Properties

Label 182.2.g.c.29.1
Level $182$
Weight $2$
Character 182.29
Analytic conductor $1.453$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [182,2,Mod(29,182)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(182, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("182.29"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 182 = 2 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 182.g (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,1,2,-1,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.45327731679\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 29.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 182.29
Dual form 182.2.g.c.113.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(1.00000 + 1.73205i) q^{3} +(-0.500000 + 0.866025i) q^{4} -3.00000 q^{5} +(-1.00000 + 1.73205i) q^{6} +(-0.500000 + 0.866025i) q^{7} -1.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +(-1.50000 - 2.59808i) q^{10} +(3.00000 + 5.19615i) q^{11} -2.00000 q^{12} +(2.50000 - 2.59808i) q^{13} -1.00000 q^{14} +(-3.00000 - 5.19615i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(1.50000 - 2.59808i) q^{17} -1.00000 q^{18} +(2.00000 - 3.46410i) q^{19} +(1.50000 - 2.59808i) q^{20} -2.00000 q^{21} +(-3.00000 + 5.19615i) q^{22} +(3.00000 + 5.19615i) q^{23} +(-1.00000 - 1.73205i) q^{24} +4.00000 q^{25} +(3.50000 + 0.866025i) q^{26} +4.00000 q^{27} +(-0.500000 - 0.866025i) q^{28} +(-1.50000 - 2.59808i) q^{29} +(3.00000 - 5.19615i) q^{30} -10.0000 q^{31} +(0.500000 - 0.866025i) q^{32} +(-6.00000 + 10.3923i) q^{33} +3.00000 q^{34} +(1.50000 - 2.59808i) q^{35} +(-0.500000 - 0.866025i) q^{36} +(0.500000 + 0.866025i) q^{37} +4.00000 q^{38} +(7.00000 + 1.73205i) q^{39} +3.00000 q^{40} +(1.50000 + 2.59808i) q^{41} +(-1.00000 - 1.73205i) q^{42} +(5.00000 - 8.66025i) q^{43} -6.00000 q^{44} +(1.50000 - 2.59808i) q^{45} +(-3.00000 + 5.19615i) q^{46} +(1.00000 - 1.73205i) q^{48} +(-0.500000 - 0.866025i) q^{49} +(2.00000 + 3.46410i) q^{50} +6.00000 q^{51} +(1.00000 + 3.46410i) q^{52} -9.00000 q^{53} +(2.00000 + 3.46410i) q^{54} +(-9.00000 - 15.5885i) q^{55} +(0.500000 - 0.866025i) q^{56} +8.00000 q^{57} +(1.50000 - 2.59808i) q^{58} +(3.00000 - 5.19615i) q^{59} +6.00000 q^{60} +(3.50000 - 6.06218i) q^{61} +(-5.00000 - 8.66025i) q^{62} +(-0.500000 - 0.866025i) q^{63} +1.00000 q^{64} +(-7.50000 + 7.79423i) q^{65} -12.0000 q^{66} +(-1.00000 - 1.73205i) q^{67} +(1.50000 + 2.59808i) q^{68} +(-6.00000 + 10.3923i) q^{69} +3.00000 q^{70} +(0.500000 - 0.866025i) q^{72} -7.00000 q^{73} +(-0.500000 + 0.866025i) q^{74} +(4.00000 + 6.92820i) q^{75} +(2.00000 + 3.46410i) q^{76} -6.00000 q^{77} +(2.00000 + 6.92820i) q^{78} +14.0000 q^{79} +(1.50000 + 2.59808i) q^{80} +(5.50000 + 9.52628i) q^{81} +(-1.50000 + 2.59808i) q^{82} -18.0000 q^{83} +(1.00000 - 1.73205i) q^{84} +(-4.50000 + 7.79423i) q^{85} +10.0000 q^{86} +(3.00000 - 5.19615i) q^{87} +(-3.00000 - 5.19615i) q^{88} +(3.00000 + 5.19615i) q^{89} +3.00000 q^{90} +(1.00000 + 3.46410i) q^{91} -6.00000 q^{92} +(-10.0000 - 17.3205i) q^{93} +(-6.00000 + 10.3923i) q^{95} +2.00000 q^{96} +(-1.00000 + 1.73205i) q^{97} +(0.500000 - 0.866025i) q^{98} -6.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + 2 q^{3} - q^{4} - 6 q^{5} - 2 q^{6} - q^{7} - 2 q^{8} - q^{9} - 3 q^{10} + 6 q^{11} - 4 q^{12} + 5 q^{13} - 2 q^{14} - 6 q^{15} - q^{16} + 3 q^{17} - 2 q^{18} + 4 q^{19} + 3 q^{20} - 4 q^{21}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/182\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(157\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) 1.00000 + 1.73205i 0.577350 + 1.00000i 0.995782 + 0.0917517i \(0.0292466\pi\)
−0.418432 + 0.908248i \(0.637420\pi\)
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −3.00000 −1.34164 −0.670820 0.741620i \(-0.734058\pi\)
−0.670820 + 0.741620i \(0.734058\pi\)
\(6\) −1.00000 + 1.73205i −0.408248 + 0.707107i
\(7\) −0.500000 + 0.866025i −0.188982 + 0.327327i
\(8\) −1.00000 −0.353553
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) −1.50000 2.59808i −0.474342 0.821584i
\(11\) 3.00000 + 5.19615i 0.904534 + 1.56670i 0.821541 + 0.570149i \(0.193114\pi\)
0.0829925 + 0.996550i \(0.473552\pi\)
\(12\) −2.00000 −0.577350
\(13\) 2.50000 2.59808i 0.693375 0.720577i
\(14\) −1.00000 −0.267261
\(15\) −3.00000 5.19615i −0.774597 1.34164i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 1.50000 2.59808i 0.363803 0.630126i −0.624780 0.780801i \(-0.714811\pi\)
0.988583 + 0.150675i \(0.0481447\pi\)
\(18\) −1.00000 −0.235702
\(19\) 2.00000 3.46410i 0.458831 0.794719i −0.540068 0.841621i \(-0.681602\pi\)
0.998899 + 0.0469020i \(0.0149348\pi\)
\(20\) 1.50000 2.59808i 0.335410 0.580948i
\(21\) −2.00000 −0.436436
\(22\) −3.00000 + 5.19615i −0.639602 + 1.10782i
\(23\) 3.00000 + 5.19615i 0.625543 + 1.08347i 0.988436 + 0.151642i \(0.0484560\pi\)
−0.362892 + 0.931831i \(0.618211\pi\)
\(24\) −1.00000 1.73205i −0.204124 0.353553i
\(25\) 4.00000 0.800000
\(26\) 3.50000 + 0.866025i 0.686406 + 0.169842i
\(27\) 4.00000 0.769800
\(28\) −0.500000 0.866025i −0.0944911 0.163663i
\(29\) −1.50000 2.59808i −0.278543 0.482451i 0.692480 0.721437i \(-0.256518\pi\)
−0.971023 + 0.238987i \(0.923185\pi\)
\(30\) 3.00000 5.19615i 0.547723 0.948683i
\(31\) −10.0000 −1.79605 −0.898027 0.439941i \(-0.854999\pi\)
−0.898027 + 0.439941i \(0.854999\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) −6.00000 + 10.3923i −1.04447 + 1.80907i
