415\) −0.769479 1.33278i −0.0377722 0.0654234i
\(416\) 2.61522 2.48206i 0.128222 0.121693i
\(417\) 0 0
\(418\) 33.3887i 1.63309i
\(419\) −9.29434 + 16.0983i −0.454058 + 0.786452i −0.998634 0.0522602i \(-0.983357\pi\)
0.544575 + 0.838712i \(0.316691\pi\)
\(420\) 0 0
\(421\) 21.9581i 1.07017i −0.844797 0.535087i \(-0.820279\pi\)
0.844797 0.535087i \(-0.179721\pi\)
\(422\) −6.77729 3.91287i −0.329913 0.190476i
\(423\) 0 0
\(424\) −5.54379 3.20071i −0.269230 0.155440i
\(425\) −1.62665 + 2.81744i −0.0789041 + 0.136666i
\(426\) 0 0
\(427\) −15.9933 + 8.41372i −0.773968 + 0.407168i
\(428\) 15.3235 0.740687
\(429\) 0 0
\(430\) 3.32756 5.76350i 0.160469 0.277941i
\(431\) 23.8430 13.7658i 1.14848 0.663074i 0.199962 0.979804i \(-0.435918\pi\)
0.948516 + 0.316730i \(0.102585\pi\)
\(432\) 0 0
\(433\) 16.4667 + 28.5212i 0.791339 + 1.37064i 0.925138 + 0.379631i \(0.123949\pi\)
−0.133799 + 0.991008i \(0.542718\pi\)
\(434\) −15.5475 + 8.17922i −0.746305 + 0.392615i
\(435\) 0 0
\(436\) 1.53605 + 0.886839i 0.0735635 + 0.0424719i
\(437\) 41.3875 + 23.8951i 1.97983 + 1.14306i
\(438\) 0 0
\(439\) 12.7172 0.606957 0.303479 0.952838i \(-0.401852\pi\)
0.303479 + 0.952838i \(0.401852\pi\)
\(440\) 2.51320 + 1.45099i 0.119812 + 0.0691734i
\(441\) 0 0
\(442\) 1.85268 1.75834i 0.0881228 0.0836356i
\(443\) −14.4934 25.1034i −0.688604 1.19270i −0.972290 0.233779i \(-0.924891\pi\)
0.283686 0.958917i \(-0.408443\pi\)
\(444\) 0 0
\(445\) 1.76647 + 3.05961i 0.0837385 + 0.145039i
\(446\) 9.76882 16.9201i 0.462567 0.801190i
\(447\) 0 0
\(448\) −2.23753 1.41189i −0.105714 0.0667057i
\(449\) 0.0241096 0.0139197i 0.00113780 0.000656909i −0.499431 0.866354i \(-0.666458\pi\)
0.500569 + 0.865697i \(0.333124\pi\)
\(450\) 0 0
\(451\) 24.2555 1.14215
\(452\) 2.62152 + 4.54061i 0.123306 + 0.213572i
\(453\) 0 0
\(454\) −4.92479 −0.231132
\(455\) −4.01604 4.57920i −0.188275 0.214676i
\(456\) 0 0
\(457\) 30.7861i 1.44011i −0.693915 0.720057i \(-0.744116\pi\)
0.693915 0.720057i \(-0.255884\pi\)
\(458\) −7.98610 13.8323i −0.373166 0.646342i
\(459\) 0 0
\(460\) −3.59721 + 2.07685i −0.167721 + 0.0968336i
\(461\) −32.8804 + 18.9835i −1.53139 + 0.884149i −0.532093 + 0.846686i \(0.678594\pi\)
−0.999298 + 0.0374628i \(0.988072\pi\)
\(462\) 0 0
\(463\) 13.3969i 0.622608i 0.950310 + 0.311304i \(0.100766\pi\)
−0.950310 + 0.311304i \(0.899234\pi\)
\(464\) 3.63276 6.29212i 0.168647 0.292104i
\(465\) 0 0
\(466\) −4.53803 + 2.62003i −0.210220 + 0.121371i
\(467\) 12.9575 + 22.4431i 0.599603 + 1.03854i 0.992880 + 0.119122i \(0.0380081\pi\)
−0.393277 + 0.919420i \(0.628659\pi\)
\(468\) 0 0
\(469\) −10.3734 0.407949i −0.478997 0.0188373i
\(470\) −1.07500 0.620651i −0.0495860 0.0286285i
\(471\) 0 0
\(472\) 3.31958 0.152796
\(473\) 41.0277 + 23.6873i 1.88645 + 1.08914i
\(474\) 0 0
\(475\) 29.2160 16.8678i 1.34052 0.773950i
\(476\) −1.58511 1.00021i −0.0726536 0.0458447i
\(477\) 0 0
\(478\) 23.4449 1.07234
\(479\) 0.219038 0.126461i 0.0100081 0.00577817i −0.494988 0.868900i \(-0.664827\pi\)
0.504996 + 0.863122i \(0.331494\pi\)
\(480\) 0 0
\(481\) −5.50407 + 5.22380i −0.250964 + 0.238185i
\(482\) 11.0560 0.503588
\(483\) 0 0
\(484\) −4.82895 + 8.36399i −0.219498 + 0.380181i
\(485\) 2.93479 5.08320i 0.133262 0.230816i
\(486\) 0 0
\(487\) 30.3567i 1.37559i −0.725904 0.687796i \(-0.758578\pi\)
0.725904 0.687796i \(-0.241422\pi\)
