L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.703 + 1.21i)3-s + (0.499 − 0.866i)4-s + 0.638i·5-s + (−1.21 − 0.703i)6-s + 0.999i·8-s + (0.511 − 0.885i)9-s + (−0.319 − 0.552i)10-s + (−3.93 + 2.27i)11-s + 1.40·12-s + (−2.48 + 2.61i)13-s + (−0.777 + 0.448i)15-s + (−0.5 − 0.866i)16-s + (−0.354 + 0.613i)17-s + 1.02i·18-s + (−6.36 − 3.67i)19-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.405 + 0.703i)3-s + (0.249 − 0.433i)4-s + 0.285i·5-s + (−0.497 − 0.287i)6-s + 0.353i·8-s + (0.170 − 0.295i)9-s + (−0.100 − 0.174i)10-s + (−1.18 + 0.685i)11-s + 0.405·12-s + (−0.688 + 0.725i)13-s + (−0.200 + 0.115i)15-s + (−0.125 − 0.216i)16-s + (−0.0859 + 0.148i)17-s + 0.241i·18-s + (−1.45 − 0.842i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1274 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.697 + 0.716i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1274 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.697 + 0.716i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.1961722106\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1961722106\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 7 | \( 1 \) |
| 13 | \( 1 + (2.48 - 2.61i)T \) |
good | 3 | \( 1 + (-0.703 - 1.21i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 - 0.638iT - 5T^{2} \) |
| 11 | \( 1 + (3.93 - 2.27i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (0.354 - 0.613i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (6.36 + 3.67i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (3.25 + 5.63i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (3.63 + 6.29i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 6.63iT - 31T^{2} \) |
| 37 | \( 1 + (1.82 - 1.05i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (4.62 - 2.66i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (5.21 - 9.02i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 1.94iT - 47T^{2} \) |
| 53 | \( 1 + 6.40T + 53T^{2} \) |
| 59 | \( 1 + (2.87 + 1.65i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.41 + 5.91i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.39 + 1.96i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (9.11 + 5.26i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 6.41iT - 73T^{2} \) |
| 79 | \( 1 + 10.9T + 79T^{2} \) |
| 83 | \( 1 + 2.41iT - 83T^{2} \) |
| 89 | \( 1 + (-4.79 + 2.76i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-7.96 - 4.59i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.17306160462094761139411415639, −9.373228254277657772473628861904, −8.635355091624682765373171395106, −7.902761398487052067697116833316, −6.85427493670489361257656226379, −6.39205096112189645980219505187, −4.85413030262843781584008627988, −4.45061829864159195340488706682, −2.97136530395921577102264004903, −2.05191243552983658338279109522,
0.087402431783704131036516152146, 1.68737611478391034324437930332, 2.54263372825883147339425907469, 3.59345006900731779395518512686, 4.97650960499885325516670659633, 5.83362062542605735764590085146, 7.08626192827358403111713670298, 7.70631234662631967679502936139, 8.327848474069392907245631962158, 8.942225000570666085733933124299