Properties

Label 1274.2.g.c.295.1
Level $1274$
Weight $2$
Character 1274.295
Analytic conductor $10.173$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1274,2,Mod(295,1274)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1274, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1274.295"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1274 = 2 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1274.g (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,1,-2,-1,6,2,0,-2,-1,3,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1729412175\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 182)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 295.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1274.295
Dual form 1274.2.g.c.393.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-1.00000 + 1.73205i) q^{3} +(-0.500000 - 0.866025i) q^{4} +3.00000 q^{5} +(1.00000 + 1.73205i) q^{6} -1.00000 q^{8} +(-0.500000 - 0.866025i) q^{9} +(1.50000 - 2.59808i) q^{10} +(3.00000 - 5.19615i) q^{11} +2.00000 q^{12} +(-2.50000 - 2.59808i) q^{13} +(-3.00000 + 5.19615i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-1.50000 - 2.59808i) q^{17} -1.00000 q^{18} +(-2.00000 - 3.46410i) q^{19} +(-1.50000 - 2.59808i) q^{20} +(-3.00000 - 5.19615i) q^{22} +(3.00000 - 5.19615i) q^{23} +(1.00000 - 1.73205i) q^{24} +4.00000 q^{25} +(-3.50000 + 0.866025i) q^{26} -4.00000 q^{27} +(-1.50000 + 2.59808i) q^{29} +(3.00000 + 5.19615i) q^{30} +10.0000 q^{31} +(0.500000 + 0.866025i) q^{32} +(6.00000 + 10.3923i) q^{33} -3.00000 q^{34} +(-0.500000 + 0.866025i) q^{36} +(0.500000 - 0.866025i) q^{37} -4.00000 q^{38} +(7.00000 - 1.73205i) q^{39} -3.00000 q^{40} +(-1.50000 + 2.59808i) q^{41} +(5.00000 + 8.66025i) q^{43} -6.00000 q^{44} +(-1.50000 - 2.59808i) q^{45} +(-3.00000 - 5.19615i) q^{46} +(-1.00000 - 1.73205i) q^{48} +(2.00000 - 3.46410i) q^{50} +6.00000 q^{51} +(-1.00000 + 3.46410i) q^{52} -9.00000 q^{53} +(-2.00000 + 3.46410i) q^{54} +(9.00000 - 15.5885i) q^{55} +8.00000 q^{57} +(1.50000 + 2.59808i) q^{58} +(-3.00000 - 5.19615i) q^{59} +6.00000 q^{60} +(-3.50000 - 6.06218i) q^{61} +(5.00000 - 8.66025i) q^{62} +1.00000 q^{64} +(-7.50000 - 7.79423i) q^{65} +12.0000 q^{66} +(-1.00000 + 1.73205i) q^{67} +(-1.50000 + 2.59808i) q^{68} +(6.00000 + 10.3923i) q^{69} +(0.500000 + 0.866025i) q^{72} +7.00000 q^{73} +(-0.500000 - 0.866025i) q^{74} +(-4.00000 + 6.92820i) q^{75} +(-2.00000 + 3.46410i) q^{76} +(2.00000 - 6.92820i) q^{78} +14.0000 q^{79} +(-1.50000 + 2.59808i) q^{80} +(5.50000 - 9.52628i) q^{81} +(1.50000 + 2.59808i) q^{82} +18.0000 q^{83} +(-4.50000 - 7.79423i) q^{85} +10.0000 q^{86} +(-3.00000 - 5.19615i) q^{87} +(-3.00000 + 5.19615i) q^{88} +(-3.00000 + 5.19615i) q^{89} -3.00000 q^{90} -6.00000 q^{92} +(-10.0000 + 17.3205i) q^{93} +(-6.00000 - 10.3923i) q^{95} -2.00000 q^{96} +(1.00000 + 1.73205i) q^{97} -6.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - 2 q^{3} - q^{4} + 6 q^{5} + 2 q^{6} - 2 q^{8} - q^{9} + 3 q^{10} + 6 q^{11} + 4 q^{12} - 5 q^{13} - 6 q^{15} - q^{16} - 3 q^{17} - 2 q^{18} - 4 q^{19} - 3 q^{20} - 6 q^{22} + 6 q^{23}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1274\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) −1.00000 + 1.73205i −0.577350 + 1.00000i 0.418432 + 0.908248i \(0.362580\pi\)
−0.995782 + 0.0917517i \(0.970753\pi\)
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 3.00000 1.34164 0.670820 0.741620i \(-0.265942\pi\)
0.670820 + 0.741620i \(0.265942\pi\)
\(6\) 1.00000 + 1.73205i 0.408248 + 0.707107i
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 1.50000 2.59808i 0.474342 0.821584i
\(11\) 3.00000 5.19615i 0.904534 1.56670i 0.0829925 0.996550i \(-0.473552\pi\)
0.821541 0.570149i \(-0.193114\pi\)
\(12\) 2.00000 0.577350
\(13\) −2.50000 2.59808i −0.693375 0.720577i
\(14\) 0 0
\(15\) −3.00000 + 5.19615i −0.774597 + 1.34164i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −1.50000 2.59808i −0.363803 0.630126i 0.624780 0.780801i \(-0.285189\pi\)
−0.988583 + 0.150675i \(0.951855\pi\)
\(18\) −1.00000 −0.235702
\(19\) −2.00000 3.46410i −0.458831 0.794719i 0.540068 0.841621i \(-0.318398\pi\)
−0.998899 + 0.0469020i \(0.985065\pi\)
\(20\) −1.50000 2.59808i −0.335410 0.580948i
\(21\) 0 0
\(22\) −3.00000 5.19615i −0.639602 1.10782i
\(23\) 3.00000 5.19615i 0.625543 1.08347i −0.362892 0.931831i \(-0.618211\pi\)
0.988436 0.151642i \(-0.0484560\pi\)
\(24\) 1.00000 1.73205i 0.204124 0.353553i
\(25\) 4.00000 0.800000
\(26\) −3.50000 + 0.866025i −0.686406 + 0.169842i
\(27\) −4.00000 −0.769800
\(28\) 0 0
\(29\) −1.50000 + 2.59808i −0.278543 + 0.482451i −0.971023 0.238987i \(-0.923185\pi\)
0.692480 + 0.721437i \(0.256518\pi\)
\(30\) 3.00000 + 5.19615i 0.547723 + 0.948683i
\(31\) 10.0000 1.79605 0.898027 0.439941i \(-0.145001\pi\)
0.898027 + 0.439941i \(0.145001\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) 6.00000 + 10.3923i 1.04447 + 1.80907i
\(34\) −3.00000 −0.514496
\(35\) 0 0
\(36\) −0.500000 + 0.866025i −0.0833333 + 0.144338i
\(37\) 0.500000 0.866025i 0.0821995 0.142374i −0.821995 0.569495i \(-0.807139\pi\)
0.904194 + 0.427121i \(0.140472\pi\)
\(38\) −4.00000 −0.648886
\(39\) 7.00000 1.73205i 1.12090 0.277350i
\(40\) −3.00000 −0.474342
\(41\) −1.50000 + 2.59808i −0.234261 + 0.405751i −0.959058 0.283211i \(-0.908600\pi\)
0.724797 + 0.688963i \(0.241934\pi\)
\(42\) 0 0
\(43\) 5.00000 + 8.66025i 0.762493 + 1.32068i 0.941562 + 0.336840i \(0.109358\pi\)
−0.179069 + 0.983836i \(0.557309\pi\)
\(44\) −6.00000 −0.904534
\(45\) −1.50000 2.59808i −0.223607 0.387298i
\(46\) −3.00000 5.19615i −0.442326 0.766131i
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) −1.00000 1.73205i −0.144338 0.250000i
\(49\) 0 0
\(50\) 2.00000 3.46410i 0.282843 0.489898i
\(51\) 6.00000 0.840168
\(52\) −1.00000 + 3.46410i −0.138675 + 0.480384i
\(53\) −9.00000 −1.23625 −0.618123 0.786082i \(-0.712106\pi\)
−0.618123 + 0.786082i \(0.712106\pi\)
\(54\) −2.00000 + 3.46410i −0.272166 + 0.471405i
\(55\) 9.00000 15.5885i 1.21356 2.10195i
\(56\) 0 0
\(57\) 8.00000 1.05963
\(58\) 1.50000 + 2.59808i 0.196960 + 0.341144i
\(59\) −3.00000 5.19615i −0.390567 0.676481i 0.601958 0.798528i \(-0.294388\pi\)
−0.992524 + 0.122047i \(0.961054\pi\)
\(60\) 6.00000 0.774597
\(61\) −3.50000 6.06218i −0.448129 0.776182i 0.550135 0.835076i \(-0.314576\pi\)
−0.998264 + 0.0588933i \(0.981243\pi\)
\(62\) 5.00000 8.66025i 0.635001 1.09985i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −7.50000 7.79423i −0.930261 0.966755i