\(488\) −5.91525 3.41517i −0.267771 0.154598i
\(489\) 0 0
\(490\) −2.53177 + 3.68318i −0.114374 + 0.166389i
\(491\) 6.74228 11.6780i 0.304275 0.527019i −0.672825 0.739802i \(-0.734919\pi\)
0.977100 + 0.212782i \(0.0682526\pi\)
\(492\) 0 0
\(493\) 2.57352 4.45746i 0.115905 0.200754i
\(494\) −25.7545 + 6.18476i −1.15875 + 0.278266i
\(495\) 0 0
\(496\) −5.75039 3.31999i −0.258200 0.149072i
\(497\) 27.8336 + 1.09460i 1.24851 + 0.0490996i
\(498\) 0 0
\(499\) −1.75032 + 1.01055i −0.0783551 + 0.0452383i −0.538666 0.842520i \(-0.681071\pi\)
0.460311 + 0.887758i \(0.347738\pi\)
\(500\) 6.12459i 0.273900i
\(501\) 0 0
\(502\) −22.4990 + 12.9898i −1.00418 + 0.579762i
\(503\) 2.81234 + 4.87112i 0.125396 + 0.217192i 0.921888 0.387457i \(-0.126646\pi\)
−0.796492 + 0.604650i \(0.793313\pi\)
\(504\) 0 0
\(505\) −7.58090 4.37684i −0.337346 0.194767i
\(506\) −14.7841 25.6068i −0.657234 1.13836i
\(507\) 0 0
\(508\) −0.366918 + 0.635520i −0.0162793 + 0.0281966i
\(509\) 16.2390i 0.719781i −0.932995 0.359890i \(-0.882814\pi\)
0.932995 0.359890i \(-0.117186\pi\)
\(510\) 0 0
\(511\) −7.89896 15.0148i −0.349429 0.664215i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 1.77336i 0.0782194i
\(515\) −5.97572 3.45008i −0.263322 0.152029i
\(516\) 0 0
\(517\) 4.41813 7.65242i 0.194309 0.336553i
\(518\) 4.70917 + 2.97151i 0.206909 + 0.130561i
\(519\) 0 0
\(520\) 0.653698 2.20734i 0.0286665 0.0967982i
\(521\) −8.32351 + 14.4167i −0.364659 + 0.631609i −0.988721 0.149766i \(-0.952148\pi\)
0.624062 + 0.781375i \(0.285481\pi\)
\(522\) 0 0
\(523\) 12.8151 0.560363 0.280182 0.959947i \(-0.409605\pi\)
0.280182 + 0.959947i \(0.409605\pi\)
\(524\) −9.93556 17.2089i −0.434037 0.751774i
\(525\) 0 0
\(526\) 4.87586 2.81508i 0.212598 0.122743i
\(527\) −4.07369 2.35195i −0.177453 0.102452i
\(528\) 0 0
\(529\) 19.3218 0.840080
\(530\) −4.08723 −0.177538
\(531\) 0 0
\(532\) 9.04902 + 17.2009i 0.392325 + 0.745753i
\(533\) −4.49298 18.7096i −0.194613 0.810403i
\(534\) 0 0
\(535\) 8.47305 4.89192i 0.366322 0.211496i
\(536\) −1.96190 3.39810i −0.0847410 0.146776i
\(537\) 0 0
\(538\) 0.668394i 0.0288165i
\(539\) −26.2188 18.0225i −1.12932 0.776285i
\(540\) 0 0
\(541\) −5.98399 + 3.45486i −0.257272 + 0.148536i −0.623089 0.782151i \(-0.714123\pi\)
0.365818 + 0.930687i \(0.380789\pi\)
\(542\) −20.8423 −0.895254
\(543\) 0 0
\(544\) 0.708420i 0.0303733i
\(545\) 1.13247 0.0485098
\(546\) 0 0
\(547\) 24.8868 1.06408 0.532041 0.846719i \(-0.321425\pi\)
0.532041 + 0.846719i \(0.321425\pi\)
\(548\) 10.4636i 0.446984i
\(549\) 0 0
\(550\) −20.8726 −0.890011
\(551\) −46.2225 + 26.6866i −1.96914 + 1.13689i
\(552\) 0 0
\(553\) −1.14036 + 28.9971i −0.0484930 + 1.23308i
\(554\) 7.64182i 0.324670i
\(555\) 0 0
\(556\) −0.0315662 0.0546743i −0.00133871 0.00231871i
\(557\) −10.1308 + 5.84900i −0.429254 + 0.247830i −0.699029 0.715094i \(-0.746384\pi\)
0.269775 + 0.962923i \(0.413051\pi\)
\(558\) 0 0
\(559\) 10.6715 36.0346i 0.451358 1.52410i
\(560\) −1.68797 0.0663824i −0.0713300 0.00280517i
\(561\) 0 0
\(562\) 4.17663 0.176181
\(563\) 25.1230 1.05881 0.529404 0.848370i \(-0.322415\pi\)
0.529404 + 0.848370i \(0.322415\pi\)
\(564\) 0 0
\(565\) 2.89912 + 1.67381i 0.121967 + 0.0704177i
\(566\) −5.97302 + 3.44853i −0.251065 + 0.144952i
\(567\) 0 0
\(568\) 5.26412 + 9.11772i 0.220878 + 0.382571i
\(569\) 25.0757 1.05123 0.525614 0.850723i \(-0.323835\pi\)