\(34\) 3.00000 0.514496
\(35\) 1.50000 2.59808i 0.253546 0.439155i
\(36\) −0.500000 0.866025i −0.0833333 0.144338i
\(37\) 0.500000 + 0.866025i 0.0821995 + 0.142374i 0.904194 0.427121i \(-0.140472\pi\)
−0.821995 + 0.569495i \(0.807139\pi\)
\(38\) 4.00000 0.648886
\(39\) 7.00000 + 1.73205i 1.12090 + 0.277350i
\(40\) 3.00000 0.474342
\(41\) 1.50000 + 2.59808i 0.234261 + 0.405751i 0.959058 0.283211i \(-0.0913998\pi\)
−0.724797 + 0.688963i \(0.758066\pi\)
\(42\) −1.00000 1.73205i −0.154303 0.267261i
\(43\) 5.00000 8.66025i 0.762493 1.32068i −0.179069 0.983836i \(-0.557309\pi\)
0.941562 0.336840i \(-0.109358\pi\)
\(44\) −6.00000 −0.904534
\(45\) 1.50000 2.59808i 0.223607 0.387298i
\(46\) −3.00000 + 5.19615i −0.442326 + 0.766131i
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 1.00000 1.73205i 0.144338 0.250000i
\(49\) −0.500000 0.866025i −0.0714286 0.123718i
\(50\) 2.00000 + 3.46410i 0.282843 + 0.489898i
\(51\) 6.00000 0.840168
\(52\) 1.00000 + 3.46410i 0.138675 + 0.480384i
\(53\) −9.00000 −1.23625 −0.618123 0.786082i \(-0.712106\pi\)
−0.618123 + 0.786082i \(0.712106\pi\)
\(54\) 2.00000 + 3.46410i 0.272166 + 0.471405i
\(55\) −9.00000 15.5885i −1.21356 2.10195i
\(56\) 0.500000 0.866025i 0.0668153 0.115728i
\(57\) 8.00000 1.05963
\(58\) 1.50000 2.59808i 0.196960 0.341144i
\(59\) 3.00000 5.19615i 0.390567 0.676481i −0.601958 0.798528i \(-0.705612\pi\)
0.992524 + 0.122047i \(0.0389457\pi\)
\(60\) 6.00000 0.774597
\(61\) 3.50000 6.06218i 0.448129 0.776182i −0.550135 0.835076i \(-0.685424\pi\)
0.998264 + 0.0588933i \(0.0187572\pi\)
\(62\) −5.00000 8.66025i −0.635001 1.09985i
\(63\) −0.500000 0.866025i −0.0629941 0.109109i
\(64\) 1.00000 0.125000
\(65\) −7.50000 + 7.79423i −0.930261 + 0.966755i
\(66\) −12.0000 −1.47710
\(67\) −1.00000 1.73205i −0.122169 0.211604i 0.798454 0.602056i \(-0.205652\pi\)
−0.920623 + 0.390453i \(0.872318\pi\)
\(68\) 1.50000 + 2.59808i 0.181902 + 0.315063i
\(69\) −6.00000 + 10.3923i −0.722315 + 1.25109i
\(70\) 3.00000 0.358569
\(71\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(72\) 0.500000 0.866025i 0.0589256 0.102062i
\(73\) −7.00000 −0.819288 −0.409644 0.912245i \(-0.634347\pi\)
−0.409644 + 0.912245i \(0.634347\pi\)
\(74\) −0.500000 + 0.866025i −0.0581238 + 0.100673i
\(75\) 4.00000 + 6.92820i 0.461880 + 0.800000i
\(76\) 2.00000 + 3.46410i 0.229416 + 0.397360i
\(77\) −6.00000 −0.683763
\(78\) 2.00000 + 6.92820i 0.226455 + 0.784465i
\(79\) 14.0000 1.57512 0.787562 0.616236i \(-0.211343\pi\)
0.787562 + 0.616236i \(0.211343\pi\)
\(80\) 1.50000 + 2.59808i 0.167705 + 0.290474i
\(81\) 5.50000 + 9.52628i 0.611111 + 1.05848i
\(82\) −1.50000 + 2.59808i −0.165647 + 0.286910i
\(83\) −18.0000 −1.97576 −0.987878 0.155230i \(-0.950388\pi\)
−0.987878 + 0.155230i \(0.950388\pi\)
\(84\) 1.00000 1.73205i 0.109109 0.188982i
\(85\) −4.50000 + 7.79423i −0.488094 + 0.845403i
\(86\) 10.0000 1.07833
\(87\) 3.00000 5.19615i 0.321634 0.557086i
\(88\) −3.00000 5.19615i −0.319801 0.553912i
\(89\) 3.00000 + 5.19615i 0.317999 + 0.550791i 0.980071 0.198650i \(-0.0636557\pi\)
−0.662071 + 0.749441i \(0.730322\pi\)
\(90\) 3.00000 0.316228
\(91\) 1.00000 + 3.46410i 0.104828 + 0.363137i
\(92\) −6.00000 −0.625543
\(93\) −10.0000 17.3205i −1.03695 1.79605i
\(94\) 0 0
\(95\) −6.00000 + 10.3923i −0.615587 + 1.06623i
\(96\) 2.00000 0.204124
\(97\) −1.00000 + 1.73205i −0.101535 + 0.175863i −0.912317 0.409484i \(-0.865709\pi\)
0.810782 + 0.585348i \(0.199042\pi\)
\(98\) 0.500000 0.866025i 0.0505076 0.0874818i
\(99\) −6.00000 −0.603023
\(100\) −2.00000 + 3.46410i −0.200000 + 0.346410i
\(101\) 1.50000 + 2.59808i 0.149256 + 0.258518i 0.930953 0.365140i \(-0.118979\pi\)
−0.781697 + 0.623658i \(0.785646\pi\)
\(102\) 3.00000 + 5.19615i 0.297044 + 0.514496i
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) −2.50000 + 2.59808i −0.245145 + 0.254762i
\(105\) 6.00000 0.585540
\(106\) −4.50000 7.79423i −0.437079 0.757042i
\(107\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(108\) −2.00000 + 3.46410i −0.192450 + 0.333333i
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 9.00000 15.5885i 0.858116 1.48630i
\(111\) −1.00000 + 1.73205i −0.0949158 + 0.164399i
\(112\) 1.00000 0.0944911
\(113\) −1.50000 + 2.59808i −0.141108 + 0.244406i −0.927914 0.372794i \(-0.878400\pi\)
0.786806 + 0.617200i \(0.211733\pi\)
\(114\) 4.00000 + 6.92820i 0.374634 + 0.648886i
\(115\) −9.00000 15.5885i −0.839254 1.45363i
\(116\) 3.00000 0.278543
\(117\) 1.00000 + 3.46410i 0.0924500 + 0.320256i
\(118\) 6.00000 0.552345
\(119\) 1.50000 + 2.59808i 0.137505 + 0.238165i
\(120\) 3.00000 + 5.19615i 0.273861 + 0.474342i
\(121\) −12.5000 + 21.6506i −1.13636 + 1.96824i
\(122\) 7.00000 0.633750
\(123\) −3.00000 + 5.19615i −0.270501 + 0.468521i
\(124\) 5.00000 8.66025i 0.449013 0.777714i
\(125\) 3.00000 0.268328
\(126\) 0.500000 0.866025i 0.0445435 0.0771517i
\(127\) −10.0000 17.3205i −0.887357 1.53695i −0.842989 0.537931i \(-0.819206\pi\)
−0.0443678 0.999015i \(-0.514127\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 20.0000 1.76090
\(130\) −10.5000 2.59808i −0.920911 0.227866i
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) −6.00000 10.3923i −0.522233 0.904534i
\(133\) 2.00000 + 3.46410i 0.173422 + 0.300376i
\(134\) 1.00000 1.73205i 0.0863868 0.149626i
\(135\) −12.0000 −1.03280
\(136\) −1.50000 + 2.59808i −0.128624 + 0.222783i