\(66\) 12.0000 1.47710
\(67\) −1.00000 + 1.73205i −0.122169 + 0.211604i −0.920623 0.390453i \(-0.872318\pi\)
0.798454 + 0.602056i \(0.205652\pi\)
\(68\) −1.50000 + 2.59808i −0.181902 + 0.315063i
\(69\) 6.00000 + 10.3923i 0.722315 + 1.25109i
\(70\) 0 0
\(71\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(72\) 0.500000 + 0.866025i 0.0589256 + 0.102062i
\(73\) 7.00000 0.819288 0.409644 0.912245i \(-0.365653\pi\)
0.409644 + 0.912245i \(0.365653\pi\)
\(74\) −0.500000 0.866025i −0.0581238 0.100673i
\(75\) −4.00000 + 6.92820i −0.461880 + 0.800000i
\(76\) −2.00000 + 3.46410i −0.229416 + 0.397360i
\(77\) 0 0
\(78\) 2.00000 6.92820i 0.226455 0.784465i
\(79\) 14.0000 1.57512 0.787562 0.616236i \(-0.211343\pi\)
0.787562 + 0.616236i \(0.211343\pi\)
\(80\) −1.50000 + 2.59808i −0.167705 + 0.290474i
\(81\) 5.50000 9.52628i 0.611111 1.05848i
\(82\) 1.50000 + 2.59808i 0.165647 + 0.286910i
\(83\) 18.0000 1.97576 0.987878 0.155230i \(-0.0496119\pi\)
0.987878 + 0.155230i \(0.0496119\pi\)
\(84\) 0 0
\(85\) −4.50000 7.79423i −0.488094 0.845403i
\(86\) 10.0000 1.07833
\(87\) −3.00000 5.19615i −0.321634 0.557086i
\(88\) −3.00000 + 5.19615i −0.319801 + 0.553912i
\(89\) −3.00000 + 5.19615i −0.317999 + 0.550791i −0.980071 0.198650i \(-0.936344\pi\)
0.662071 + 0.749441i \(0.269678\pi\)
\(90\) −3.00000 −0.316228
\(91\) 0 0
\(92\) −6.00000 −0.625543
\(93\) −10.0000 + 17.3205i −1.03695 + 1.79605i
\(94\) 0 0
\(95\) −6.00000 10.3923i −0.615587 1.06623i
\(96\) −2.00000 −0.204124
\(97\) 1.00000 + 1.73205i 0.101535 + 0.175863i 0.912317 0.409484i \(-0.134291\pi\)
−0.810782 + 0.585348i \(0.800958\pi\)
\(98\) 0 0
\(99\) −6.00000 −0.603023
\(100\) −2.00000 3.46410i −0.200000 0.346410i
\(101\) −1.50000 + 2.59808i −0.149256 + 0.258518i −0.930953 0.365140i \(-0.881021\pi\)
0.781697 + 0.623658i \(0.214354\pi\)
\(102\) 3.00000 5.19615i 0.297044 0.514496i
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) 2.50000 + 2.59808i 0.245145 + 0.254762i
\(105\) 0 0
\(106\) −4.50000 + 7.79423i −0.437079 + 0.757042i
\(107\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(108\) 2.00000 + 3.46410i 0.192450 + 0.333333i
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) −9.00000 15.5885i −0.858116 1.48630i
\(111\) 1.00000 + 1.73205i 0.0949158 + 0.164399i
\(112\) 0 0
\(113\) −1.50000 2.59808i −0.141108 0.244406i 0.786806 0.617200i \(-0.211733\pi\)
−0.927914 + 0.372794i \(0.878400\pi\)
\(114\) 4.00000 6.92820i 0.374634 0.648886i
\(115\) 9.00000 15.5885i 0.839254 1.45363i
\(116\) 3.00000 0.278543
\(117\) −1.00000 + 3.46410i −0.0924500 + 0.320256i
\(118\) −6.00000 −0.552345
\(119\) 0 0
\(120\) 3.00000 5.19615i 0.273861 0.474342i
\(121\) −12.5000 21.6506i −1.13636 1.96824i
\(122\) −7.00000 −0.633750
\(123\) −3.00000 5.19615i −0.270501 0.468521i
\(124\) −5.00000 8.66025i −0.449013 0.777714i
\(125\) −3.00000 −0.268328
\(126\) 0 0
\(127\) −10.0000 + 17.3205i −0.887357 + 1.53695i −0.0443678 + 0.999015i \(0.514127\pi\)
−0.842989 + 0.537931i \(0.819206\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) −20.0000 −1.76090
\(130\) −10.5000 + 2.59808i −0.920911 + 0.227866i
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 6.00000 10.3923i 0.522233 0.904534i
\(133\) 0 0
\(134\) 1.00000 + 1.73205i 0.0863868 + 0.149626i
\(135\) −12.0000 −1.03280
\(136\) 1.50000 + 2.59808i 0.128624 + 0.222783i
\(137\) −1.50000 2.59808i −0.128154 0.221969i 0.794808 0.606861i \(-0.207572\pi\)
−0.922961 + 0.384893i \(0.874238\pi\)
\(138\) 12.0000 1.02151
\(139\) 1.00000 + 1.73205i 0.0848189 + 0.146911i 0.905314 0.424743i \(-0.139635\pi\)
−0.820495 + 0.571654i \(0.806302\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −21.0000 + 5.19615i −1.75611 + 0.434524i
\(144\) 1.00000 0.0833333
\(145\) −4.50000 + 7.79423i −0.373705 + 0.647275i
\(146\) 3.50000 6.06218i 0.289662 0.501709i
\(147\) 0 0
\(148\) −1.00000 −0.0821995
\(149\) 10.5000 + 18.1865i 0.860194 + 1.48990i 0.871742 + 0.489966i \(0.162991\pi\)
−0.0115483 + 0.999933i \(0.503676\pi\)
\(150\) 4.00000 + 6.92820i 0.326599 + 0.565685i
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) 2.00000 + 3.46410i 0.162221 + 0.280976i
\(153\) −1.50000 + 2.59808i −0.121268 + 0.210042i
\(154\) 0 0
\(155\) 30.0000 2.40966
\(156\) −5.00000 5.19615i −0.400320 0.416025i
\(157\) 7.00000 0.558661 0.279330 0.960195i \(-0.409888\pi\)
0.279330 + 0.960195i \(0.409888\pi\)
\(158\) 7.00000 12.1244i 0.556890 0.964562i
\(159\) 9.00000 15.5885i 0.713746 1.23625i
\(160\) 1.50000 + 2.59808i 0.118585 + 0.205396i
\(161\) 0 0
\(162\) −5.50000 9.52628i −0.432121 0.748455i
\(163\) −1.00000 1.73205i −0.0783260 0.135665i 0.824202 0.566296i \(-0.191624\pi\)
−0.902528 + 0.430632i \(0.858291\pi\)
\(164\) 3.00000 0.234261
\(165\) 18.0000 + 31.1769i 1.40130 + 2.42712i
\(166\) 9.00000 15.5885i 0.698535 1.20990i
\(167\) −3.00000 + 5.19615i −0.232147 + 0.402090i −0.958440 0.285295i \(-0.907908\pi\)
0.726293 + 0.687386i \(0.241242\pi\)
\(168\) 0 0
\(169\) −0.500000 + 12.9904i −0.0384615 + 0.999260i
\(170\) −9.00000 −0.690268
\(171\) −2.00000 + 3.46410i −0.152944 + 0.264906i
\(172\) 5.00000 8.66025i 0.381246 0.660338i
\(173\) 3.00000 + 5.19615i 0.228086 + 0.395056i 0.957241 0.289292i \(-0.0934200\pi\)
−0.729155 + 0.684349i \(0.760087\pi\)
\(174\) −6.00000 −0.454859
\(175\) 0 0
\(176\) 3.00000 + 5.19615i 0.226134 + 0.391675i
\(177\) 12.0000 0.901975
\(178\) 3.00000 + 5.19615i 0.224860 + 0.389468i
\(179\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(180\) −1.50000 + 2.59808i −0.111803 + 0.193649i
\(181\) −5.00000 −0.371647 −0.185824 0.982583i \(-0.559495\pi\)
−0.185824 + 0.982583i \(0.559495\pi\)
\(182\) 0 0
\(183\) 14.0000 1.03491
\(184\) −3.00000 + 5.19615i −0.221163 + 0.383065i
\(185\) 1.50000 2.59808i 0.110282 0.191014i
\(186\) 10.0000 + 17.3205i 0.733236 + 1.27000i
\(187\) −18.0000 −1.31629
\(188\) 0 0
\(189\) 0 0
\(190\) −12.0000 −0.870572
\(191\) −9.00000 15.5885i −0.651217 1.12794i −0.982828 0.184525i \(-0.940925\pi\)
0.331611 0.943416i \(-0.392408\pi\)
\(192\) −1.00000 + 1.73205i −0.0721688 + 0.125000i
\(193\) −11.5000 + 19.9186i −0.827788 + 1.43377i 0.0719816 + 0.997406i \(0.477068\pi\)
−0.899770 + 0.436365i \(0.856266\pi\)
\(194\) 2.00000 0.143592
\(195\) 21.0000 5.19615i 1.50384 0.372104i
\(196\) 0 0
\(197\) −9.00000 + 15.5885i −0.641223 + 1.11063i 0.343937 + 0.938993i \(0.388239\pi\)
−0.985160 + 0.171639i \(0.945094\pi\)
\(198\) −3.00000 + 5.19615i −0.213201 + 0.369274i