0.525614 + 0.850723i \(0.323835\pi\)
\(570\) 0 0
\(571\) −4.56201 + 7.90163i −0.190914 + 0.330673i −0.945553 0.325467i \(-0.894479\pi\)
0.754639 + 0.656140i \(0.227812\pi\)
\(572\) 15.7130 + 4.65337i 0.656994 + 0.194567i
\(573\) 0 0
\(574\) −12.4958 + 6.57375i −0.521563 + 0.274383i
\(575\) 14.9378 25.8730i 0.622948 1.07898i
\(576\) 0 0
\(577\) −11.1074 6.41283i −0.462405 0.266970i 0.250650 0.968078i \(-0.419356\pi\)
−0.713055 + 0.701108i \(0.752689\pi\)
\(578\) 16.4981i 0.686232i
\(579\) 0 0
\(580\) 4.63894i 0.192622i
\(581\) −3.40311 + 5.39317i −0.141185 + 0.223746i
\(582\) 0 0
\(583\) 29.0951i 1.20500i
\(584\) 3.20623 5.55335i 0.132675 0.229799i
\(585\) 0 0
\(586\) 7.72837 + 13.3859i 0.319256 + 0.552968i
\(587\) 6.27507 + 3.62291i 0.259000 + 0.149534i 0.623878 0.781522i \(-0.285556\pi\)
−0.364878 + 0.931055i \(0.618889\pi\)
\(588\) 0 0
\(589\) 24.3889 + 42.2429i 1.00493 + 1.74059i
\(590\) 1.83555 1.05976i 0.0755684 0.0436294i
\(591\) 0 0
\(592\) 2.10463i 0.0864996i
\(593\) −13.4056 + 7.73971i −0.550501 + 0.317832i −0.749324 0.662204i \(-0.769621\pi\)
0.198823 + 0.980035i \(0.436288\pi\)
\(594\) 0 0
\(595\) −1.19579 0.0470266i −0.0490228 0.00192790i
\(596\) −7.69244 4.44123i −0.315095 0.181920i
\(597\) 0 0
\(598\) −17.0134 + 16.1471i −0.695730 + 0.660303i
\(599\) −21.5483 + 37.3227i −0.880438 + 1.52496i −0.0295828 + 0.999562i \(0.509418\pi\)
−0.850855 + 0.525401i \(0.823915\pi\)
\(600\) 0 0
\(601\) 11.6610 20.1975i 0.475664 0.823873i −0.523948 0.851750i \(-0.675541\pi\)
0.999611 + 0.0278770i \(0.00887466\pi\)
\(602\) −27.5560 1.08369i −1.12310 0.0441677i
\(603\) 0 0
\(604\) 11.4580 + 6.61530i 0.466221 + 0.269173i
\(605\) 6.16646i 0.250702i
\(606\) 0 0
\(607\) −15.7844 + 27.3394i −0.640670 + 1.10967i 0.344614 + 0.938745i \(0.388010\pi\)
−0.985283 + 0.170928i \(0.945323\pi\)
\(608\) −3.67305 + 6.36190i −0.148962 + 0.258009i
\(609\) 0 0
\(610\) −4.36109 −0.176575
\(611\) −6.72112 1.99044i −0.271907 0.0805247i
\(612\) 0 0
\(613\) −13.6857 + 7.90145i −0.552761 + 0.319137i −0.750235 0.661171i \(-0.770060\pi\)
0.197474 + 0.980308i \(0.436726\pi\)
\(614\) 25.0571 1.01122
\(615\) 0 0
\(616\) 0.472545 12.0159i 0.0190394 0.484135i
\(617\) −14.3413 + 8.27996i −0.577360 + 0.333339i −0.760083 0.649826i \(-0.774842\pi\)
0.182724 + 0.983164i \(0.441509\pi\)
\(618\) 0 0
\(619\) −17.3556 10.0203i −0.697581 0.402749i 0.108865 0.994057i \(-0.465278\pi\)
−0.806446 + 0.591308i \(0.798612\pi\)
\(620\) −4.23954 −0.170264
\(621\) 0 0
\(622\) −1.85810 1.07278i −0.0745031 0.0430144i
\(623\) 7.81240 12.3809i 0.312997 0.496030i
\(624\) 0 0
\(625\) −9.52560 16.4988i −0.381024 0.659953i
\(626\) 25.7615 14.8734i 1.02964 0.594462i
\(627\) 0 0
\(628\) 1.49186 2.58398i 0.0595317 0.103112i
\(629\) 1.49096i 0.0594484i
\(630\) 0 0
\(631\) −17.8127 + 10.2842i −0.709113 + 0.409407i −0.810733 0.585417i \(-0.800931\pi\)
0.101620 + 0.994823i \(0.467598\pi\)
\(632\) −9.49887 + 5.48418i −0.377845 + 0.218149i
\(633\) 0 0
\(634\) −3.07779 5.33089i −0.122235 0.211717i
\(635\) 0.468545i 0.0185936i
\(636\) 0 0
\(637\) −9.04508 + 23.5624i −0.358379 + 0.933576i
\(638\) 33.0225 1.30737
\(639\) 0 0
\(640\) −0.319244 0.552947i −0.0126192 0.0218571i
\(641\) 34.3713 1.35758 0.678792 0.734330i \(-0.262504\pi\)
0.678792 + 0.734330i \(0.262504\pi\)
\(642\) 0 0