\(137\) −1.50000 + 2.59808i −0.128154 + 0.221969i −0.922961 0.384893i \(-0.874238\pi\)
0.794808 + 0.606861i \(0.207572\pi\)
\(138\) −12.0000 −1.02151
\(139\) −1.00000 + 1.73205i −0.0848189 + 0.146911i −0.905314 0.424743i \(-0.860365\pi\)
0.820495 + 0.571654i \(0.193698\pi\)
\(140\) 1.50000 + 2.59808i 0.126773 + 0.219578i
\(141\) 0 0
\(142\) 0 0
\(143\) 21.0000 + 5.19615i 1.75611 + 0.434524i
\(144\) 1.00000 0.0833333
\(145\) 4.50000 + 7.79423i 0.373705 + 0.647275i
\(146\) −3.50000 6.06218i −0.289662 0.501709i
\(147\) 1.00000 1.73205i 0.0824786 0.142857i
\(148\) −1.00000 −0.0821995
\(149\) 10.5000 18.1865i 0.860194 1.48990i −0.0115483 0.999933i \(-0.503676\pi\)
0.871742 0.489966i \(-0.162991\pi\)
\(150\) −4.00000 + 6.92820i −0.326599 + 0.565685i
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) −2.00000 + 3.46410i −0.162221 + 0.280976i
\(153\) 1.50000 + 2.59808i 0.121268 + 0.210042i
\(154\) −3.00000 5.19615i −0.241747 0.418718i
\(155\) 30.0000 2.40966
\(156\) −5.00000 + 5.19615i −0.400320 + 0.416025i
\(157\) −7.00000 −0.558661 −0.279330 0.960195i \(-0.590112\pi\)
−0.279330 + 0.960195i \(0.590112\pi\)
\(158\) 7.00000 + 12.1244i 0.556890 + 0.964562i
\(159\) −9.00000 15.5885i −0.713746 1.23625i
\(160\) −1.50000 + 2.59808i −0.118585 + 0.205396i
\(161\) −6.00000 −0.472866
\(162\) −5.50000 + 9.52628i −0.432121 + 0.748455i
\(163\) −1.00000 + 1.73205i −0.0783260 + 0.135665i −0.902528 0.430632i \(-0.858291\pi\)
0.824202 + 0.566296i \(0.191624\pi\)
\(164\) −3.00000 −0.234261
\(165\) 18.0000 31.1769i 1.40130 2.42712i
\(166\) −9.00000 15.5885i −0.698535 1.20990i
\(167\) 3.00000 + 5.19615i 0.232147 + 0.402090i 0.958440 0.285295i \(-0.0920916\pi\)
−0.726293 + 0.687386i \(0.758758\pi\)
\(168\) 2.00000 0.154303
\(169\) −0.500000 12.9904i −0.0384615 0.999260i
\(170\) −9.00000 −0.690268
\(171\) 2.00000 + 3.46410i 0.152944 + 0.264906i
\(172\) 5.00000 + 8.66025i 0.381246 + 0.660338i
\(173\) −3.00000 + 5.19615i −0.228086 + 0.395056i −0.957241 0.289292i \(-0.906580\pi\)
0.729155 + 0.684349i \(0.239913\pi\)
\(174\) 6.00000 0.454859
\(175\) −2.00000 + 3.46410i −0.151186 + 0.261861i
\(176\) 3.00000 5.19615i 0.226134 0.391675i
\(177\) 12.0000 0.901975
\(178\) −3.00000 + 5.19615i −0.224860 + 0.389468i
\(179\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(180\) 1.50000 + 2.59808i 0.111803 + 0.193649i
\(181\) 5.00000 0.371647 0.185824 0.982583i \(-0.440505\pi\)
0.185824 + 0.982583i \(0.440505\pi\)
\(182\) −2.50000 + 2.59808i −0.185312 + 0.192582i
\(183\) 14.0000 1.03491
\(184\) −3.00000 5.19615i −0.221163 0.383065i
\(185\) −1.50000 2.59808i −0.110282 0.191014i
\(186\) 10.0000 17.3205i 0.733236 1.27000i
\(187\) 18.0000 1.31629
\(188\) 0 0
\(189\) −2.00000 + 3.46410i −0.145479 + 0.251976i
\(190\) −12.0000 −0.870572
\(191\) −9.00000 + 15.5885i −0.651217 + 1.12794i 0.331611 + 0.943416i \(0.392408\pi\)
−0.982828 + 0.184525i \(0.940925\pi\)
\(192\) 1.00000 + 1.73205i 0.0721688 + 0.125000i
\(193\) −11.5000 19.9186i −0.827788 1.43377i −0.899770 0.436365i \(-0.856266\pi\)
0.0719816 0.997406i \(-0.477068\pi\)
\(194\) −2.00000 −0.143592
\(195\) −21.0000 5.19615i −1.50384 0.372104i
\(196\) 1.00000 0.0714286
\(197\) −9.00000 15.5885i −0.641223 1.11063i −0.985160 0.171639i \(-0.945094\pi\)
0.343937 0.938993i \(-0.388239\pi\)
\(198\) −3.00000 5.19615i −0.213201 0.369274i
\(199\) 2.00000 3.46410i 0.141776 0.245564i −0.786389 0.617731i \(-0.788052\pi\)
0.928166 + 0.372168i \(0.121385\pi\)
\(200\) −4.00000 −0.282843
\(201\) 2.00000 3.46410i 0.141069 0.244339i
\(202\) −1.50000 + 2.59808i −0.105540 + 0.182800i
\(203\) 3.00000 0.210559
\(204\) −3.00000 + 5.19615i −0.210042 + 0.363803i
\(205\) −4.50000 7.79423i −0.314294 0.544373i
\(206\) −2.00000 3.46410i −0.139347 0.241355i
\(207\) −6.00000 −0.417029
\(208\) −3.50000 0.866025i −0.242681 0.0600481i
\(209\) 24.0000 1.66011
\(210\) 3.00000 + 5.19615i 0.207020 + 0.358569i
\(211\) 11.0000 + 19.0526i 0.757271 + 1.31163i 0.944237 + 0.329266i \(0.106801\pi\)
−0.186966 + 0.982366i \(0.559865\pi\)
\(212\) 4.50000 7.79423i 0.309061 0.535310i
\(213\) 0 0
\(214\) 0 0
\(215\) −15.0000 + 25.9808i −1.02299 + 1.77187i
\(216\) −4.00000 −0.272166
\(217\) 5.00000 8.66025i 0.339422 0.587896i
\(218\) 1.00000 + 1.73205i 0.0677285 + 0.117309i
\(219\) −7.00000 12.1244i −0.473016 0.819288i
\(220\) 18.0000 1.21356
\(221\) −3.00000 10.3923i −0.201802 0.699062i
\(222\) −2.00000 −0.134231
\(223\) 14.0000 + 24.2487i 0.937509 + 1.62381i 0.770097 + 0.637927i \(0.220208\pi\)
0.167412 + 0.985887i \(0.446459\pi\)
\(224\) 0.500000 + 0.866025i 0.0334077 + 0.0578638i
\(225\) −2.00000 + 3.46410i −0.133333 + 0.230940i
\(226\) −3.00000 −0.199557
\(227\) 3.00000 5.19615i 0.199117 0.344881i −0.749125 0.662428i \(-0.769526\pi\)
0.948242 + 0.317547i \(0.102859\pi\)
\(228\) −4.00000 + 6.92820i −0.264906 + 0.458831i
\(229\) 14.0000 0.925146 0.462573 0.886581i \(-0.346926\pi\)
0.462573 + 0.886581i \(0.346926\pi\)
\(230\) 9.00000 15.5885i 0.593442 1.02787i
\(231\) −6.00000 10.3923i −0.394771 0.683763i
\(232\) 1.50000 + 2.59808i 0.0984798 + 0.170572i
\(233\) −18.0000 −1.17922 −0.589610 0.807688i \(-0.700718\pi\)
−0.589610 + 0.807688i \(0.700718\pi\)
\(234\) −2.50000 + 2.59808i −0.163430 + 0.169842i
\(235\) 0 0
\(236\) 3.00000 + 5.19615i 0.195283 + 0.338241i
\(237\) 14.0000 + 24.2487i 0.909398 + 1.57512i
\(238\) −1.50000 + 2.59808i −0.0972306 + 0.168408i
\(239\) −6.00000 −0.388108 −0.194054 0.980991i \(-0.562164\pi\)