\(199\) −2.00000 3.46410i −0.141776 0.245564i 0.786389 0.617731i \(-0.211948\pi\)
−0.928166 + 0.372168i \(0.878615\pi\)
\(200\) −4.00000 −0.282843
\(201\) −2.00000 3.46410i −0.141069 0.244339i
\(202\) 1.50000 + 2.59808i 0.105540 + 0.182800i
\(203\) 0 0
\(204\) −3.00000 5.19615i −0.210042 0.363803i
\(205\) −4.50000 + 7.79423i −0.314294 + 0.544373i
\(206\) 2.00000 3.46410i 0.139347 0.241355i
\(207\) −6.00000 −0.417029
\(208\) 3.50000 0.866025i 0.242681 0.0600481i
\(209\) −24.0000 −1.66011
\(210\) 0 0
\(211\) 11.0000 19.0526i 0.757271 1.31163i −0.186966 0.982366i \(-0.559865\pi\)
0.944237 0.329266i \(-0.106801\pi\)
\(212\) 4.50000 + 7.79423i 0.309061 + 0.535310i
\(213\) 0 0
\(214\) 0 0
\(215\) 15.0000 + 25.9808i 1.02299 + 1.77187i
\(216\) 4.00000 0.272166
\(217\) 0 0
\(218\) 1.00000 1.73205i 0.0677285 0.117309i
\(219\) −7.00000 + 12.1244i −0.473016 + 0.819288i
\(220\) −18.0000 −1.21356
\(221\) −3.00000 + 10.3923i −0.201802 + 0.699062i
\(222\) 2.00000 0.134231
\(223\) −14.0000 + 24.2487i −0.937509 + 1.62381i −0.167412 + 0.985887i \(0.553541\pi\)
−0.770097 + 0.637927i \(0.779792\pi\)
\(224\) 0 0
\(225\) −2.00000 3.46410i −0.133333 0.230940i
\(226\) −3.00000 −0.199557
\(227\) −3.00000 5.19615i −0.199117 0.344881i 0.749125 0.662428i \(-0.230474\pi\)
−0.948242 + 0.317547i \(0.897141\pi\)
\(228\) −4.00000 6.92820i −0.264906 0.458831i
\(229\) −14.0000 −0.925146 −0.462573 0.886581i \(-0.653074\pi\)
−0.462573 + 0.886581i \(0.653074\pi\)
\(230\) −9.00000 15.5885i −0.593442 1.02787i
\(231\) 0 0
\(232\) 1.50000 2.59808i 0.0984798 0.170572i
\(233\) −18.0000 −1.17922 −0.589610 0.807688i \(-0.700718\pi\)
−0.589610 + 0.807688i \(0.700718\pi\)
\(234\) 2.50000 + 2.59808i 0.163430 + 0.169842i
\(235\) 0 0
\(236\) −3.00000 + 5.19615i −0.195283 + 0.338241i
\(237\) −14.0000 + 24.2487i −0.909398 + 1.57512i
\(238\) 0 0
\(239\) −6.00000 −0.388108 −0.194054 0.980991i \(-0.562164\pi\)
−0.194054 + 0.980991i \(0.562164\pi\)
\(240\) −3.00000 5.19615i −0.193649 0.335410i
\(241\) 8.50000 + 14.7224i 0.547533 + 0.948355i 0.998443 + 0.0557856i \(0.0177663\pi\)
−0.450910 + 0.892570i \(0.648900\pi\)
\(242\) −25.0000 −1.60706
\(243\) 5.00000 + 8.66025i 0.320750 + 0.555556i
\(244\) −3.50000 + 6.06218i −0.224065 + 0.388091i
\(245\) 0 0
\(246\) −6.00000 −0.382546
\(247\) −4.00000 + 13.8564i −0.254514 + 0.881662i
\(248\) −10.0000 −0.635001
\(249\) −18.0000 + 31.1769i −1.14070 + 1.97576i
\(250\) −1.50000 + 2.59808i −0.0948683 + 0.164317i
\(251\) −6.00000 10.3923i −0.378717 0.655956i 0.612159 0.790735i \(-0.290301\pi\)
−0.990876 + 0.134778i \(0.956968\pi\)
\(252\) 0 0
\(253\) −18.0000 31.1769i −1.13165 1.96008i
\(254\) 10.0000 + 17.3205i 0.627456 + 1.08679i
\(255\) 18.0000 1.12720
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 10.5000 18.1865i 0.654972 1.13444i −0.326929 0.945049i \(-0.606014\pi\)
0.981901 0.189396i \(-0.0606529\pi\)
\(258\) −10.0000 + 17.3205i −0.622573 + 1.07833i
\(259\) 0 0
\(260\) −3.00000 + 10.3923i −0.186052 + 0.644503i
\(261\) 3.00000 0.185695
\(262\) 0 0
\(263\) 3.00000 5.19615i 0.184988 0.320408i −0.758585 0.651575i \(-0.774109\pi\)
0.943572 + 0.331166i \(0.107442\pi\)
\(264\) −6.00000 10.3923i −0.369274 0.639602i
\(265\) −27.0000 −1.65860
\(266\) 0 0
\(267\) −6.00000 10.3923i −0.367194 0.635999i
\(268\) 2.00000 0.122169
\(269\) 9.00000 + 15.5885i 0.548740 + 0.950445i 0.998361 + 0.0572259i \(0.0182255\pi\)
−0.449622 + 0.893219i \(0.648441\pi\)
\(270\) −6.00000 + 10.3923i −0.365148 + 0.632456i
\(271\) 1.00000 1.73205i 0.0607457 0.105215i −0.834053 0.551684i \(-0.813985\pi\)
0.894799 + 0.446469i \(0.147319\pi\)
\(272\) 3.00000 0.181902
\(273\) 0 0
\(274\) −3.00000 −0.181237
\(275\) 12.0000 20.7846i 0.723627 1.25336i
\(276\) 6.00000 10.3923i 0.361158 0.625543i
\(277\) 0.500000 + 0.866025i 0.0300421 + 0.0520344i 0.880656 0.473757i \(-0.157103\pi\)
−0.850613 + 0.525792i \(0.823769\pi\)
\(278\) 2.00000 0.119952
\(279\) −5.00000 8.66025i −0.299342 0.518476i
\(280\) 0 0
\(281\) 27.0000 1.61068 0.805342 0.592810i \(-0.201981\pi\)
0.805342 + 0.592810i \(0.201981\pi\)
\(282\) 0 0
\(283\) −11.0000 + 19.0526i −0.653882 + 1.13256i 0.328291 + 0.944577i \(0.393527\pi\)
−0.982173 + 0.187980i \(0.939806\pi\)
\(284\) 0 0
\(285\) 24.0000 1.42164
\(286\) −6.00000 + 20.7846i −0.354787 + 1.22902i
\(287\) 0 0
\(288\) 0.500000 0.866025i 0.0294628 0.0510310i
\(289\) 4.00000 6.92820i 0.235294 0.407541i
\(290\) 4.50000 + 7.79423i 0.264249 + 0.457693i
\(291\) −4.00000 −0.234484
\(292\) −3.50000 6.06218i −0.204822 0.354762i
\(293\) −1.50000 2.59808i −0.0876309 0.151781i 0.818878 0.573967i \(-0.194596\pi\)
−0.906509 + 0.422186i \(0.861263\pi\)
\(294\) 0 0
\(295\) −9.00000 15.5885i −0.524000 0.907595i
\(296\) −0.500000 + 0.866025i −0.0290619 + 0.0503367i
\(297\) −12.0000 + 20.7846i −0.696311 + 1.20605i
\(298\) 21.0000 1.21650
\(299\) −21.0000 + 5.19615i −1.21446 + 0.300501i
\(300\) 8.00000 0.461880
\(301\) 0 0
\(302\) 4.00000 6.92820i 0.230174 0.398673i
\(303\) −3.00000 5.19615i −0.172345 0.298511i
\(304\) 4.00000 0.229416
\(305\) −10.5000 18.1865i −0.601228 1.04136i
\(306\) 1.50000 + 2.59808i 0.0857493 + 0.148522i
\(307\) 22.0000 1.25561 0.627803 0.778372i \(-0.283954\pi\)
0.627803 + 0.778372i \(0.283954\pi\)
\(308\) 0 0
\(309\) −4.00000 + 6.92820i −0.227552 + 0.394132i
\(310\) 15.0000 25.9808i 0.851943 1.47561i
\(311\) 18.0000 1.02069 0.510343 0.859971i \(-0.329518\pi\)
0.510343 + 0.859971i \(0.329518\pi\)
\(312\) −7.00000 + 1.73205i −0.396297 + 0.0980581i
\(313\) 10.0000 0.565233 0.282617 0.959233i \(-0.408798\pi\)
0.282617 + 0.959233i \(0.408798\pi\)
\(314\) 3.50000 6.06218i 0.197516 0.342108i
\(315\) 0 0
\(316\) −7.00000 12.1244i −0.393781 0.682048i
\(317\) −9.00000 −0.505490 −0.252745 0.967533i \(-0.581333\pi\)
−0.252745 + 0.967533i \(0.581333\pi\)
\(318\) −9.00000 15.5885i −0.504695 0.874157i
\(319\) 9.00000 + 15.5885i 0.503903 + 0.872786i
\(320\) 3.00000 0.167705
\(321\) 0 0
\(322\) 0 0
\(323\) −6.00000 + 10.3923i −0.333849 + 0.578243i
\(324\) −11.0000 −0.611111
\(325\) −10.0000 10.3923i −0.554700 0.576461i
\(326\) −2.00000 −0.110770
\(327\) −2.00000 + 3.46410i −0.110600 + 0.191565i
\(328\) 1.50000 2.59808i 0.0828236 0.143455i
\(329\) 0 0
\(330\) 36.0000 1.98173
\(331\) 5.00000 + 8.66025i 0.274825 + 0.476011i 0.970091 0.242742i \(-0.0780468\pi\)
−0.695266 + 0.718752i \(0.744713\pi\)
\(332\) −9.00000 15.5885i −0.493939 0.855528i
\(333\) −1.00000 −0.0547997
\(334\) 3.00000 + 5.19615i 0.164153 + 0.284321i