\(643\) −7.68629 + 4.43768i −0.303118 + 0.175005i −0.643843 0.765158i \(-0.722661\pi\)
0.340725 + 0.940163i \(0.389328\pi\)
\(644\) 14.5563 + 9.18510i 0.573600 + 0.361944i
\(645\) 0 0
\(646\) −2.60206 + 4.50690i −0.102377 + 0.177321i
\(647\) 2.26837 + 3.92893i 0.0891788 + 0.154462i 0.907164 0.420777i \(-0.138242\pi\)
−0.817985 + 0.575239i \(0.804909\pi\)
\(648\) 0 0
\(649\) 7.54391 + 13.0664i 0.296124 + 0.512902i
\(650\) 3.86634 + 16.1002i 0.151650 + 0.631500i
\(651\) 0 0
\(652\) 8.59086 + 4.95993i 0.336444 + 0.194246i
\(653\) −27.1450 −1.06227 −0.531133 0.847288i \(-0.678234\pi\)
−0.531133 + 0.847288i \(0.678234\pi\)
\(654\) 0 0
\(655\) −10.9877 6.34373i −0.429324 0.247870i
\(656\) −4.62167 2.66832i −0.180446 0.104180i
\(657\) 0 0
\(658\) −0.202127 + 5.13971i −0.00787975 + 0.200367i
\(659\) 13.2645 + 22.9748i 0.516712 + 0.894972i 0.999812 + 0.0194066i \(0.00617770\pi\)
−0.483099 + 0.875566i \(0.660489\pi\)
\(660\) 0 0
\(661\) 26.9057 15.5340i 1.04651 0.604204i 0.124841 0.992177i \(-0.460158\pi\)
0.921671 + 0.387973i \(0.126825\pi\)
\(662\) −14.3328 + 24.8252i −0.557062 + 0.964859i
\(663\) 0 0
\(664\) −2.41032 −0.0935384
\(665\) 10.4949 + 6.62233i 0.406975 + 0.256803i
\(666\) 0 0
\(667\) −23.6330 + 40.9335i −0.915073 + 1.58495i
\(668\) −10.4096 6.01000i −0.402760 0.232534i
\(669\) 0 0
\(670\) −2.16965 1.25265i −0.0838208 0.0483940i
\(671\) 31.0446i 1.19846i
\(672\) 0 0
\(673\) −9.48380 + 16.4264i −0.365574 + 0.633192i −0.988868 0.148795i \(-0.952461\pi\)
0.623294 + 0.781987i \(0.285794\pi\)
\(674\) 21.2688i 0.819245i
\(675\) 0 0
\(676\) 0.678789 12.9823i 0.0261073 0.499318i
\(677\) 8.38565 + 14.5244i 0.322287 + 0.558217i 0.980959 0.194212i \(-0.0622151\pi\)
−0.658673 + 0.752430i \(0.728882\pi\)
\(678\) 0 0
\(679\) −24.3034 0.955771i −0.932679 0.0366791i
\(680\) −0.226159 0.391718i −0.00867279 0.0150217i
\(681\) 0 0
\(682\) 30.1793i 1.15563i
\(683\) 7.44457i 0.284858i −0.989805 0.142429i \(-0.954509\pi\)
0.989805 0.142429i \(-0.0454913\pi\)
\(684\) 0 0
\(685\) −3.34045 5.78583i −0.127632 0.221065i
\(686\) 18.3916 + 2.17883i 0.702196 + 0.0831883i
\(687\) 0 0
\(688\) −5.21162 9.02680i −0.198691 0.344143i
\(689\) −22.4426 + 5.38944i −0.854995 + 0.205321i
\(690\) 0 0
\(691\) 40.3287i 1.53418i −0.641542 0.767088i \(-0.721705\pi\)
0.641542 0.767088i \(-0.278295\pi\)
\(692\) 9.75761 16.9007i 0.370929 0.642467i
\(693\) 0 0
\(694\) 13.9059i 0.527860i
\(695\) −0.0349089 0.0201546i −0.00132417 0.000764509i
\(696\) 0 0
\(697\) −3.27408 1.89029i −0.124015 0.0715999i
\(698\) 3.41927 5.92236i 0.129421 0.224165i
\(699\) 0 0
\(700\) 10.7530 5.65690i 0.406424 0.213811i
\(701\) −1.32063 −0.0498794 −0.0249397 0.999689i \(-0.507939\pi\)
−0.0249397 + 0.999689i \(0.507939\pi\)
\(702\) 0 0
\(703\) 7.73039 13.3894i 0.291557 0.504992i
\(704\) 3.93617 2.27255i 0.148350 0.0856499i
\(705\) 0 0
\(706\) 6.99785 + 12.1206i 0.263367 + 0.456166i
\(707\) −1.42540 + 36.2452i −0.0536078 + 1.36314i
\(708\) 0 0
\(709\) 25.0311 + 14.4517i 0.940063 + 0.542746i 0.889980 0.455999i \(-0.150718\pi\)
0.0500830 + 0.998745i \(0.484051\pi\)
\(710\) 5.82155 + 3.36107i 0.218479 + 0.126139i
\(711\) 0 0
\(712\) 5.53328 0.207368
\(713\) 37.4093 + 21.5983i 1.40099 + 0.808861i
\(714\) 0 0
\(715\) 10.1740 2.44322i 0.380487 0.0913712i
\(716\) 8.07581 + 13.9877i 0.301807 + 0.522746i
\(717\) 0 0
\(718\) −0.677638 1.17370i −0.0252892 0.0438022i