−0.194054 + 0.980991i \(0.562164\pi\)
\(240\) −3.00000 + 5.19615i −0.193649 + 0.335410i
\(241\) −8.50000 + 14.7224i −0.547533 + 0.948355i 0.450910 + 0.892570i \(0.351100\pi\)
−0.998443 + 0.0557856i \(0.982234\pi\)
\(242\) −25.0000 −1.60706
\(243\) −5.00000 + 8.66025i −0.320750 + 0.555556i
\(244\) 3.50000 + 6.06218i 0.224065 + 0.388091i
\(245\) 1.50000 + 2.59808i 0.0958315 + 0.165985i
\(246\) −6.00000 −0.382546
\(247\) −4.00000 13.8564i −0.254514 0.881662i
\(248\) 10.0000 0.635001
\(249\) −18.0000 31.1769i −1.14070 1.97576i
\(250\) 1.50000 + 2.59808i 0.0948683 + 0.164317i
\(251\) 6.00000 10.3923i 0.378717 0.655956i −0.612159 0.790735i \(-0.709699\pi\)
0.990876 + 0.134778i \(0.0430322\pi\)
\(252\) 1.00000 0.0629941
\(253\) −18.0000 + 31.1769i −1.13165 + 1.96008i
\(254\) 10.0000 17.3205i 0.627456 1.08679i
\(255\) −18.0000 −1.12720
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −10.5000 18.1865i −0.654972 1.13444i −0.981901 0.189396i \(-0.939347\pi\)
0.326929 0.945049i \(-0.393986\pi\)
\(258\) 10.0000 + 17.3205i 0.622573 + 1.07833i
\(259\) −1.00000 −0.0621370
\(260\) −3.00000 10.3923i −0.186052 0.644503i
\(261\) 3.00000 0.185695
\(262\) 0 0
\(263\) 3.00000 + 5.19615i 0.184988 + 0.320408i 0.943572 0.331166i \(-0.107442\pi\)
−0.758585 + 0.651575i \(0.774109\pi\)
\(264\) 6.00000 10.3923i 0.369274 0.639602i
\(265\) 27.0000 1.65860
\(266\) −2.00000 + 3.46410i −0.122628 + 0.212398i
\(267\) −6.00000 + 10.3923i −0.367194 + 0.635999i
\(268\) 2.00000 0.122169
\(269\) −9.00000 + 15.5885i −0.548740 + 0.950445i 0.449622 + 0.893219i \(0.351559\pi\)
−0.998361 + 0.0572259i \(0.981774\pi\)
\(270\) −6.00000 10.3923i −0.365148 0.632456i
\(271\) −1.00000 1.73205i −0.0607457 0.105215i 0.834053 0.551684i \(-0.186015\pi\)
−0.894799 + 0.446469i \(0.852681\pi\)
\(272\) −3.00000 −0.181902
\(273\) −5.00000 + 5.19615i −0.302614 + 0.314485i
\(274\) −3.00000 −0.181237
\(275\) 12.0000 + 20.7846i 0.723627 + 1.25336i
\(276\) −6.00000 10.3923i −0.361158 0.625543i
\(277\) 0.500000 0.866025i 0.0300421 0.0520344i −0.850613 0.525792i \(-0.823769\pi\)
0.880656 + 0.473757i \(0.157103\pi\)
\(278\) −2.00000 −0.119952
\(279\) 5.00000 8.66025i 0.299342 0.518476i
\(280\) −1.50000 + 2.59808i −0.0896421 + 0.155265i
\(281\) 27.0000 1.61068 0.805342 0.592810i \(-0.201981\pi\)
0.805342 + 0.592810i \(0.201981\pi\)
\(282\) 0 0
\(283\) 11.0000 + 19.0526i 0.653882 + 1.13256i 0.982173 + 0.187980i \(0.0601941\pi\)
−0.328291 + 0.944577i \(0.606473\pi\)
\(284\) 0 0
\(285\) −24.0000 −1.42164
\(286\) 6.00000 + 20.7846i 0.354787 + 1.22902i
\(287\) −3.00000 −0.177084
\(288\) 0.500000 + 0.866025i 0.0294628 + 0.0510310i
\(289\) 4.00000 + 6.92820i 0.235294 + 0.407541i
\(290\) −4.50000 + 7.79423i −0.264249 + 0.457693i
\(291\) −4.00000 −0.234484
\(292\) 3.50000 6.06218i 0.204822 0.354762i
\(293\) 1.50000 2.59808i 0.0876309 0.151781i −0.818878 0.573967i \(-0.805404\pi\)
0.906509 + 0.422186i \(0.138737\pi\)
\(294\) 2.00000 0.116642
\(295\) −9.00000 + 15.5885i −0.524000 + 0.907595i
\(296\) −0.500000 0.866025i −0.0290619 0.0503367i
\(297\) 12.0000 + 20.7846i 0.696311 + 1.20605i
\(298\) 21.0000 1.21650
\(299\) 21.0000 + 5.19615i 1.21446 + 0.300501i
\(300\) −8.00000 −0.461880
\(301\) 5.00000 + 8.66025i 0.288195 + 0.499169i
\(302\) 4.00000 + 6.92820i 0.230174 + 0.398673i
\(303\) −3.00000 + 5.19615i −0.172345 + 0.298511i
\(304\) −4.00000 −0.229416
\(305\) −10.5000 + 18.1865i −0.601228 + 1.04136i
\(306\) −1.50000 + 2.59808i −0.0857493 + 0.148522i
\(307\) −22.0000 −1.25561 −0.627803 0.778372i \(-0.716046\pi\)
−0.627803 + 0.778372i \(0.716046\pi\)
\(308\) 3.00000 5.19615i 0.170941 0.296078i
\(309\) −4.00000 6.92820i −0.227552 0.394132i
\(310\) 15.0000 + 25.9808i 0.851943 + 1.47561i
\(311\) −18.0000 −1.02069 −0.510343 0.859971i \(-0.670482\pi\)
−0.510343 + 0.859971i \(0.670482\pi\)
\(312\) −7.00000 1.73205i −0.396297 0.0980581i
\(313\) −10.0000 −0.565233 −0.282617 0.959233i \(-0.591202\pi\)
−0.282617 + 0.959233i \(0.591202\pi\)
\(314\) −3.50000 6.06218i −0.197516 0.342108i
\(315\) 1.50000 + 2.59808i 0.0845154 + 0.146385i
\(316\) −7.00000 + 12.1244i −0.393781 + 0.682048i
\(317\) −9.00000 −0.505490 −0.252745 0.967533i \(-0.581333\pi\)
−0.252745 + 0.967533i \(0.581333\pi\)
\(318\) 9.00000 15.5885i 0.504695 0.874157i
\(319\) 9.00000 15.5885i 0.503903 0.872786i
\(320\) −3.00000 −0.167705
\(321\) 0 0
\(322\) −3.00000 5.19615i −0.167183 0.289570i
\(323\) −6.00000 10.3923i −0.333849 0.578243i
\(324\) −11.0000 −0.611111
\(325\) 10.0000 10.3923i 0.554700 0.576461i
\(326\) −2.00000 −0.110770
\(327\) 2.00000 + 3.46410i 0.110600 + 0.191565i
\(328\) −1.50000 2.59808i −0.0828236 0.143455i
\(329\) 0 0
\(330\) 36.0000 1.98173
\(331\) 5.00000 8.66025i 0.274825 0.476011i −0.695266 0.718752i \(-0.744713\pi\)
0.970091 + 0.242742i \(0.0780468\pi\)
\(332\) 9.00000 15.5885i 0.493939 0.855528i
\(333\) −1.00000 −0.0547997
\(334\) −3.00000 + 5.19615i −0.164153 + 0.284321i
\(335\) 3.00000 + 5.19615i 0.163908 + 0.283896i
\(336\) 1.00000 + 1.73205i 0.0545545 + 0.0944911i
\(337\) −13.0000 −0.708155 −0.354078 0.935216i \(-0.615205\pi\)
−0.354078 + 0.935216i \(0.615205\pi\)
\(338\) 11.0000 6.92820i 0.598321 0.376845i
\(339\) −6.00000 −0.325875
\(340\) −4.50000 7.79423i −0.244047 0.422701i
\(341\) −30.0000 51.9615i −1.62459 2.81387i
\(342\) −2.00000 + 3.46410i −0.108148 + 0.187317i
\(343\) 1.00000 0.0539949
\(344\) −5.00000 + 8.66025i −0.269582 + 0.466930i