\(335\) −3.00000 + 5.19615i −0.163908 + 0.283896i
\(336\) 0 0
\(337\) −13.0000 −0.708155 −0.354078 0.935216i \(-0.615205\pi\)
−0.354078 + 0.935216i \(0.615205\pi\)
\(338\) 11.0000 + 6.92820i 0.598321 + 0.376845i
\(339\) 6.00000 0.325875
\(340\) −4.50000 + 7.79423i −0.244047 + 0.422701i
\(341\) 30.0000 51.9615i 1.62459 2.81387i
\(342\) 2.00000 + 3.46410i 0.108148 + 0.187317i
\(343\) 0 0
\(344\) −5.00000 8.66025i −0.269582 0.466930i
\(345\) 18.0000 + 31.1769i 0.969087 + 1.67851i
\(346\) 6.00000 0.322562
\(347\) 3.00000 + 5.19615i 0.161048 + 0.278944i 0.935245 0.354001i \(-0.115179\pi\)
−0.774197 + 0.632945i \(0.781846\pi\)
\(348\) −3.00000 + 5.19615i −0.160817 + 0.278543i
\(349\) 1.00000 1.73205i 0.0535288 0.0927146i −0.838019 0.545640i \(-0.816286\pi\)
0.891548 + 0.452926i \(0.149620\pi\)
\(350\) 0 0
\(351\) 10.0000 + 10.3923i 0.533761 + 0.554700i
\(352\) 6.00000 0.319801
\(353\) −1.50000 + 2.59808i −0.0798369 + 0.138282i −0.903179 0.429263i \(-0.858773\pi\)
0.823343 + 0.567545i \(0.192107\pi\)
\(354\) 6.00000 10.3923i 0.318896 0.552345i
\(355\) 0 0
\(356\) 6.00000 0.317999
\(357\) 0 0
\(358\) 0 0
\(359\) 12.0000 0.633336 0.316668 0.948536i \(-0.397436\pi\)
0.316668 + 0.948536i \(0.397436\pi\)
\(360\) 1.50000 + 2.59808i 0.0790569 + 0.136931i
\(361\) 1.50000 2.59808i 0.0789474 0.136741i
\(362\) −2.50000 + 4.33013i −0.131397 + 0.227586i
\(363\) 50.0000 2.62432
\(364\) 0 0
\(365\) 21.0000 1.09919
\(366\) 7.00000 12.1244i 0.365896 0.633750i
\(367\) −5.00000 + 8.66025i −0.260998 + 0.452062i −0.966507 0.256639i \(-0.917385\pi\)
0.705509 + 0.708700i \(0.250718\pi\)
\(368\) 3.00000 + 5.19615i 0.156386 + 0.270868i
\(369\) 3.00000 0.156174
\(370\) −1.50000 2.59808i −0.0779813 0.135068i
\(371\) 0 0
\(372\) 20.0000 1.03695
\(373\) 6.50000 + 11.2583i 0.336557 + 0.582934i 0.983783 0.179364i \(-0.0574041\pi\)
−0.647225 + 0.762299i \(0.724071\pi\)
\(374\) −9.00000 + 15.5885i −0.465379 + 0.806060i
\(375\) 3.00000 5.19615i 0.154919 0.268328i
\(376\) 0 0
\(377\) 10.5000 2.59808i 0.540778 0.133808i
\(378\) 0 0
\(379\) −13.0000 + 22.5167i −0.667765 + 1.15660i 0.310763 + 0.950488i \(0.399416\pi\)
−0.978528 + 0.206116i \(0.933918\pi\)
\(380\) −6.00000 + 10.3923i −0.307794 + 0.533114i
\(381\) −20.0000 34.6410i −1.02463 1.77471i
\(382\) −18.0000 −0.920960
\(383\) −9.00000 15.5885i −0.459879 0.796533i 0.539076 0.842257i \(-0.318774\pi\)
−0.998954 + 0.0457244i \(0.985440\pi\)
\(384\) 1.00000 + 1.73205i 0.0510310 + 0.0883883i
\(385\) 0 0
\(386\) 11.5000 + 19.9186i 0.585335 + 1.01383i
\(387\) 5.00000 8.66025i 0.254164 0.440225i
\(388\) 1.00000 1.73205i 0.0507673 0.0879316i
\(389\) −33.0000 −1.67317 −0.836583 0.547840i \(-0.815450\pi\)
−0.836583 + 0.547840i \(0.815450\pi\)
\(390\) 6.00000 20.7846i 0.303822 1.05247i
\(391\) −18.0000 −0.910299
\(392\) 0 0
\(393\) 0 0
\(394\) 9.00000 + 15.5885i 0.453413 + 0.785335i
\(395\) 42.0000 2.11325
\(396\) 3.00000 + 5.19615i 0.150756 + 0.261116i
\(397\) −17.0000 29.4449i −0.853206 1.47780i −0.878300 0.478110i \(-0.841322\pi\)
0.0250943 0.999685i \(-0.492011\pi\)
\(398\) −4.00000 −0.200502
\(399\) 0 0
\(400\) −2.00000 + 3.46410i −0.100000 + 0.173205i
\(401\) −7.50000 + 12.9904i −0.374532 + 0.648709i −0.990257 0.139253i \(-0.955530\pi\)
0.615725 + 0.787961i \(0.288863\pi\)
\(402\) −4.00000 −0.199502
\(403\) −25.0000 25.9808i −1.24534 1.29419i
\(404\) 3.00000 0.149256
\(405\) 16.5000 28.5788i 0.819892 1.42009i
\(406\) 0 0
\(407\) −3.00000 5.19615i −0.148704 0.257564i
\(408\) −6.00000 −0.297044
\(409\) 2.50000 + 4.33013i 0.123617 + 0.214111i 0.921192 0.389109i \(-0.127217\pi\)
−0.797574 + 0.603220i \(0.793884\pi\)
\(410\) 4.50000 + 7.79423i 0.222239 + 0.384930i
\(411\) 6.00000 0.295958
\(412\) −2.00000 3.46410i −0.0985329 0.170664i
\(413\) 0 0
\(414\) −3.00000 + 5.19615i −0.147442 + 0.255377i
\(415\) 54.0000 2.65076
\(416\) 1.00000 3.46410i 0.0490290 0.169842i
\(417\) −4.00000 −0.195881
\(418\) −12.0000 + 20.7846i −0.586939 + 1.01661i
\(419\) 3.00000 5.19615i 0.146560 0.253849i −0.783394 0.621525i \(-0.786513\pi\)
0.929954 + 0.367677i \(0.119847\pi\)
\(420\) 0 0
\(421\) 35.0000 1.70580 0.852898 0.522078i \(-0.174843\pi\)
0.852898 + 0.522078i \(0.174843\pi\)
\(422\) −11.0000 19.0526i −0.535472 0.927464i
\(423\) 0 0
\(424\) 9.00000 0.437079
\(425\) −6.00000 10.3923i −0.291043 0.504101i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 12.0000 41.5692i 0.579365 2.00698i
\(430\) 30.0000 1.44673
\(431\) 6.00000 10.3923i 0.289010 0.500580i −0.684564 0.728953i \(-0.740007\pi\)
0.973574 + 0.228373i \(0.0733406\pi\)
\(432\) 2.00000 3.46410i 0.0962250 0.166667i
\(433\) 2.50000 + 4.33013i 0.120142 + 0.208093i 0.919824 0.392332i \(-0.128332\pi\)
−0.799681 + 0.600425i \(0.794998\pi\)
\(434\) 0 0
\(435\) −9.00000 15.5885i −0.431517 0.747409i
\(436\) −1.00000 1.73205i −0.0478913 0.0829502i
\(437\) −24.0000 −1.14808
\(438\) 7.00000 + 12.1244i 0.334473 + 0.579324i
\(439\) −11.0000 + 19.0526i −0.525001 + 0.909329i 0.474575 + 0.880215i \(0.342602\pi\)
−0.999576 + 0.0291138i \(0.990731\pi\)
\(440\) −9.00000 + 15.5885i −0.429058 + 0.743151i
\(441\) 0 0
\(442\) 7.50000 + 7.79423i 0.356739 + 0.370734i
\(443\) −24.0000 −1.14027 −0.570137 0.821549i \(-0.693110\pi\)
−0.570137 + 0.821549i \(0.693110\pi\)
\(444\) 1.00000 1.73205i 0.0474579 0.0821995i
\(445\) −9.00000 + 15.5885i −0.426641 + 0.738964i
\(446\) 14.0000 + 24.2487i 0.662919 + 1.14821i
\(447\) −42.0000 −1.98653
\(448\) 0 0
\(449\) −15.0000 25.9808i −0.707894 1.22611i −0.965637 0.259895i \(-0.916312\pi\)
0.257743 0.966213i \(-0.417021\pi\)
\(450\) −4.00000 −0.188562
\(451\) 9.00000 + 15.5885i 0.423793 + 0.734032i
\(452\) −1.50000 + 2.59808i −0.0705541 + 0.122203i
\(453\) −8.00000 + 13.8564i −0.375873 + 0.651031i
\(454\) −6.00000 −0.281594
\(455\) 0 0
\(456\) −8.00000 −0.374634
\(457\) 12.5000 21.6506i 0.584725 1.01277i −0.410184 0.912003i \(-0.634536\pi\)
0.994910 0.100771i \(-0.0321310\pi\)
\(458\) −7.00000 + 12.1244i −0.327089 + 0.566534i
\(459\) 6.00000 + 10.3923i 0.280056 + 0.485071i
\(460\) −18.0000 −0.839254
\(461\) 16.5000 + 28.5788i 0.768482 + 1.33105i 0.938386 + 0.345589i \(0.112321\pi\)
−0.169904 + 0.985461i \(0.554346\pi\)
\(462\) 0 0
\(463\) −22.0000 −1.02243 −0.511213 0.859454i \(-0.670804\pi\)
−0.511213 + 0.859454i \(0.670804\pi\)
\(464\) −1.50000 2.59808i −0.0696358 0.120613i
\(465\) −30.0000 + 51.9615i −1.39122 + 2.40966i
\(466\) −9.00000 + 15.5885i −0.416917 + 0.722121i