\(719\) −15.7289 + 27.2433i −0.586590 + 1.01600i 0.408086 + 0.912944i \(0.366197\pi\)
−0.994675 + 0.103059i \(0.967137\pi\)
\(720\) 0 0
\(721\) −1.12359 + 28.5707i −0.0418446 + 1.06403i
\(722\) 30.2806 17.4825i 1.12693 0.650632i
\(723\) 0 0
\(724\) −0.281865 −0.0104754
\(725\) 16.6828 + 28.8955i 0.619585 + 1.07315i
\(726\) 0 0
\(727\) 15.8625 0.588306 0.294153 0.955758i \(-0.404962\pi\)
0.294153 + 0.955758i \(0.404962\pi\)
\(728\) −9.35605 + 1.86127i −0.346758 + 0.0689833i
\(729\) 0 0
\(730\) 4.09427i 0.151536i
\(731\) −3.69202 6.39476i −0.136554 0.236519i
\(732\) 0 0
\(733\) −30.0928 + 17.3741i −1.11150 + 0.641727i −0.939219 0.343320i \(-0.888448\pi\)
−0.172285 + 0.985047i \(0.555115\pi\)
\(734\) 10.2702 5.92951i 0.379081 0.218862i
\(735\) 0 0
\(736\) 6.50552i 0.239797i
\(737\) 8.91701 15.4447i 0.328462 0.568913i
\(738\) 0 0
\(739\) −21.7681 + 12.5678i −0.800753 + 0.462315i −0.843735 0.536761i \(-0.819648\pi\)
0.0429812 + 0.999076i \(0.486314\pi\)
\(740\) 0.671889 + 1.16375i 0.0246991 + 0.0427802i
\(741\) 0 0
\(742\) 7.88537 + 14.9889i 0.289481 + 0.550261i
\(743\) 23.3693 + 13.4923i 0.857336 + 0.494983i 0.863119 0.505000i \(-0.168508\pi\)
−0.00578361 + 0.999983i \(0.501841\pi\)
\(744\) 0 0
\(745\) −5.67134 −0.207782
\(746\) −33.0337 19.0720i −1.20945 0.698276i
\(747\) 0 0
\(748\) 2.78846 1.60992i 0.101956 0.0588645i
\(749\) −34.2868 21.6351i −1.25281 0.790529i
\(750\) 0 0
\(751\) 16.5460 0.603771 0.301886 0.953344i \(-0.402384\pi\)
0.301886 + 0.953344i \(0.402384\pi\)
\(752\) −1.68367 + 0.972065i −0.0613970 + 0.0354475i
\(753\) 0 0
\(754\) −6.11693 25.4720i −0.222765 0.927636i
\(755\) 8.44757 0.307439
\(756\) 0 0
\(757\) −21.1295 + 36.5974i −0.767965 + 1.33015i 0.170699 + 0.985323i \(0.445397\pi\)
−0.938665 + 0.344832i \(0.887936\pi\)
\(758\) −15.8310 + 27.4201i −0.575009 + 0.995945i
\(759\) 0 0
\(760\) 4.69039i 0.170138i
\(761\) 19.6009 + 11.3166i 0.710531 + 0.410225i 0.811258 0.584689i \(-0.198783\pi\)
−0.100726 + 0.994914i \(0.532117\pi\)
\(762\) 0 0
\(763\) −2.18484 4.15307i −0.0790967 0.150351i
\(764\) −6.21334 + 10.7618i −0.224791 + 0.389349i
\(765\) 0 0
\(766\) −7.32908 + 12.6943i −0.264810 + 0.458665i
\(767\) 8.68144 8.23938i 0.313469 0.297507i
\(768\) 0 0
\(769\) 38.9093 + 22.4643i 1.40311 + 0.810084i 0.994710 0.102721i \(-0.0327548\pi\)
0.408396 + 0.912805i \(0.366088\pi\)
\(770\) −3.57471 6.79501i −0.128824 0.244875i
\(771\) 0 0
\(772\) −10.0807 + 5.82010i −0.362813 + 0.209470i
\(773\) 51.6217i 1.85670i −0.371704 0.928351i \(-0.621226\pi\)
0.371704 0.928351i \(-0.378774\pi\)
\(774\) 0 0
\(775\) 26.4077 15.2465i 0.948593 0.547670i
\(776\) −4.59646 7.96131i −0.165003 0.285794i
\(777\) 0 0
\(778\) −14.2596 8.23276i −0.511230 0.295159i
\(779\) 19.6017 + 33.9512i 0.702304 + 1.21643i
\(780\) 0 0
\(781\) −23.9259 + 41.4409i −0.856137 + 1.48287i
\(782\) 4.60864i 0.164805i
\(783\) 0 0
\(784\) 3.01312 + 6.31832i 0.107611 + 0.225654i
\(785\) 1.90507i 0.0679949i
\(786\) 0 0
\(787\) 10.0611i 0.358638i −0.983791 0.179319i \(-0.942611\pi\)
0.983791 0.179319i \(-0.0573894\pi\)
\(788\) 4.59712 + 2.65415i 0.163766 + 0.0945501i
\(789\) 0 0
\(790\) −3.50158 + 6.06491i −0.124581 + 0.215780i
\(791\) 0.545110 13.8611i 0.0193819 0.492843i
\(792\) 0 0
\(793\) −23.9463 + 5.75055i −0.850360 + 0.204208i
\(794\) −8.15004 + 14.1163i −0.289234 + 0.500968i
\(795\) 0 0
\(796\) −13.7492 −0.487329