\(345\) 18.0000 31.1769i 0.969087 1.67851i
\(346\) −6.00000 −0.322562
\(347\) 3.00000 5.19615i 0.161048 0.278944i −0.774197 0.632945i \(-0.781846\pi\)
0.935245 + 0.354001i \(0.115179\pi\)
\(348\) 3.00000 + 5.19615i 0.160817 + 0.278543i
\(349\) −1.00000 1.73205i −0.0535288 0.0927146i 0.838019 0.545640i \(-0.183714\pi\)
−0.891548 + 0.452926i \(0.850380\pi\)
\(350\) −4.00000 −0.213809
\(351\) 10.0000 10.3923i 0.533761 0.554700i
\(352\) 6.00000 0.319801
\(353\) 1.50000 + 2.59808i 0.0798369 + 0.138282i 0.903179 0.429263i \(-0.141227\pi\)
−0.823343 + 0.567545i \(0.807893\pi\)
\(354\) 6.00000 + 10.3923i 0.318896 + 0.552345i
\(355\) 0 0
\(356\) −6.00000 −0.317999
\(357\) −3.00000 + 5.19615i −0.158777 + 0.275010i
\(358\) 0 0
\(359\) 12.0000 0.633336 0.316668 0.948536i \(-0.397436\pi\)
0.316668 + 0.948536i \(0.397436\pi\)
\(360\) −1.50000 + 2.59808i −0.0790569 + 0.136931i
\(361\) 1.50000 + 2.59808i 0.0789474 + 0.136741i
\(362\) 2.50000 + 4.33013i 0.131397 + 0.227586i
\(363\) −50.0000 −2.62432
\(364\) −3.50000 0.866025i −0.183450 0.0453921i
\(365\) 21.0000 1.09919
\(366\) 7.00000 + 12.1244i 0.365896 + 0.633750i
\(367\) 5.00000 + 8.66025i 0.260998 + 0.452062i 0.966507 0.256639i \(-0.0826151\pi\)
−0.705509 + 0.708700i \(0.749282\pi\)
\(368\) 3.00000 5.19615i 0.156386 0.270868i
\(369\) −3.00000 −0.156174
\(370\) 1.50000 2.59808i 0.0779813 0.135068i
\(371\) 4.50000 7.79423i 0.233628 0.404656i
\(372\) 20.0000 1.03695
\(373\) 6.50000 11.2583i 0.336557 0.582934i −0.647225 0.762299i \(-0.724071\pi\)
0.983783 + 0.179364i \(0.0574041\pi\)
\(374\) 9.00000 + 15.5885i 0.465379 + 0.806060i
\(375\) 3.00000 + 5.19615i 0.154919 + 0.268328i
\(376\) 0 0
\(377\) −10.5000 2.59808i −0.540778 0.133808i
\(378\) −4.00000 −0.205738
\(379\) −13.0000 22.5167i −0.667765 1.15660i −0.978528 0.206116i \(-0.933918\pi\)
0.310763 0.950488i \(-0.399416\pi\)
\(380\) −6.00000 10.3923i −0.307794 0.533114i
\(381\) 20.0000 34.6410i 1.02463 1.77471i
\(382\) −18.0000 −0.920960
\(383\) 9.00000 15.5885i 0.459879 0.796533i −0.539076 0.842257i \(-0.681226\pi\)
0.998954 + 0.0457244i \(0.0145596\pi\)
\(384\) −1.00000 + 1.73205i −0.0510310 + 0.0883883i
\(385\) 18.0000 0.917365
\(386\) 11.5000 19.9186i 0.585335 1.01383i
\(387\) 5.00000 + 8.66025i 0.254164 + 0.440225i
\(388\) −1.00000 1.73205i −0.0507673 0.0879316i
\(389\) −33.0000 −1.67317 −0.836583 0.547840i \(-0.815450\pi\)
−0.836583 + 0.547840i \(0.815450\pi\)
\(390\) −6.00000 20.7846i −0.303822 1.05247i
\(391\) 18.0000 0.910299
\(392\) 0.500000 + 0.866025i 0.0252538 + 0.0437409i
\(393\) 0 0
\(394\) 9.00000 15.5885i 0.453413 0.785335i
\(395\) −42.0000 −2.11325
\(396\) 3.00000 5.19615i 0.150756 0.261116i
\(397\) 17.0000 29.4449i 0.853206 1.47780i −0.0250943 0.999685i \(-0.507989\pi\)
0.878300 0.478110i \(-0.158678\pi\)
\(398\) 4.00000 0.200502
\(399\) −4.00000 + 6.92820i −0.200250 + 0.346844i
\(400\) −2.00000 3.46410i −0.100000 0.173205i
\(401\) −7.50000 12.9904i −0.374532 0.648709i 0.615725 0.787961i \(-0.288863\pi\)
−0.990257 + 0.139253i \(0.955530\pi\)
\(402\) 4.00000 0.199502
\(403\) −25.0000 + 25.9808i −1.24534 + 1.29419i
\(404\) −3.00000 −0.149256
\(405\) −16.5000 28.5788i −0.819892 1.42009i
\(406\) 1.50000 + 2.59808i 0.0744438 + 0.128940i
\(407\) −3.00000 + 5.19615i −0.148704 + 0.257564i
\(408\) −6.00000 −0.297044
\(409\) −2.50000 + 4.33013i −0.123617 + 0.214111i −0.921192 0.389109i \(-0.872783\pi\)
0.797574 + 0.603220i \(0.206116\pi\)
\(410\) 4.50000 7.79423i 0.222239 0.384930i
\(411\) −6.00000 −0.295958
\(412\) 2.00000 3.46410i 0.0985329 0.170664i
\(413\) 3.00000 + 5.19615i 0.147620 + 0.255686i
\(414\) −3.00000 5.19615i −0.147442 0.255377i
\(415\) 54.0000 2.65076
\(416\) −1.00000 3.46410i −0.0490290 0.169842i
\(417\) −4.00000 −0.195881
\(418\) 12.0000 + 20.7846i 0.586939 + 1.01661i
\(419\) −3.00000 5.19615i −0.146560 0.253849i 0.783394 0.621525i \(-0.213487\pi\)
−0.929954 + 0.367677i \(0.880153\pi\)
\(420\) −3.00000 + 5.19615i −0.146385 + 0.253546i
\(421\) 35.0000 1.70580 0.852898 0.522078i \(-0.174843\pi\)
0.852898 + 0.522078i \(0.174843\pi\)
\(422\) −11.0000 + 19.0526i −0.535472 + 0.927464i
\(423\) 0 0
\(424\) 9.00000 0.437079
\(425\) 6.00000 10.3923i 0.291043 0.504101i
\(426\) 0 0
\(427\) 3.50000 + 6.06218i 0.169377 + 0.293369i
\(428\) 0 0
\(429\) 12.0000 + 41.5692i 0.579365 + 2.00698i
\(430\) −30.0000 −1.44673
\(431\) 6.00000 + 10.3923i 0.289010 + 0.500580i 0.973574 0.228373i \(-0.0733406\pi\)
−0.684564 + 0.728953i \(0.740007\pi\)
\(432\) −2.00000 3.46410i −0.0962250 0.166667i
\(433\) −2.50000 + 4.33013i −0.120142 + 0.208093i −0.919824 0.392332i \(-0.871668\pi\)
0.799681 + 0.600425i \(0.205002\pi\)
\(434\) 10.0000 0.480015
\(435\) −9.00000 + 15.5885i −0.431517 + 0.747409i
\(436\) −1.00000 + 1.73205i −0.0478913 + 0.0829502i
\(437\) 24.0000 1.14808
\(438\) 7.00000 12.1244i 0.334473 0.579324i
\(439\) 11.0000 + 19.0526i 0.525001 + 0.909329i 0.999576 + 0.0291138i \(0.00926853\pi\)
−0.474575 + 0.880215i \(0.657398\pi\)
\(440\) 9.00000 + 15.5885i 0.429058 + 0.743151i
\(441\) 1.00000 0.0476190
\(442\) 7.50000 7.79423i 0.356739 0.370734i
\(443\) −24.0000 −1.14027 −0.570137 0.821549i \(-0.693110\pi\)
−0.570137 + 0.821549i \(0.693110\pi\)
\(444\) −1.00000 1.73205i −0.0474579 0.0821995i
\(445\) −9.00000 15.5885i −0.426641 0.738964i
\(446\) −14.0000 + 24.2487i −0.662919 + 1.14821i
\(447\) 42.0000 1.98653
\(448\) −0.500000 + 0.866025i −0.0236228 + 0.0409159i