\(467\) 18.0000 0.832941 0.416470 0.909149i \(-0.363267\pi\)
0.416470 + 0.909149i \(0.363267\pi\)
\(468\) 3.50000 0.866025i 0.161788 0.0400320i
\(469\) 0 0
\(470\) 0 0
\(471\) −7.00000 + 12.1244i −0.322543 + 0.558661i
\(472\) 3.00000 + 5.19615i 0.138086 + 0.239172i
\(473\) 60.0000 2.75880
\(474\) 14.0000 + 24.2487i 0.643041 + 1.11378i
\(475\) −8.00000 13.8564i −0.367065 0.635776i
\(476\) 0 0
\(477\) 4.50000 + 7.79423i 0.206041 + 0.356873i
\(478\) −3.00000 + 5.19615i −0.137217 + 0.237666i
\(479\) 21.0000 36.3731i 0.959514 1.66193i 0.235833 0.971794i \(-0.424218\pi\)
0.723681 0.690134i \(-0.242449\pi\)
\(480\) −6.00000 −0.273861
\(481\) −3.50000 + 0.866025i −0.159586 + 0.0394874i
\(482\) 17.0000 0.774329
\(483\) 0 0
\(484\) −12.5000 + 21.6506i −0.568182 + 0.984120i
\(485\) 3.00000 + 5.19615i 0.136223 + 0.235945i
\(486\) 10.0000 0.453609
\(487\) −16.0000 27.7128i −0.725029 1.25579i −0.958962 0.283535i \(-0.908493\pi\)
0.233933 0.972253i \(-0.424840\pi\)
\(488\) 3.50000 + 6.06218i 0.158438 + 0.274422i
\(489\) 4.00000 0.180886
\(490\) 0 0
\(491\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(492\) −3.00000 + 5.19615i −0.135250 + 0.234261i
\(493\) 9.00000 0.405340
\(494\) 10.0000 + 10.3923i 0.449921 + 0.467572i
\(495\) −18.0000 −0.809040
\(496\) −5.00000 + 8.66025i −0.224507 + 0.388857i
\(497\) 0 0
\(498\) 18.0000 + 31.1769i 0.806599 + 1.39707i
\(499\) −22.0000 −0.984855 −0.492428 0.870353i \(-0.663890\pi\)
−0.492428 + 0.870353i \(0.663890\pi\)
\(500\) 1.50000 + 2.59808i 0.0670820 + 0.116190i
\(501\) −6.00000 10.3923i −0.268060 0.464294i
\(502\) −12.0000 −0.535586
\(503\) −9.00000 15.5885i −0.401290 0.695055i 0.592592 0.805503i \(-0.298105\pi\)
−0.993882 + 0.110448i \(0.964771\pi\)
\(504\) 0 0
\(505\) −4.50000 + 7.79423i −0.200247 + 0.346839i
\(506\) −36.0000 −1.60040
\(507\) −22.0000 13.8564i −0.977054 0.615385i
\(508\) 20.0000 0.887357
\(509\) 10.5000 18.1865i 0.465404 0.806104i −0.533815 0.845601i \(-0.679242\pi\)
0.999220 + 0.0394971i \(0.0125756\pi\)
\(510\) 9.00000 15.5885i 0.398527 0.690268i
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 8.00000 + 13.8564i 0.353209 + 0.611775i
\(514\) −10.5000 18.1865i −0.463135 0.802174i
\(515\) 12.0000 0.528783
\(516\) 10.0000 + 17.3205i 0.440225 + 0.762493i
\(517\) 0 0
\(518\) 0 0
\(519\) −12.0000 −0.526742
\(520\) 7.50000 + 7.79423i 0.328897 + 0.341800i
\(521\) 39.0000 1.70862 0.854311 0.519763i \(-0.173980\pi\)
0.854311 + 0.519763i \(0.173980\pi\)
\(522\) 1.50000 2.59808i 0.0656532 0.113715i
\(523\) −14.0000 + 24.2487i −0.612177 + 1.06032i 0.378695 + 0.925521i \(0.376373\pi\)
−0.990873 + 0.134801i \(0.956961\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −3.00000 5.19615i −0.130806 0.226563i
\(527\) −15.0000 25.9808i −0.653410 1.13174i
\(528\) −12.0000 −0.522233
\(529\) −6.50000 11.2583i −0.282609 0.489493i
\(530\) −13.5000 + 23.3827i −0.586403 + 1.01568i
\(531\) −3.00000 + 5.19615i −0.130189 + 0.225494i
\(532\) 0 0
\(533\) 10.5000 2.59808i 0.454805 0.112535i
\(534\) −12.0000 −0.519291
\(535\) 0 0
\(536\) 1.00000 1.73205i 0.0431934 0.0748132i
\(537\) 0 0
\(538\) 18.0000 0.776035
\(539\) 0 0
\(540\) 6.00000 + 10.3923i 0.258199 + 0.447214i
\(541\) −25.0000 −1.07483 −0.537417 0.843317i \(-0.680600\pi\)
−0.537417 + 0.843317i \(0.680600\pi\)
\(542\) −1.00000 1.73205i −0.0429537 0.0743980i
\(543\) 5.00000 8.66025i 0.214571 0.371647i
\(544\) 1.50000 2.59808i 0.0643120 0.111392i
\(545\) 6.00000 0.257012
\(546\) 0 0
\(547\) −34.0000 −1.45374 −0.726868 0.686778i \(-0.759025\pi\)
−0.726868 + 0.686778i \(0.759025\pi\)
\(548\) −1.50000 + 2.59808i −0.0640768 + 0.110984i
\(549\) −3.50000 + 6.06218i −0.149376 + 0.258727i
\(550\) −12.0000 20.7846i −0.511682 0.886259i
\(551\) 12.0000 0.511217
\(552\) −6.00000 10.3923i −0.255377 0.442326i
\(553\) 0 0
\(554\) 1.00000 0.0424859
\(555\) 3.00000 + 5.19615i 0.127343 + 0.220564i
\(556\) 1.00000 1.73205i 0.0424094 0.0734553i
\(557\) 4.50000 7.79423i 0.190671 0.330252i −0.754802 0.655953i \(-0.772267\pi\)
0.945473 + 0.325701i \(0.105600\pi\)
\(558\) −10.0000 −0.423334
\(559\) 10.0000 34.6410i 0.422955 1.46516i
\(560\) 0 0
\(561\) 18.0000 31.1769i 0.759961 1.31629i
\(562\) 13.5000 23.3827i 0.569463 0.986339i
\(563\) −9.00000 15.5885i −0.379305 0.656975i 0.611656 0.791123i \(-0.290503\pi\)
−0.990961 + 0.134148i \(0.957170\pi\)
\(564\) 0 0
\(565\) −4.50000 7.79423i −0.189316 0.327906i
\(566\) 11.0000 + 19.0526i 0.462364 + 0.800839i
\(567\) 0 0
\(568\) 0 0
\(569\) 9.00000 15.5885i 0.377300 0.653502i −0.613369 0.789797i \(-0.710186\pi\)
0.990668 + 0.136295i \(0.0435194\pi\)
\(570\) 12.0000 20.7846i 0.502625 0.870572i
\(571\) 8.00000 0.334790 0.167395 0.985890i \(-0.446465\pi\)
0.167395 + 0.985890i \(0.446465\pi\)
\(572\) 15.0000 + 15.5885i 0.627182 + 0.651786i
\(573\) 36.0000 1.50392
\(574\) 0 0
\(575\) 12.0000 20.7846i 0.500435 0.866778i
\(576\) −0.500000 0.866025i −0.0208333 0.0360844i
\(577\) 19.0000 0.790980 0.395490 0.918470i \(-0.370575\pi\)
0.395490 + 0.918470i \(0.370575\pi\)
\(578\) −4.00000 6.92820i −0.166378 0.288175i
\(579\) −23.0000 39.8372i −0.955847 1.65558i
\(580\) 9.00000 0.373705
\(581\) 0 0
\(582\) −2.00000 + 3.46410i −0.0829027 + 0.143592i
\(583\) −27.0000 + 46.7654i −1.11823 + 1.93682i
\(584\) −7.00000 −0.289662
\(585\) −3.00000 + 10.3923i −0.124035 + 0.429669i
\(586\) −3.00000 −0.123929
\(587\) −18.0000 + 31.1769i −0.742940 + 1.28681i 0.208212 + 0.978084i \(0.433236\pi\)
−0.951151 + 0.308725i \(0.900098\pi\)
\(588\) 0 0
\(589\) −20.0000 34.6410i −0.824086 1.42736i
\(590\) −18.0000 −0.741048
\(591\) −18.0000 31.1769i −0.740421 1.28245i
\(592\) 0.500000 + 0.866025i 0.0205499 + 0.0355934i
\(593\) 15.0000 0.615976 0.307988 0.951390i \(-0.400344\pi\)
0.307988 + 0.951390i \(0.400344\pi\)
\(594\) 12.0000 + 20.7846i 0.492366 + 0.852803i
\(595\) 0 0
\(596\) 10.5000 18.1865i 0.430097 0.744949i
\(597\) 8.00000 0.327418
\(598\) −6.00000 + 20.7846i −0.245358 + 0.849946i
\(599\) 36.0000 1.47092 0.735460 0.677568i \(-0.236966\pi\)
0.735460 + 0.677568i \(0.236966\pi\)
\(600\) 4.00000 6.92820i 0.163299 0.282843i
\(601\) −9.50000 + 16.4545i −0.387513 + 0.671192i −0.992114 0.125336i \(-0.959999\pi\)
0.604601 + 0.796528i \(0.293332\pi\)
\(602\) 0 0
\(603\) 2.00000 0.0814463
\(604\) −4.00000 6.92820i −0.162758 0.281905i
\(605\) −37.5000 64.9519i −1.52459 2.64067i
\(606\) −6.00000 −0.243733
\(607\) 22.0000 + 38.1051i 0.892952 + 1.54664i 0.836318 + 0.548244i \(0.184703\pi\)
0.0566340 + 0.998395i \(0.481963\pi\)