\(797\) 17.7635 + 30.7672i 0.629214 + 1.08983i 0.987710 + 0.156300i \(0.0499566\pi\)
−0.358495 + 0.933532i \(0.616710\pi\)
\(798\) 0 0
\(799\) −1.19274 + 0.688630i −0.0421962 + 0.0243620i
\(800\) 3.97708 + 2.29617i 0.140611 + 0.0811818i
\(801\) 0 0
\(802\) 20.8495 0.736222
\(803\) 29.1452 1.02851
\(804\) 0 0
\(805\) 10.9812 + 0.431852i 0.387035 + 0.0152208i
\(806\) −23.2790 + 5.59028i −0.819966 + 0.196909i
\(807\) 0 0
\(808\) −11.8732 + 6.85500i −0.417698 + 0.241158i
\(809\) −23.7244 41.0918i −0.834104 1.44471i −0.894758 0.446551i \(-0.852652\pi\)
0.0606541 0.998159i \(-0.480681\pi\)
\(810\) 0 0
\(811\) 24.4360i 0.858063i 0.903289 + 0.429032i \(0.141145\pi\)
−0.903289 + 0.429032i \(0.858855\pi\)
\(812\) −17.0122 + 8.94977i −0.597012 + 0.314075i
\(813\) 0 0
\(814\) −8.28417 + 4.78287i −0.290360 + 0.167639i
\(815\) 6.33371 0.221860
\(816\) 0 0
\(817\) 76.5701i 2.67885i
\(818\) −1.20081 −0.0419854
\(819\) 0 0
\(820\) −3.40738 −0.118991
\(821\) 47.7273i 1.66570i −0.553502 0.832848i \(-0.686709\pi\)
0.553502 0.832848i \(-0.313291\pi\)
\(822\) 0 0
\(823\) −17.0671 −0.594922 −0.297461 0.954734i \(-0.596140\pi\)
−0.297461 + 0.954734i \(0.596140\pi\)
\(824\) −9.35918 + 5.40352i −0.326042 + 0.188241i
\(825\) 0 0
\(826\) −7.42767 4.68689i −0.258442 0.163078i
\(827\) 4.18226i 0.145431i 0.997353 + 0.0727157i \(0.0231666\pi\)
−0.997353 + 0.0727157i \(0.976833\pi\)
\(828\) 0 0
\(829\) 3.34360 + 5.79129i 0.116128 + 0.201140i 0.918230 0.396047i \(-0.129618\pi\)
−0.802102 + 0.597187i \(0.796285\pi\)
\(830\) −1.33278 + 0.769479i −0.0462613 + 0.0267090i
\(831\) 0 0
\(832\) −2.48206 2.61522i −0.0860498 0.0906666i
\(833\) 2.13455 + 4.47602i 0.0739578 + 0.155085i
\(834\) 0 0
\(835\) −7.67462 −0.265591
\(836\) −33.3887 −1.15477
\(837\) 0 0
\(838\) 16.0983 + 9.29434i 0.556105 + 0.321068i
\(839\) −37.8216 + 21.8363i −1.30575 + 0.753874i −0.981383 0.192059i \(-0.938484\pi\)
−0.324364 + 0.945932i \(0.605150\pi\)
\(840\) 0 0
\(841\) −11.8939 20.6008i −0.410133 0.710372i
\(842\) −21.9581 −0.756727
\(843\) 0 0
\(844\) −3.91287 + 6.77729i −0.134687 + 0.233284i
\(845\) −3.76917 7.39520i −0.129664 0.254403i
\(846\) 0 0
\(847\) 22.6140 11.8968i 0.777027 0.408777i
\(848\) −3.20071 + 5.54379i −0.109913 + 0.190375i
\(849\) 0 0
\(850\) 2.81744 + 1.62665i 0.0966374 + 0.0557936i
\(851\) 13.6917i 0.469345i
\(852\) 0 0
\(853\) 5.72664i 0.196076i −0.995183 0.0980382i \(-0.968743\pi\)
0.995183 0.0980382i \(-0.0312567\pi\)
\(854\) 8.41372 + 15.9933i 0.287911 + 0.547278i
\(855\) 0 0
\(856\) 15.3235i 0.523745i
\(857\) −15.1817 + 26.2956i −0.518599 + 0.898239i 0.481168 + 0.876628i \(0.340213\pi\)
−0.999766 + 0.0216105i \(0.993121\pi\)
\(858\) 0 0
\(859\) 13.2338 + 22.9216i 0.451531 + 0.782075i 0.998481 0.0550902i \(-0.0175446\pi\)
−0.546950 + 0.837165i \(0.684211\pi\)
\(860\) −5.76350 3.32756i −0.196534 0.113469i
\(861\) 0 0
\(862\) −13.7658 23.8430i −0.468864 0.812096i
\(863\) −15.4761 + 8.93514i −0.526813 + 0.304156i −0.739718 0.672917i \(-0.765041\pi\)
0.212905 + 0.977073i \(0.431708\pi\)
\(864\) 0 0
\(865\) 12.4602i 0.423660i
\(866\) 28.5212 16.4667i 0.969188 0.559561i
\(867\) 0 0
\(868\) 8.17922 + 15.5475i 0.277621 + 0.527717i
\(869\) −43.1733 24.9261i −1.46455 0.845560i
\(870\) 0 0
\(871\) −13.5651 4.01726i −0.459635 0.136120i
\(872\) 0.886839 1.53605i 0.0300322 0.0520172i
\(873\) 0 0