\(449\) −15.0000 + 25.9808i −0.707894 + 1.22611i 0.257743 + 0.966213i \(0.417021\pi\)
−0.965637 + 0.259895i \(0.916312\pi\)
\(450\) −4.00000 −0.188562
\(451\) −9.00000 + 15.5885i −0.423793 + 0.734032i
\(452\) −1.50000 2.59808i −0.0705541 0.122203i
\(453\) 8.00000 + 13.8564i 0.375873 + 0.651031i
\(454\) 6.00000 0.281594
\(455\) −3.00000 10.3923i −0.140642 0.487199i
\(456\) −8.00000 −0.374634
\(457\) 12.5000 + 21.6506i 0.584725 + 1.01277i 0.994910 + 0.100771i \(0.0321310\pi\)
−0.410184 + 0.912003i \(0.634536\pi\)
\(458\) 7.00000 + 12.1244i 0.327089 + 0.566534i
\(459\) 6.00000 10.3923i 0.280056 0.485071i
\(460\) 18.0000 0.839254
\(461\) −16.5000 + 28.5788i −0.768482 + 1.33105i 0.169904 + 0.985461i \(0.445654\pi\)
−0.938386 + 0.345589i \(0.887679\pi\)
\(462\) 6.00000 10.3923i 0.279145 0.483494i
\(463\) −22.0000 −1.02243 −0.511213 0.859454i \(-0.670804\pi\)
−0.511213 + 0.859454i \(0.670804\pi\)
\(464\) −1.50000 + 2.59808i −0.0696358 + 0.120613i
\(465\) 30.0000 + 51.9615i 1.39122 + 2.40966i
\(466\) −9.00000 15.5885i −0.416917 0.722121i
\(467\) −18.0000 −0.832941 −0.416470 0.909149i \(-0.636733\pi\)
−0.416470 + 0.909149i \(0.636733\pi\)
\(468\) −3.50000 0.866025i −0.161788 0.0400320i
\(469\) 2.00000 0.0923514
\(470\) 0 0
\(471\) −7.00000 12.1244i −0.322543 0.558661i
\(472\) −3.00000 + 5.19615i −0.138086 + 0.239172i
\(473\) 60.0000 2.75880
\(474\) −14.0000 + 24.2487i −0.643041 + 1.11378i
\(475\) 8.00000 13.8564i 0.367065 0.635776i
\(476\) −3.00000 −0.137505
\(477\) 4.50000 7.79423i 0.206041 0.356873i
\(478\) −3.00000 5.19615i −0.137217 0.237666i
\(479\) −21.0000 36.3731i −0.959514 1.66193i −0.723681 0.690134i \(-0.757551\pi\)
−0.235833 0.971794i \(-0.575782\pi\)
\(480\) −6.00000 −0.273861
\(481\) 3.50000 + 0.866025i 0.159586 + 0.0394874i
\(482\) −17.0000 −0.774329
\(483\) −6.00000 10.3923i −0.273009 0.472866i
\(484\) −12.5000 21.6506i −0.568182 0.984120i
\(485\) 3.00000 5.19615i 0.136223 0.235945i
\(486\) −10.0000 −0.453609
\(487\) −16.0000 + 27.7128i −0.725029 + 1.25579i 0.233933 + 0.972253i \(0.424840\pi\)
−0.958962 + 0.283535i \(0.908493\pi\)
\(488\) −3.50000 + 6.06218i −0.158438 + 0.274422i
\(489\) −4.00000 −0.180886
\(490\) −1.50000 + 2.59808i −0.0677631 + 0.117369i
\(491\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(492\) −3.00000 5.19615i −0.135250 0.234261i
\(493\) −9.00000 −0.405340
\(494\) 10.0000 10.3923i 0.449921 0.467572i
\(495\) 18.0000 0.809040
\(496\) 5.00000 + 8.66025i 0.224507 + 0.388857i
\(497\) 0 0
\(498\) 18.0000 31.1769i 0.806599 1.39707i
\(499\) −22.0000 −0.984855 −0.492428 0.870353i \(-0.663890\pi\)
−0.492428 + 0.870353i \(0.663890\pi\)
\(500\) −1.50000 + 2.59808i −0.0670820 + 0.116190i
\(501\) −6.00000 + 10.3923i −0.268060 + 0.464294i
\(502\) 12.0000 0.535586
\(503\) 9.00000 15.5885i 0.401290 0.695055i −0.592592 0.805503i \(-0.701895\pi\)
0.993882 + 0.110448i \(0.0352286\pi\)
\(504\) 0.500000 + 0.866025i 0.0222718 + 0.0385758i
\(505\) −4.50000 7.79423i −0.200247 0.346839i
\(506\) −36.0000 −1.60040
\(507\) 22.0000 13.8564i 0.977054 0.615385i
\(508\) 20.0000 0.887357
\(509\) −10.5000 18.1865i −0.465404 0.806104i 0.533815 0.845601i \(-0.320758\pi\)
−0.999220 + 0.0394971i \(0.987424\pi\)
\(510\) −9.00000 15.5885i −0.398527 0.690268i
\(511\) 3.50000 6.06218i 0.154831 0.268175i
\(512\) −1.00000 −0.0441942
\(513\) 8.00000 13.8564i 0.353209 0.611775i
\(514\) 10.5000 18.1865i 0.463135 0.802174i
\(515\) 12.0000 0.528783
\(516\) −10.0000 + 17.3205i −0.440225 + 0.762493i
\(517\) 0 0
\(518\) −0.500000 0.866025i −0.0219687 0.0380510i
\(519\) −12.0000 −0.526742
\(520\) 7.50000 7.79423i 0.328897 0.341800i
\(521\) −39.0000 −1.70862 −0.854311 0.519763i \(-0.826020\pi\)
−0.854311 + 0.519763i \(0.826020\pi\)
\(522\) 1.50000 + 2.59808i 0.0656532 + 0.113715i
\(523\) 14.0000 + 24.2487i 0.612177 + 1.06032i 0.990873 + 0.134801i \(0.0430394\pi\)
−0.378695 + 0.925521i \(0.623627\pi\)
\(524\) 0 0
\(525\) −8.00000 −0.349149
\(526\) −3.00000 + 5.19615i −0.130806 + 0.226563i
\(527\) −15.0000 + 25.9808i −0.653410 + 1.13174i
\(528\) 12.0000 0.522233
\(529\) −6.50000 + 11.2583i −0.282609 + 0.489493i
\(530\) 13.5000 + 23.3827i 0.586403 + 1.01568i
\(531\) 3.00000 + 5.19615i 0.130189 + 0.225494i
\(532\) −4.00000 −0.173422
\(533\) 10.5000 + 2.59808i 0.454805 + 0.112535i
\(534\) −12.0000 −0.519291
\(535\) 0 0
\(536\) 1.00000 + 1.73205i 0.0431934 + 0.0748132i
\(537\) 0 0
\(538\) −18.0000 −0.776035
\(539\) 3.00000 5.19615i 0.129219 0.223814i
\(540\) 6.00000 10.3923i 0.258199 0.447214i
\(541\) −25.0000 −1.07483 −0.537417 0.843317i \(-0.680600\pi\)
−0.537417 + 0.843317i \(0.680600\pi\)
\(542\) 1.00000 1.73205i 0.0429537 0.0743980i
\(543\) 5.00000 + 8.66025i 0.214571 + 0.371647i
\(544\) −1.50000 2.59808i −0.0643120 0.111392i
\(545\) −6.00000 −0.257012
\(546\) −7.00000 1.73205i −0.299572 0.0741249i
\(547\) −34.0000 −1.45374 −0.726868 0.686778i \(-0.759025\pi\)
−0.726868 + 0.686778i \(0.759025\pi\)
\(548\) −1.50000 2.59808i −0.0640768 0.110984i
\(549\) 3.50000 + 6.06218i 0.149376 + 0.258727i
\(550\) −12.0000 + 20.7846i −0.511682 + 0.886259i
\(551\) −12.0000 −0.511217
\(552\) 6.00000 10.3923i 0.255377 0.442326i
\(553\) −7.00000 + 12.1244i −0.297670 + 0.515580i
\(554\) 1.00000 0.0424859
\(555\) 3.00000 5.19615i 0.127343 0.220564i
\(556\) −1.00000 1.73205i −0.0424094 0.0734553i
\(557\) 4.50000 + 7.79423i 0.190671 + 0.330252i 0.945473 0.325701i \(-0.105600\pi\)
−0.754802 + 0.655953i \(0.772267\pi\)