\(608\) 2.00000 3.46410i 0.0811107 0.140488i
\(609\) 0 0
\(610\) −21.0000 −0.850265
\(611\) 0 0
\(612\) 3.00000 0.121268
\(613\) 6.50000 11.2583i 0.262533 0.454720i −0.704382 0.709821i \(-0.748776\pi\)
0.966914 + 0.255102i \(0.0821090\pi\)
\(614\) 11.0000 19.0526i 0.443924 0.768899i
\(615\) −9.00000 15.5885i −0.362915 0.628587i
\(616\) 0 0
\(617\) 22.5000 + 38.9711i 0.905816 + 1.56892i 0.819818 + 0.572624i \(0.194074\pi\)
0.0859976 + 0.996295i \(0.472592\pi\)
\(618\) 4.00000 + 6.92820i 0.160904 + 0.278693i
\(619\) −26.0000 −1.04503 −0.522514 0.852631i \(-0.675006\pi\)
−0.522514 + 0.852631i \(0.675006\pi\)
\(620\) −15.0000 25.9808i −0.602414 1.04341i
\(621\) −12.0000 + 20.7846i −0.481543 + 0.834058i
\(622\) 9.00000 15.5885i 0.360867 0.625040i
\(623\) 0 0
\(624\) −2.00000 + 6.92820i −0.0800641 + 0.277350i
\(625\) −29.0000 −1.16000
\(626\) 5.00000 8.66025i 0.199840 0.346133i
\(627\) 24.0000 41.5692i 0.958468 1.66011i
\(628\) −3.50000 6.06218i −0.139665 0.241907i
\(629\) −3.00000 −0.119618
\(630\) 0 0
\(631\) 2.00000 + 3.46410i 0.0796187 + 0.137904i 0.903085 0.429461i \(-0.141296\pi\)
−0.823467 + 0.567365i \(0.807963\pi\)
\(632\) −14.0000 −0.556890
\(633\) 22.0000 + 38.1051i 0.874421 + 1.51454i
\(634\) −4.50000 + 7.79423i −0.178718 + 0.309548i
\(635\) −30.0000 + 51.9615i −1.19051 + 2.06203i
\(636\) −18.0000 −0.713746
\(637\) 0 0
\(638\) 18.0000 0.712627
\(639\) 0 0
\(640\) 1.50000 2.59808i 0.0592927 0.102698i
\(641\) 4.50000 + 7.79423i 0.177739 + 0.307854i 0.941106 0.338112i \(-0.109788\pi\)
−0.763367 + 0.645966i \(0.776455\pi\)
\(642\) 0 0
\(643\) −20.0000 34.6410i −0.788723 1.36611i −0.926750 0.375680i \(-0.877409\pi\)
0.138027 0.990429i \(-0.455924\pi\)
\(644\) 0 0
\(645\) −60.0000 −2.36250
\(646\) 6.00000 + 10.3923i 0.236067 + 0.408880i
\(647\) −12.0000 + 20.7846i −0.471769 + 0.817127i −0.999478 0.0322975i \(-0.989718\pi\)
0.527710 + 0.849425i \(0.323051\pi\)
\(648\) −5.50000 + 9.52628i −0.216060 + 0.374228i
\(649\) −36.0000 −1.41312
\(650\) −14.0000 + 3.46410i −0.549125 + 0.135873i
\(651\) 0 0
\(652\) −1.00000 + 1.73205i −0.0391630 + 0.0678323i
\(653\) 3.00000 5.19615i 0.117399 0.203341i −0.801337 0.598213i \(-0.795878\pi\)
0.918736 + 0.394872i \(0.129211\pi\)
\(654\) 2.00000 + 3.46410i 0.0782062 + 0.135457i
\(655\) 0 0
\(656\) −1.50000 2.59808i −0.0585652 0.101438i
\(657\) −3.50000 6.06218i −0.136548 0.236508i
\(658\) 0 0
\(659\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(660\) 18.0000 31.1769i 0.700649 1.21356i
\(661\) 2.50000 4.33013i 0.0972387 0.168422i −0.813302 0.581842i \(-0.802332\pi\)
0.910541 + 0.413419i \(0.135666\pi\)
\(662\) 10.0000 0.388661
\(663\) −15.0000 15.5885i −0.582552 0.605406i
\(664\) −18.0000 −0.698535
\(665\) 0 0
\(666\) −0.500000 + 0.866025i −0.0193746 + 0.0335578i
\(667\) 9.00000 + 15.5885i 0.348481 + 0.603587i
\(668\) 6.00000 0.232147
\(669\) −28.0000 48.4974i −1.08254 1.87502i
\(670\) 3.00000 + 5.19615i 0.115900 + 0.200745i
\(671\) −42.0000 −1.62139
\(672\) 0 0
\(673\) −17.5000 + 30.3109i −0.674575 + 1.16840i 0.302017 + 0.953302i \(0.402340\pi\)
−0.976593 + 0.215096i \(0.930993\pi\)
\(674\) −6.50000 + 11.2583i −0.250371 + 0.433655i
\(675\) −16.0000 −0.615840
\(676\) 11.5000 6.06218i 0.442308 0.233161i
\(677\) −6.00000 −0.230599 −0.115299 0.993331i \(-0.536783\pi\)
−0.115299 + 0.993331i \(0.536783\pi\)
\(678\) 3.00000 5.19615i 0.115214 0.199557i
\(679\) 0 0
\(680\) 4.50000 + 7.79423i 0.172567 + 0.298895i
\(681\) 12.0000 0.459841
\(682\) −30.0000 51.9615i −1.14876 1.98971i
\(683\) 12.0000 + 20.7846i 0.459167 + 0.795301i 0.998917 0.0465244i \(-0.0148145\pi\)
−0.539750 + 0.841825i \(0.681481\pi\)
\(684\) 4.00000 0.152944
\(685\) −4.50000 7.79423i −0.171936 0.297802i
\(686\) 0 0
\(687\) 14.0000 24.2487i 0.534133 0.925146i
\(688\) −10.0000 −0.381246
\(689\) 22.5000 + 23.3827i 0.857182 + 0.890809i
\(690\) 36.0000 1.37050
\(691\) 4.00000 6.92820i 0.152167 0.263561i −0.779857 0.625958i \(-0.784708\pi\)
0.932024 + 0.362397i \(0.118041\pi\)
\(692\) 3.00000 5.19615i 0.114043 0.197528i
\(693\) 0 0
\(694\) 6.00000 0.227757
\(695\) 3.00000 + 5.19615i 0.113796 + 0.197101i
\(696\) 3.00000 + 5.19615i 0.113715 + 0.196960i
\(697\) 9.00000 0.340899
\(698\) −1.00000 1.73205i −0.0378506 0.0655591i
\(699\) 18.0000 31.1769i 0.680823 1.17922i
\(700\) 0 0
\(701\) −30.0000 −1.13308 −0.566542 0.824033i \(-0.691719\pi\)
−0.566542 + 0.824033i \(0.691719\pi\)
\(702\) 14.0000 3.46410i 0.528396 0.130744i
\(703\) −4.00000 −0.150863
\(704\) 3.00000 5.19615i 0.113067 0.195837i
\(705\) 0 0
\(706\) 1.50000 + 2.59808i 0.0564532 + 0.0977799i
\(707\) 0 0
\(708\) −6.00000 10.3923i −0.225494 0.390567i
\(709\) 0.500000 + 0.866025i 0.0187779 + 0.0325243i 0.875262 0.483650i \(-0.160689\pi\)
−0.856484 + 0.516174i \(0.827356\pi\)
\(710\) 0 0
\(711\) −7.00000 12.1244i −0.262521 0.454699i
\(712\) 3.00000 5.19615i 0.112430 0.194734i
\(713\) 30.0000 51.9615i 1.12351 1.94597i
\(714\) 0 0
\(715\) −63.0000 + 15.5885i −2.35607 + 0.582975i
\(716\) 0 0
\(717\) 6.00000 10.3923i 0.224074 0.388108i
\(718\) 6.00000 10.3923i 0.223918 0.387837i
\(719\) −3.00000 5.19615i −0.111881 0.193784i 0.804648 0.593753i \(-0.202354\pi\)
−0.916529 + 0.399969i \(0.869021\pi\)
\(720\) 3.00000 0.111803
\(721\) 0 0
\(722\) −1.50000 2.59808i −0.0558242 0.0966904i
\(723\) −34.0000 −1.26447
\(724\) 2.50000 + 4.33013i 0.0929118 + 0.160928i
\(725\) −6.00000 + 10.3923i −0.222834 + 0.385961i
\(726\) 25.0000 43.3013i 0.927837 1.60706i
\(727\) 16.0000 0.593407 0.296704 0.954970i \(-0.404113\pi\)
0.296704 + 0.954970i \(0.404113\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 10.5000 18.1865i 0.388622 0.673114i
\(731\) 15.0000 25.9808i 0.554795 0.960933i
\(732\) −7.00000 12.1244i −0.258727 0.448129i
\(733\) −17.0000 −0.627909 −0.313955 0.949438i \(-0.601654\pi\)
−0.313955 + 0.949438i \(0.601654\pi\)
\(734\) 5.00000 + 8.66025i 0.184553 + 0.319656i
\(735\) 0 0
\(736\) 6.00000 0.221163
\(737\) 6.00000 + 10.3923i 0.221013 + 0.382805i
\(738\) 1.50000 2.59808i 0.0552158 0.0956365i
\(739\) 8.00000 13.8564i 0.294285 0.509716i −0.680534 0.732717i \(-0.738252\pi\)
0.974818 + 0.223001i \(0.0715853\pi\)
\(740\) −3.00000 −0.110282
\(741\) −20.0000 20.7846i −0.734718 0.763542i
\(742\) 0 0
\(743\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(744\) 10.0000 17.3205i 0.366618 0.635001i
\(745\) 31.5000 + 54.5596i 1.15407 + 1.99891i
\(746\) 13.0000 0.475964
\(747\) −9.00000 15.5885i −0.329293 0.570352i