\(874\) 23.8951 41.3875i 0.808263 1.39995i
\(875\) 8.64726 13.7040i 0.292331 0.463279i
\(876\) 0 0
\(877\) 22.4495 + 12.9612i 0.758065 + 0.437669i 0.828601 0.559840i \(-0.189137\pi\)
−0.0705353 + 0.997509i \(0.522471\pi\)
\(878\) 12.7172i 0.429184i
\(879\) 0 0
\(880\) 1.45099 2.51320i 0.0489130 0.0847198i
\(881\) 7.54044 13.0604i 0.254044 0.440017i −0.710592 0.703605i \(-0.751573\pi\)
0.964635 + 0.263588i \(0.0849059\pi\)
\(882\) 0 0
\(883\) −30.6339 −1.03091 −0.515457 0.856916i \(-0.672378\pi\)
−0.515457 + 0.856916i \(0.672378\pi\)
\(884\) −1.75834 1.85268i −0.0591393 0.0623122i
\(885\) 0 0
\(886\) −25.1034 + 14.4934i −0.843364 + 0.486916i
\(887\) −15.4673 −0.519340 −0.259670 0.965697i \(-0.583614\pi\)
−0.259670 + 0.965697i \(0.583614\pi\)
\(888\) 0 0
\(889\) 1.71828 0.903949i 0.0576292 0.0303175i
\(890\) 3.05961 1.76647i 0.102558 0.0592120i
\(891\) 0 0
\(892\) −16.9201 9.76882i −0.566527 0.327084i
\(893\) 14.2817 0.477920
\(894\) 0 0
\(895\) 8.93099 + 5.15631i 0.298530 + 0.172356i
\(896\) −1.41189 + 2.23753i −0.0471680 + 0.0747508i
\(897\) 0 0
\(898\) −0.0139197 0.0241096i −0.000464505 0.000804547i
\(899\) −41.7795 + 24.1214i −1.39343 + 0.804495i
\(900\) 0 0
\(901\) −2.26745 + 3.92733i −0.0755396 + 0.130838i
\(902\) 24.2555i 0.807621i
\(903\) 0 0
\(904\) 4.54061 2.62152i 0.151019 0.0871906i
\(905\) −0.155856 + 0.0899837i −0.00518084 + 0.00299116i
\(906\) 0 0
\(907\) 23.7055 + 41.0591i 0.787127 + 1.36334i 0.927720 + 0.373277i \(0.121766\pi\)
−0.140593 + 0.990068i \(0.544901\pi\)
\(908\) 4.92479i 0.163435i
\(909\) 0 0
\(910\) −4.57920 + 4.01604i −0.151799 + 0.133131i
\(911\) −36.5790 −1.21192 −0.605958 0.795496i \(-0.707210\pi\)
−0.605958 + 0.795496i \(0.707210\pi\)
\(912\) 0 0
\(913\) −5.47756 9.48742i −0.181281 0.313988i
\(914\) −30.7861 −1.01831
\(915\) 0 0
\(916\) −13.8323 + 7.98610i −0.457033 + 0.263868i
\(917\) −2.06596 + 52.5334i −0.0682241 + 1.73481i
\(918\) 0 0
\(919\) −3.53379 + 6.12071i −0.116569 + 0.201904i −0.918406 0.395639i \(-0.870523\pi\)
0.801837 + 0.597543i \(0.203856\pi\)
\(920\) 2.07685 + 3.59721i 0.0684717 + 0.118596i
\(921\) 0 0
\(922\) 18.9835 + 32.8804i 0.625188 + 1.08286i
\(923\) 36.3975 + 10.7790i 1.19804 + 0.354796i
\(924\) 0 0
\(925\) −8.37026 4.83257i −0.275213 0.158894i
\(926\) 13.3969 0.440250
\(927\) 0 0
\(928\) −6.29212 3.63276i −0.206549 0.119251i
\(929\) 41.4922 + 23.9555i 1.36131 + 0.785955i 0.989799 0.142472i \(-0.0455051\pi\)
0.371515 + 0.928427i \(0.378838\pi\)
\(930\) 0 0
\(931\) 4.03831 51.2638i 0.132350 1.68010i
\(932\) 2.62003 + 4.53803i 0.0858220 + 0.148648i
\(933\) 0 0
\(934\) 22.4431 12.9575i 0.734360 0.423983i
\(935\) 1.02791 1.78040i 0.0336164 0.0582252i
\(936\) 0 0
\(937\) −7.37114 −0.240805 −0.120402 0.992725i \(-0.538418\pi\)
−0.120402 + 0.992725i \(0.538418\pi\)
\(938\) −0.407949 + 10.3734i −0.0133200 + 0.338702i
\(939\) 0 0
\(940\) −0.620651 + 1.07500i −0.0202434 + 0.0350626i
\(941\) 0.664718 + 0.383775i 0.0216692 + 0.0125107i 0.510795 0.859702i \(-0.329351\pi\)
−0.489126 + 0.872213i \(0.662684\pi\)
\(942\) 0 0
\(943\) 30.0664 + 17.3588i 0.979095 + 0.565281i
\(944\) 3.31958i 0.108043i
\(945\) 0 0
\(946\) 23.6873 41.0277i 0.770142 1.33392i
\(947\) 32.1360i 1.04428i 0.852860 + 0.522139i \(0.174866\pi\)
−0.852860 + 0.522139i \(0.825134\pi\)
\(948\) 0 0
\(949\) −5.39873 22.4813i −0.175250 0.729774i