\(558\) 10.0000 0.423334
\(559\) −10.0000 34.6410i −0.422955 1.46516i
\(560\) −3.00000 −0.126773
\(561\) 18.0000 + 31.1769i 0.759961 + 1.31629i
\(562\) 13.5000 + 23.3827i 0.569463 + 0.986339i
\(563\) 9.00000 15.5885i 0.379305 0.656975i −0.611656 0.791123i \(-0.709497\pi\)
0.990961 + 0.134148i \(0.0428299\pi\)
\(564\) 0 0
\(565\) 4.50000 7.79423i 0.189316 0.327906i
\(566\) −11.0000 + 19.0526i −0.462364 + 0.800839i
\(567\) −11.0000 −0.461957
\(568\) 0 0
\(569\) 9.00000 + 15.5885i 0.377300 + 0.653502i 0.990668 0.136295i \(-0.0435194\pi\)
−0.613369 + 0.789797i \(0.710186\pi\)
\(570\) −12.0000 20.7846i −0.502625 0.870572i
\(571\) 8.00000 0.334790 0.167395 0.985890i \(-0.446465\pi\)
0.167395 + 0.985890i \(0.446465\pi\)
\(572\) −15.0000 + 15.5885i −0.627182 + 0.651786i
\(573\) −36.0000 −1.50392
\(574\) −1.50000 2.59808i −0.0626088 0.108442i
\(575\) 12.0000 + 20.7846i 0.500435 + 0.866778i
\(576\) −0.500000 + 0.866025i −0.0208333 + 0.0360844i
\(577\) −19.0000 −0.790980 −0.395490 0.918470i \(-0.629425\pi\)
−0.395490 + 0.918470i \(0.629425\pi\)
\(578\) −4.00000 + 6.92820i −0.166378 + 0.288175i
\(579\) 23.0000 39.8372i 0.955847 1.65558i
\(580\) −9.00000 −0.373705
\(581\) 9.00000 15.5885i 0.373383 0.646718i
\(582\) −2.00000 3.46410i −0.0829027 0.143592i
\(583\) −27.0000 46.7654i −1.11823 1.93682i
\(584\) 7.00000 0.289662
\(585\) −3.00000 10.3923i −0.124035 0.429669i
\(586\) 3.00000 0.123929
\(587\) 18.0000 + 31.1769i 0.742940 + 1.28681i 0.951151 + 0.308725i \(0.0999023\pi\)
−0.208212 + 0.978084i \(0.566764\pi\)
\(588\) 1.00000 + 1.73205i 0.0412393 + 0.0714286i
\(589\) −20.0000 + 34.6410i −0.824086 + 1.42736i
\(590\) −18.0000 −0.741048
\(591\) 18.0000 31.1769i 0.740421 1.28245i
\(592\) 0.500000 0.866025i 0.0205499 0.0355934i
\(593\) −15.0000 −0.615976 −0.307988 0.951390i \(-0.599656\pi\)
−0.307988 + 0.951390i \(0.599656\pi\)
\(594\) −12.0000 + 20.7846i −0.492366 + 0.852803i
\(595\) −4.50000 7.79423i −0.184482 0.319532i
\(596\) 10.5000 + 18.1865i 0.430097 + 0.744949i
\(597\) 8.00000 0.327418
\(598\) 6.00000 + 20.7846i 0.245358 + 0.849946i
\(599\) 36.0000 1.47092 0.735460 0.677568i \(-0.236966\pi\)
0.735460 + 0.677568i \(0.236966\pi\)
\(600\) −4.00000 6.92820i −0.163299 0.282843i
\(601\) 9.50000 + 16.4545i 0.387513 + 0.671192i 0.992114 0.125336i \(-0.0400009\pi\)
−0.604601 + 0.796528i \(0.706668\pi\)
\(602\) −5.00000 + 8.66025i −0.203785 + 0.352966i
\(603\) 2.00000 0.0814463
\(604\) −4.00000 + 6.92820i −0.162758 + 0.281905i
\(605\) 37.5000 64.9519i 1.52459 2.64067i
\(606\) −6.00000 −0.243733
\(607\) −22.0000 + 38.1051i −0.892952 + 1.54664i −0.0566340 + 0.998395i \(0.518037\pi\)
−0.836318 + 0.548244i \(0.815297\pi\)
\(608\) −2.00000 3.46410i −0.0811107 0.140488i
\(609\) 3.00000 + 5.19615i 0.121566 + 0.210559i
\(610\) −21.0000 −0.850265
\(611\) 0 0
\(612\) −3.00000 −0.121268
\(613\) 6.50000 + 11.2583i 0.262533 + 0.454720i 0.966914 0.255102i \(-0.0821090\pi\)
−0.704382 + 0.709821i \(0.748776\pi\)
\(614\) −11.0000 19.0526i −0.443924 0.768899i
\(615\) 9.00000 15.5885i 0.362915 0.628587i
\(616\) 6.00000 0.241747
\(617\) 22.5000 38.9711i 0.905816 1.56892i 0.0859976 0.996295i \(-0.472592\pi\)
0.819818 0.572624i \(-0.194074\pi\)
\(618\) 4.00000 6.92820i 0.160904 0.278693i
\(619\) 26.0000 1.04503 0.522514 0.852631i \(-0.324994\pi\)
0.522514 + 0.852631i \(0.324994\pi\)
\(620\) −15.0000 + 25.9808i −0.602414 + 1.04341i
\(621\) 12.0000 + 20.7846i 0.481543 + 0.834058i
\(622\) −9.00000 15.5885i −0.360867 0.625040i
\(623\) −6.00000 −0.240385
\(624\) −2.00000 6.92820i −0.0800641 0.277350i
\(625\) −29.0000 −1.16000
\(626\) −5.00000 8.66025i −0.199840 0.346133i
\(627\) 24.0000 + 41.5692i 0.958468 + 1.66011i
\(628\) 3.50000 6.06218i 0.139665 0.241907i
\(629\) 3.00000 0.119618
\(630\) −1.50000 + 2.59808i −0.0597614 + 0.103510i
\(631\) 2.00000 3.46410i 0.0796187 0.137904i −0.823467 0.567365i \(-0.807963\pi\)
0.903085 + 0.429461i \(0.141296\pi\)
\(632\) −14.0000 −0.556890
\(633\) −22.0000 + 38.1051i −0.874421 + 1.51454i
\(634\) −4.50000 7.79423i −0.178718 0.309548i
\(635\) 30.0000 + 51.9615i 1.19051 + 2.06203i
\(636\) 18.0000 0.713746
\(637\) −3.50000 0.866025i −0.138675 0.0343132i
\(638\) 18.0000 0.712627
\(639\) 0 0
\(640\) −1.50000 2.59808i −0.0592927 0.102698i
\(641\) 4.50000 7.79423i 0.177739 0.307854i −0.763367 0.645966i \(-0.776455\pi\)
0.941106 + 0.338112i \(0.109788\pi\)
\(642\) 0 0
\(643\) 20.0000 34.6410i 0.788723 1.36611i −0.138027 0.990429i \(-0.544076\pi\)
0.926750 0.375680i \(-0.122591\pi\)
\(644\) 3.00000 5.19615i 0.118217 0.204757i
\(645\) −60.0000 −2.36250
\(646\) 6.00000 10.3923i 0.236067 0.408880i
\(647\) 12.0000 + 20.7846i 0.471769 + 0.817127i 0.999478 0.0322975i \(-0.0102824\pi\)
−0.527710 + 0.849425i \(0.676949\pi\)
\(648\) −5.50000 9.52628i −0.216060 0.374228i
\(649\) 36.0000 1.41312
\(650\) 14.0000 + 3.46410i 0.549125 + 0.135873i
\(651\) 20.0000 0.783862
\(652\) −1.00000 1.73205i −0.0391630 0.0678323i
\(653\) 3.00000 + 5.19615i 0.117399 + 0.203341i 0.918736 0.394872i \(-0.129211\pi\)
−0.801337 + 0.598213i \(0.795878\pi\)
\(654\) −2.00000 + 3.46410i −0.0782062 + 0.135457i
\(655\) 0 0
\(656\) 1.50000 2.59808i 0.0585652 0.101438i
\(657\) 3.50000 6.06218i 0.136548 0.236508i
\(658\) 0 0
\(659\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(660\) 18.0000 + 31.1769i 0.700649 + 1.21356i
\(661\) −2.50000 4.33013i −0.0972387 0.168422i 0.813302 0.581842i \(-0.197668\pi\)