\(748\) 9.00000 + 15.5885i 0.329073 + 0.569970i
\(749\) 0 0
\(750\) −3.00000 5.19615i −0.109545 0.189737i
\(751\) 23.0000 39.8372i 0.839282 1.45368i −0.0512140 0.998688i \(-0.516309\pi\)
0.890496 0.454991i \(-0.150358\pi\)
\(752\) 0 0
\(753\) 24.0000 0.874609
\(754\) 3.00000 10.3923i 0.109254 0.378465i
\(755\) 24.0000 0.873449
\(756\) 0 0
\(757\) −1.00000 + 1.73205i −0.0363456 + 0.0629525i −0.883626 0.468193i \(-0.844905\pi\)
0.847280 + 0.531146i \(0.178238\pi\)
\(758\) 13.0000 + 22.5167i 0.472181 + 0.817842i
\(759\) 72.0000 2.61343
\(760\) 6.00000 + 10.3923i 0.217643 + 0.376969i
\(761\) 9.00000 + 15.5885i 0.326250 + 0.565081i 0.981764 0.190101i \(-0.0608816\pi\)
−0.655515 + 0.755182i \(0.727548\pi\)
\(762\) −40.0000 −1.44905
\(763\) 0 0
\(764\) −9.00000 + 15.5885i −0.325609 + 0.563971i
\(765\) −4.50000 + 7.79423i −0.162698 + 0.281801i
\(766\) −18.0000 −0.650366
\(767\) −6.00000 + 20.7846i −0.216647 + 0.750489i
\(768\) 2.00000 0.0721688
\(769\) −23.0000 + 39.8372i −0.829401 + 1.43657i 0.0691074 + 0.997609i \(0.477985\pi\)
−0.898509 + 0.438956i \(0.855348\pi\)
\(770\) 0 0
\(771\) 21.0000 + 36.3731i 0.756297 + 1.30994i
\(772\) 23.0000 0.827788
\(773\) 3.00000 + 5.19615i 0.107903 + 0.186893i 0.914920 0.403634i \(-0.132253\pi\)
−0.807018 + 0.590527i \(0.798920\pi\)
\(774\) −5.00000 8.66025i −0.179721 0.311286i
\(775\) 40.0000 1.43684
\(776\) −1.00000 1.73205i −0.0358979 0.0621770i
\(777\) 0 0
\(778\) −16.5000 + 28.5788i −0.591554 + 1.02460i
\(779\) 12.0000 0.429945
\(780\) −15.0000 15.5885i −0.537086 0.558156i
\(781\) 0 0
\(782\) −9.00000 + 15.5885i −0.321839 + 0.557442i
\(783\) 6.00000 10.3923i 0.214423 0.371391i
\(784\) 0 0
\(785\) 21.0000 0.749522
\(786\) 0 0
\(787\) −5.00000 8.66025i −0.178231 0.308705i 0.763044 0.646347i \(-0.223704\pi\)
−0.941275 + 0.337642i \(0.890371\pi\)
\(788\) 18.0000 0.641223
\(789\) 6.00000 + 10.3923i 0.213606 + 0.369976i
\(790\) 21.0000 36.3731i 0.747146 1.29410i
\(791\) 0 0
\(792\) 6.00000 0.213201
\(793\) −7.00000 + 24.2487i −0.248577 + 0.861097i
\(794\) −34.0000 −1.20661
\(795\) 27.0000 46.7654i 0.957591 1.65860i
\(796\) −2.00000 + 3.46410i −0.0708881 + 0.122782i
\(797\) 3.00000 + 5.19615i 0.106265 + 0.184057i 0.914255 0.405140i \(-0.132777\pi\)
−0.807989 + 0.589197i \(0.799444\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 2.00000 + 3.46410i 0.0707107 + 0.122474i
\(801\) 6.00000 0.212000
\(802\) 7.50000 + 12.9904i 0.264834 + 0.458706i
\(803\) 21.0000 36.3731i 0.741074 1.28358i
\(804\) −2.00000 + 3.46410i −0.0705346 + 0.122169i
\(805\) 0 0
\(806\) −35.0000 + 8.66025i −1.23282 + 0.305044i
\(807\) −36.0000 −1.26726
\(808\) 1.50000 2.59808i 0.0527698 0.0914000i
\(809\) −25.5000 + 44.1673i −0.896532 + 1.55284i −0.0646355 + 0.997909i \(0.520588\pi\)
−0.831897 + 0.554930i \(0.812745\pi\)
\(810\) −16.5000 28.5788i −0.579751 1.00416i
\(811\) −26.0000 −0.912983 −0.456492 0.889728i \(-0.650894\pi\)
−0.456492 + 0.889728i \(0.650894\pi\)
\(812\) 0 0
\(813\) 2.00000 + 3.46410i 0.0701431 + 0.121491i
\(814\) −6.00000 −0.210300
\(815\) −3.00000 5.19615i −0.105085 0.182013i
\(816\) −3.00000 + 5.19615i −0.105021 + 0.181902i
\(817\) 20.0000 34.6410i 0.699711 1.21194i
\(818\) 5.00000 0.174821
\(819\) 0 0
\(820\) 9.00000 0.314294
\(821\) 21.0000 36.3731i 0.732905 1.26943i −0.222731 0.974880i \(-0.571497\pi\)
0.955636 0.294549i \(-0.0951694\pi\)
\(822\) 3.00000 5.19615i 0.104637 0.181237i
\(823\) 2.00000 + 3.46410i 0.0697156 + 0.120751i 0.898776 0.438408i \(-0.144457\pi\)
−0.829060 + 0.559159i \(0.811124\pi\)
\(824\) −4.00000 −0.139347
\(825\) 24.0000 + 41.5692i 0.835573 + 1.44725i
\(826\) 0 0
\(827\) 42.0000 1.46048 0.730242 0.683189i \(-0.239408\pi\)
0.730242 + 0.683189i \(0.239408\pi\)
\(828\) 3.00000 + 5.19615i 0.104257 + 0.180579i
\(829\) −3.50000 + 6.06218i −0.121560 + 0.210548i −0.920383 0.391018i \(-0.872123\pi\)
0.798823 + 0.601566i \(0.205456\pi\)
\(830\) 27.0000 46.7654i 0.937184 1.62325i
\(831\) −2.00000 −0.0693792
\(832\) −2.50000 2.59808i −0.0866719 0.0900721i
\(833\) 0 0
\(834\) −2.00000 + 3.46410i −0.0692543 + 0.119952i
\(835\) −9.00000 + 15.5885i −0.311458 + 0.539461i
\(836\) 12.0000 + 20.7846i 0.415029 + 0.718851i
\(837\) −40.0000 −1.38260
\(838\) −3.00000 5.19615i −0.103633 0.179498i
\(839\) 6.00000 + 10.3923i 0.207143 + 0.358782i 0.950813 0.309764i \(-0.100250\pi\)
−0.743670 + 0.668546i \(0.766917\pi\)
\(840\) 0 0
\(841\) 10.0000 + 17.3205i 0.344828 + 0.597259i
\(842\) 17.5000 30.3109i 0.603090 1.04458i
\(843\) −27.0000 + 46.7654i −0.929929 + 1.61068i
\(844\) −22.0000 −0.757271
\(845\) −1.50000 + 38.9711i −0.0516016 + 1.34065i
\(846\) 0 0
\(847\) 0 0
\(848\) 4.50000 7.79423i 0.154531 0.267655i
\(849\) −22.0000 38.1051i −0.755038 1.30776i
\(850\) −12.0000 −0.411597
\(851\) −3.00000 5.19615i −0.102839 0.178122i
\(852\) 0 0
\(853\) 19.0000 0.650548 0.325274 0.945620i \(-0.394544\pi\)
0.325274 + 0.945620i \(0.394544\pi\)
\(854\) 0 0
\(855\) −6.00000 + 10.3923i −0.205196 + 0.355409i
\(856\) 0 0
\(857\) −33.0000 −1.12726 −0.563629 0.826028i \(-0.690595\pi\)
−0.563629 + 0.826028i \(0.690595\pi\)
\(858\) −30.0000 31.1769i −1.02418 1.06436i
\(859\) −14.0000 −0.477674 −0.238837 0.971060i \(-0.576766\pi\)
−0.238837 + 0.971060i \(0.576766\pi\)
\(860\) 15.0000 25.9808i 0.511496 0.885937i
\(861\) 0 0
\(862\) −6.00000 10.3923i −0.204361 0.353963i
\(863\) 54.0000 1.83818 0.919091 0.394046i \(-0.128925\pi\)
0.919091 + 0.394046i \(0.128925\pi\)
\(864\) −2.00000 3.46410i −0.0680414 0.117851i
\(865\) 9.00000 + 15.5885i 0.306009 + 0.530023i
\(866\) 5.00000 0.169907
\(867\) 8.00000 + 13.8564i 0.271694 + 0.470588i
\(868\) 0 0
\(869\) 42.0000 72.7461i 1.42475 2.46774i
\(870\) −18.0000 −0.610257
\(871\) 7.00000 1.73205i 0.237186 0.0586883i
\(872\) −2.00000 −0.0677285
\(873\) 1.00000 1.73205i 0.0338449 0.0586210i
\(874\) −12.0000 + 20.7846i −0.405906 + 0.703050i
\(875\) 0 0
\(876\) 14.0000 0.473016
\(877\) 24.5000 + 42.4352i 0.827306 + 1.43294i 0.900144 + 0.435593i \(0.143461\pi\)
−0.0728377 + 0.997344i \(0.523206\pi\)
\(878\) 11.0000 + 19.0526i 0.371232 + 0.642993i
\(879\) 6.00000 0.202375
\(880\) 9.00000 + 15.5885i 0.303390 + 0.525487i
\(881\) 22.5000 38.9711i 0.758044 1.31297i −0.185802 0.982587i \(-0.559488\pi\)
0.943847 0.330384i \(-0.107178\pi\)
\(882\) 0 0
\(883\) 38.0000 1.27880 0.639401 0.768874i \(-0.279182\pi\)
0.639401 + 0.768874i \(0.279182\pi\)
\(884\) 10.5000 2.59808i 0.353153 0.0873828i
\(885\) 36.0000 1.21013
\(886\) −12.0000 + 20.7846i −0.403148 + 0.698273i