\(950\) −16.8678 29.2160i −0.547265 0.947891i
\(951\) 0 0
\(952\) −1.00021 + 1.58511i −0.0324171 + 0.0513738i
\(953\) 9.10361 + 15.7679i 0.294895 + 0.510773i 0.974960 0.222378i \(-0.0713820\pi\)
−0.680065 + 0.733151i \(0.738049\pi\)
\(954\) 0 0
\(955\) 7.93428i 0.256747i
\(956\) 23.4449i 0.758261i
\(957\) 0 0
\(958\) −0.126461 0.219038i −0.00408578 0.00707678i
\(959\) −14.7735 + 23.4127i −0.477062 + 0.756036i
\(960\) 0 0
\(961\) 6.54465 + 11.3357i 0.211118 + 0.365666i
\(962\) 5.22380 + 5.50407i 0.168422 + 0.177458i
\(963\) 0 0
\(964\) 11.0560i 0.356091i
\(965\) −3.71606 + 6.43641i −0.119624 + 0.207195i
\(966\) 0 0
\(967\) 20.3286i 0.653724i 0.945072 + 0.326862i \(0.105991\pi\)
−0.945072 + 0.326862i \(0.894009\pi\)
\(968\) 8.36399 + 4.82895i 0.268829 + 0.155208i
\(969\) 0 0
\(970\) −5.08320 2.93479i −0.163212 0.0942303i
\(971\) 22.3535 38.7173i 0.717356 1.24250i −0.244687 0.969602i \(-0.578685\pi\)
0.962044 0.272896i \(-0.0879814\pi\)
\(972\) 0 0
\(973\) −0.00656376 + 0.166904i −0.000210424 + 0.00535069i
\(974\) −30.3567 −0.972691
\(975\) 0 0
\(976\) −3.41517 + 5.91525i −0.109317 + 0.189342i
\(977\) 17.8956 10.3320i 0.572531 0.330551i −0.185629 0.982620i \(-0.559432\pi\)
0.758160 + 0.652069i \(0.226099\pi\)
\(978\) 0 0
\(979\) 12.5746 + 21.7799i 0.401887 + 0.696089i
\(980\) 3.68318 + 2.53177i 0.117655 + 0.0808745i
\(981\) 0 0
\(982\) −11.6780 6.74228i −0.372659 0.215155i
\(983\) −48.5138 28.0095i −1.54735 0.893363i −0.998343 0.0575463i \(-0.981672\pi\)
−0.549008 0.835817i \(-0.684994\pi\)
\(984\) 0 0
\(985\) 3.38928 0.107991
\(986\) −4.45746 2.57352i −0.141955 0.0819575i
\(987\) 0 0
\(988\) 6.18476 + 25.7545i 0.196764 + 0.819360i
\(989\) 33.9043 + 58.7240i 1.07810 + 1.86732i
\(990\) 0 0
\(991\) −2.57214 4.45508i −0.0817068 0.141520i 0.822276 0.569088i \(-0.192704\pi\)
−0.903983 + 0.427568i \(0.859370\pi\)
\(992\) −3.31999 + 5.75039i −0.105410 + 0.182575i
\(993\) 0 0
\(994\) 1.09460 27.8336i 0.0347186 0.882828i
\(995\) −7.60259 + 4.38936i −0.241018 + 0.139152i
\(996\) 0 0
\(997\) 22.5960 0.715624 0.357812 0.933794i \(-0.383523\pi\)
0.357812 + 0.933794i \(0.383523\pi\)
\(998\) 1.01055 + 1.75032i 0.0319883 + 0.0554054i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1638.2.dt.c.1369.3 20
3.2 odd 2 182.2.o.a.95.7 yes 20
7.2 even 3 1638.2.cr.c.667.3 20
13.10 even 6 1638.2.cr.c.361.3 20
21.2 odd 6 182.2.v.a.121.9 yes 20
21.5 even 6 1274.2.v.h.667.7 20
21.11 odd 6 1274.2.m.g.589.2 20
21.17 even 6 1274.2.m.f.589.4 20
21.20 even 2 1274.2.o.h.459.9 20
39.23 odd 6 182.2.v.a.179.9 yes 20
91.23 even 6 inner 1638.2.dt.c.1297.8 20
273.23 odd 6 182.2.o.a.23.2 20
273.62 even 6 1274.2.v.h.361.7 20
273.101 even 6 1274.2.m.f.491.4 20
273.179 odd 6 1274.2.m.g.491.2 20
273.257 even 6 1274.2.o.h.569.4 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
182.2.o.a.23.2 20 273.23 odd 6
182.2.o.a.95.7 yes 20 3.2 odd 2
182.2.v.a.121.9 yes 20 21.2 odd 6
182.2.v.a.179.9 yes 20 39.23 odd 6
1274.2.m.f.491.4 20 273.101 even 6
1274.2.m.f.589.4 20 21.17 even 6
1274.2.m.g.491.2 20 273.179 odd 6
1274.2.m.g.589.2 20 21.11 odd 6
1274.2.o.h.459.9 20 21.20 even 2
1274.2.o.h.569.4 20 273.257 even 6
1274.2.v.h.361.7 20 273.62 even 6
1274.2.v.h.667.7 20 21.5 even 6
1638.2.cr.c.361.3 20 13.10 even 6
1638.2.cr.c.667.3 20 7.2 even 3
1638.2.dt.c.1297.8 20 91.23 even 6 inner
1638.2.dt.c.1369.3 20 1.1 even 1 trivial