\(887\) −12.0000 + 20.7846i −0.402921 + 0.697879i −0.994077 0.108678i \(-0.965338\pi\)
0.591156 + 0.806557i \(0.298672\pi\)
\(888\) −1.00000 1.73205i −0.0335578 0.0581238i
\(889\) 0 0
\(890\) 9.00000 + 15.5885i 0.301681 + 0.522526i
\(891\) −33.0000 57.1577i −1.10554 1.91485i
\(892\) 28.0000 0.937509
\(893\) 0 0
\(894\) −21.0000 + 36.3731i −0.702345 + 1.21650i
\(895\) 0 0
\(896\) 0 0
\(897\) 12.0000 41.5692i 0.400668 1.38796i
\(898\) −30.0000 −1.00111
\(899\) −15.0000 + 25.9808i −0.500278 + 0.866507i
\(900\) −2.00000 + 3.46410i −0.0666667 + 0.115470i
\(901\) 13.5000 + 23.3827i 0.449750 + 0.778990i
\(902\) 18.0000 0.599334
\(903\) 0 0
\(904\) 1.50000 + 2.59808i 0.0498893 + 0.0864107i
\(905\) −15.0000 −0.498617
\(906\) 8.00000 + 13.8564i 0.265782 + 0.460348i
\(907\) −7.00000 + 12.1244i −0.232431 + 0.402583i −0.958523 0.285015i \(-0.908001\pi\)
0.726092 + 0.687598i \(0.241335\pi\)
\(908\) −3.00000 + 5.19615i −0.0995585 + 0.172440i
\(909\) 3.00000 0.0995037
\(910\) 0 0
\(911\) 12.0000 0.397578 0.198789 0.980042i \(-0.436299\pi\)
0.198789 + 0.980042i \(0.436299\pi\)
\(912\) −4.00000 + 6.92820i −0.132453 + 0.229416i
\(913\) 54.0000 93.5307i 1.78714 3.09542i
\(914\) −12.5000 21.6506i −0.413463 0.716139i
\(915\) 42.0000 1.38848
\(916\) 7.00000 + 12.1244i 0.231287 + 0.400600i
\(917\) 0 0
\(918\) 12.0000 0.396059
\(919\) 8.00000 + 13.8564i 0.263896 + 0.457081i 0.967274 0.253735i \(-0.0816592\pi\)
−0.703378 + 0.710816i \(0.748326\pi\)
\(920\) −9.00000 + 15.5885i −0.296721 + 0.513936i
\(921\) −22.0000 + 38.1051i −0.724925 + 1.25561i
\(922\) 33.0000 1.08680
\(923\) 0 0
\(924\) 0 0
\(925\) 2.00000 3.46410i 0.0657596 0.113899i
\(926\) −11.0000 + 19.0526i −0.361482 + 0.626106i
\(927\) −2.00000 3.46410i −0.0656886 0.113776i
\(928\) −3.00000 −0.0984798
\(929\) 16.5000 + 28.5788i 0.541347 + 0.937641i 0.998827 + 0.0484211i \(0.0154190\pi\)
−0.457480 + 0.889220i \(0.651248\pi\)
\(930\) 30.0000 + 51.9615i 0.983739 + 1.70389i
\(931\) 0 0
\(932\) 9.00000 + 15.5885i 0.294805 + 0.510617i
\(933\) −18.0000 + 31.1769i −0.589294 + 1.02069i
\(934\) 9.00000 15.5885i 0.294489 0.510070i
\(935\) −54.0000 −1.76599
\(936\) 1.00000 3.46410i 0.0326860 0.113228i
\(937\) 19.0000 0.620703 0.310351 0.950622i \(-0.399553\pi\)
0.310351 + 0.950622i \(0.399553\pi\)
\(938\) 0 0
\(939\) −10.0000 + 17.3205i −0.326338 + 0.565233i
\(940\) 0 0
\(941\) −30.0000 −0.977972 −0.488986 0.872292i \(-0.662633\pi\)
−0.488986 + 0.872292i \(0.662633\pi\)
\(942\) 7.00000 + 12.1244i 0.228072 + 0.395033i
\(943\) 9.00000 + 15.5885i 0.293080 + 0.507630i
\(944\) 6.00000 0.195283
\(945\) 0 0
\(946\) 30.0000 51.9615i 0.975384 1.68941i
\(947\) 21.0000 36.3731i 0.682408 1.18197i −0.291835 0.956469i \(-0.594266\pi\)
0.974244 0.225497i \(-0.0724007\pi\)
\(948\) 28.0000 0.909398
\(949\) −17.5000 18.1865i −0.568074 0.590360i
\(950\) −16.0000 −0.519109
\(951\) 9.00000 15.5885i 0.291845 0.505490i
\(952\) 0 0
\(953\) −3.00000 5.19615i −0.0971795 0.168320i 0.813337 0.581793i \(-0.197649\pi\)
−0.910516 + 0.413473i \(0.864315\pi\)
\(954\) 9.00000 0.291386
\(955\) −27.0000 46.7654i −0.873699 1.51329i
\(956\) 3.00000 + 5.19615i 0.0970269 + 0.168056i
\(957\) −36.0000 −1.16371
\(958\) −21.0000 36.3731i −0.678479 1.17516i
\(959\) 0 0
\(960\) −3.00000 + 5.19615i −0.0968246 + 0.167705i
\(961\) 69.0000 2.22581
\(962\) −1.00000 + 3.46410i −0.0322413 + 0.111687i
\(963\) 0 0
\(964\) 8.50000 14.7224i 0.273767 0.474178i
\(965\) −34.5000 + 59.7558i −1.11059 + 1.92361i
\(966\) 0 0
\(967\) −34.0000 −1.09337 −0.546683 0.837340i \(-0.684110\pi\)
−0.546683 + 0.837340i \(0.684110\pi\)
\(968\) 12.5000 + 21.6506i 0.401765 + 0.695878i
\(969\) −12.0000 20.7846i −0.385496 0.667698i
\(970\) 6.00000 0.192648
\(971\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(972\) 5.00000 8.66025i 0.160375 0.277778i
\(973\) 0 0
\(974\) −32.0000 −1.02535
\(975\) 28.0000 6.92820i 0.896718 0.221880i
\(976\) 7.00000 0.224065
\(977\) −25.5000 + 44.1673i −0.815817 + 1.41304i 0.0929223 + 0.995673i \(0.470379\pi\)
−0.908740 + 0.417364i \(0.862954\pi\)
\(978\) 2.00000 3.46410i 0.0639529 0.110770i
\(979\) 18.0000 + 31.1769i 0.575282 + 0.996419i
\(980\) 0 0
\(981\) −1.00000 1.73205i −0.0319275 0.0553001i
\(982\) 0 0
\(983\) 24.0000 0.765481 0.382741 0.923856i \(-0.374980\pi\)
0.382741 + 0.923856i \(0.374980\pi\)
\(984\) 3.00000 + 5.19615i 0.0956365 + 0.165647i
\(985\) −27.0000 + 46.7654i −0.860292 + 1.49007i
\(986\) 4.50000 7.79423i 0.143309 0.248219i
\(987\) 0 0
\(988\) 14.0000 3.46410i 0.445399 0.110208i
\(989\) 60.0000 1.90789
\(990\) −9.00000 + 15.5885i −0.286039 + 0.495434i
\(991\) 5.00000 8.66025i 0.158830 0.275102i −0.775617 0.631204i \(-0.782561\pi\)
0.934447 + 0.356102i \(0.115894\pi\)
\(992\) 5.00000 + 8.66025i 0.158750 + 0.274963i
\(993\) −20.0000 −0.634681
\(994\) 0 0
\(995\) −6.00000 10.3923i −0.190213 0.329458i
\(996\) 36.0000 1.14070
\(997\) 26.5000 + 45.8993i 0.839263 + 1.45365i 0.890511 + 0.454961i \(0.150347\pi\)
−0.0512480 + 0.998686i \(0.516320\pi\)
\(998\) −11.0000 + 19.0526i −0.348199 + 0.603098i
\(999\) −2.00000 + 3.46410i −0.0632772 + 0.109599i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1274.2.g.c.295.1 2
7.2 even 3 1274.2.e.b.165.1 2
7.3 odd 6 1274.2.h.e.373.1 2
7.4 even 3 1274.2.h.l.373.1 2
7.5 odd 6 1274.2.e.k.165.1 2
7.6 odd 2 182.2.g.c.113.1 yes 2
13.3 even 3 inner 1274.2.g.c.393.1 2
21.20 even 2 1638.2.r.m.1387.1 2
28.27 even 2 1456.2.s.a.113.1 2
91.3 odd 6 1274.2.e.k.471.1 2
91.6 even 12 2366.2.d.a.337.2 2
91.16 even 3 1274.2.h.l.263.1 2
91.20 even 12 2366.2.d.a.337.1 2
91.48 odd 6 2366.2.a.a.1.1 1
91.55 odd 6 182.2.g.c.29.1 2
91.68 odd 6 1274.2.h.e.263.1 2
91.69 odd 6 2366.2.a.k.1.1 1
91.81 even 3 1274.2.e.b.471.1 2
273.146 even 6 1638.2.r.m.757.1 2
364.55 even 6 1456.2.s.a.1121.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
182.2.g.c.29.1 2 91.55 odd 6
182.2.g.c.113.1 yes 2 7.6 odd 2
1274.2.e.b.165.1 2 7.2 even 3
1274.2.e.b.471.1 2 91.81 even 3
1274.2.e.k.165.1 2 7.5 odd 6
1274.2.e.k.471.1 2 91.3 odd 6
1274.2.g.c.295.1 2 1.1 even 1 trivial
1274.2.g.c.393.1 2 13.3 even 3 inner
1274.2.h.e.263.1 2 91.68 odd 6
1274.2.h.e.373.1 2 7.3 odd 6
1274.2.h.l.263.1 2 91.16 even 3
1274.2.h.l.373.1 2 7.4 even 3
1456.2.s.a.113.1 2 28.27 even 2
1456.2.s.a.1121.1 2 364.55 even 6
1638.2.r.m.757.1 2 273.146 even 6
1638.2.r.m.1387.1 2 21.20 even 2
2366.2.a.a.1.1 1 91.48 odd 6
2366.2.a.k.1.1 1 91.69 odd 6
2366.2.d.a.337.1 2 91.20 even 12
2366.2.d.a.337.2 2 91.6 even 12