−0.910541 + 0.413419i \(0.864334\pi\)
\(662\) 10.0000 0.388661
\(663\) 15.0000 15.5885i 0.582552 0.605406i
\(664\) 18.0000 0.698535
\(665\) −6.00000 10.3923i −0.232670 0.402996i
\(666\) −0.500000 0.866025i −0.0193746 0.0335578i
\(667\) 9.00000 15.5885i 0.348481 0.603587i
\(668\) −6.00000 −0.232147
\(669\) −28.0000 + 48.4974i −1.08254 + 1.87502i
\(670\) −3.00000 + 5.19615i −0.115900 + 0.200745i
\(671\) 42.0000 1.62139
\(672\) −1.00000 + 1.73205i −0.0385758 + 0.0668153i
\(673\) −17.5000 30.3109i −0.674575 1.16840i −0.976593 0.215096i \(-0.930993\pi\)
0.302017 0.953302i \(-0.402340\pi\)
\(674\) −6.50000 11.2583i −0.250371 0.433655i
\(675\) 16.0000 0.615840
\(676\) 11.5000 + 6.06218i 0.442308 + 0.233161i
\(677\) 6.00000 0.230599 0.115299 0.993331i \(-0.463217\pi\)
0.115299 + 0.993331i \(0.463217\pi\)
\(678\) −3.00000 5.19615i −0.115214 0.199557i
\(679\) −1.00000 1.73205i −0.0383765 0.0664700i
\(680\) 4.50000 7.79423i 0.172567 0.298895i
\(681\) 12.0000 0.459841
\(682\) 30.0000 51.9615i 1.14876 1.98971i
\(683\) 12.0000 20.7846i 0.459167 0.795301i −0.539750 0.841825i \(-0.681481\pi\)
0.998917 + 0.0465244i \(0.0148145\pi\)
\(684\) −4.00000 −0.152944
\(685\) 4.50000 7.79423i 0.171936 0.297802i
\(686\) 0.500000 + 0.866025i 0.0190901 + 0.0330650i
\(687\) 14.0000 + 24.2487i 0.534133 + 0.925146i
\(688\) −10.0000 −0.381246
\(689\) −22.5000 + 23.3827i −0.857182 + 0.890809i
\(690\) 36.0000 1.37050
\(691\) −4.00000 6.92820i −0.152167 0.263561i 0.779857 0.625958i \(-0.215292\pi\)
−0.932024 + 0.362397i \(0.881959\pi\)
\(692\) −3.00000 5.19615i −0.114043 0.197528i
\(693\) 3.00000 5.19615i 0.113961 0.197386i
\(694\) 6.00000 0.227757
\(695\) 3.00000 5.19615i 0.113796 0.197101i
\(696\) −3.00000 + 5.19615i −0.113715 + 0.196960i
\(697\) 9.00000 0.340899
\(698\) 1.00000 1.73205i 0.0378506 0.0655591i
\(699\) −18.0000 31.1769i −0.680823 1.17922i
\(700\) −2.00000 3.46410i −0.0755929 0.130931i
\(701\) −30.0000 −1.13308 −0.566542 0.824033i \(-0.691719\pi\)
−0.566542 + 0.824033i \(0.691719\pi\)
\(702\) 14.0000 + 3.46410i 0.528396 + 0.130744i
\(703\) 4.00000 0.150863
\(704\) 3.00000 + 5.19615i 0.113067 + 0.195837i
\(705\) 0 0
\(706\) −1.50000 + 2.59808i −0.0564532 + 0.0977799i
\(707\) −3.00000 −0.112827
\(708\) −6.00000 + 10.3923i −0.225494 + 0.390567i
\(709\) 0.500000 0.866025i 0.0187779 0.0325243i −0.856484 0.516174i \(-0.827356\pi\)
0.875262 + 0.483650i \(0.160689\pi\)
\(710\) 0 0
\(711\) −7.00000 + 12.1244i −0.262521 + 0.454699i
\(712\) −3.00000 5.19615i −0.112430 0.194734i
\(713\) −30.0000 51.9615i −1.12351 1.94597i
\(714\) −6.00000 −0.224544
\(715\) −63.0000 15.5885i −2.35607 0.582975i
\(716\) 0 0
\(717\) −6.00000 10.3923i −0.224074 0.388108i
\(718\) 6.00000 + 10.3923i 0.223918 + 0.387837i
\(719\) 3.00000 5.19615i 0.111881 0.193784i −0.804648 0.593753i \(-0.797646\pi\)
0.916529 + 0.399969i \(0.130979\pi\)
\(720\) −3.00000 −0.111803
\(721\) 2.00000 3.46410i 0.0744839 0.129010i
\(722\) −1.50000 + 2.59808i −0.0558242 + 0.0966904i
\(723\) −34.0000 −1.26447
\(724\) −2.50000 + 4.33013i −0.0929118 + 0.160928i
\(725\) −6.00000 10.3923i −0.222834 0.385961i
\(726\) −25.0000 43.3013i −0.927837 1.60706i
\(727\) −16.0000 −0.593407 −0.296704 0.954970i \(-0.595887\pi\)
−0.296704 + 0.954970i \(0.595887\pi\)
\(728\) −1.00000 3.46410i −0.0370625 0.128388i
\(729\) 13.0000 0.481481
\(730\) 10.5000 + 18.1865i 0.388622 + 0.673114i
\(731\) −15.0000 25.9808i −0.554795 0.960933i
\(732\) −7.00000 + 12.1244i −0.258727 + 0.448129i
\(733\) 17.0000 0.627909 0.313955 0.949438i \(-0.398346\pi\)
0.313955 + 0.949438i \(0.398346\pi\)
\(734\) −5.00000 + 8.66025i −0.184553 + 0.319656i
\(735\) −3.00000 + 5.19615i −0.110657 + 0.191663i
\(736\) 6.00000 0.221163
\(737\) 6.00000 10.3923i 0.221013 0.382805i
\(738\) −1.50000 2.59808i −0.0552158 0.0956365i
\(739\) 8.00000 + 13.8564i 0.294285 + 0.509716i 0.974818 0.223001i \(-0.0715853\pi\)
−0.680534 + 0.732717i \(0.738252\pi\)
\(740\) 3.00000 0.110282
\(741\) 20.0000 20.7846i 0.734718 0.763542i
\(742\) 9.00000 0.330400
\(743\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(744\) 10.0000 + 17.3205i 0.366618 + 0.635001i
\(745\) −31.5000 + 54.5596i −1.15407 + 1.99891i
\(746\) 13.0000 0.475964
\(747\) 9.00000 15.5885i 0.329293 0.570352i
\(748\) −9.00000 + 15.5885i −0.329073 + 0.569970i
\(749\) 0 0
\(750\) −3.00000 + 5.19615i −0.109545 + 0.189737i
\(751\) 23.0000 + 39.8372i 0.839282 + 1.45368i 0.890496 + 0.454991i \(0.150358\pi\)
−0.0512140 + 0.998688i \(0.516309\pi\)
\(752\) 0 0
\(753\) 24.0000 0.874609
\(754\) −3.00000 10.3923i −0.109254 0.378465i
\(755\) −24.0000 −0.873449
\(756\) −2.00000 3.46410i −0.0727393 0.125988i
\(757\) −1.00000 1.73205i −0.0363456 0.0629525i 0.847280 0.531146i \(-0.178238\pi\)
−0.883626 + 0.468193i \(0.844905\pi\)
\(758\) 13.0000 22.5167i 0.472181 0.817842i
\(759\) −72.0000 −2.61343
\(760\) 6.00000 10.3923i 0.217643 0.376969i
\(761\) −9.00000 + 15.5885i −0.326250 + 0.565081i −0.981764 0.190101i \(-0.939118\pi\)
0.655515 + 0.755182i \(0.272452\pi\)
\(762\) 40.0000 1.44905
\(763\) −1.00000 + 1.73205i −0.0362024 + 0.0627044i
\(764\) −9.00000 15.5885i −0.325609 0.563971i
\(765\) −4.50000 7.79423i −0.162698 0.281801i
\(766\) 18.0000 0.650366
\(767\) −6.00000 20.7846i −0.216647 0.750489i
\(768\) −2.00000 −0.0721688
\(769\) 23.0000 + 39.8372i 0.829401 + 1.43657i 0.898509 + 0.438956i \(0.144652\pi\)
−0.0691074 + 0.997609i \(0.522015\pi\)
\(770\) 9.00000 + 15.5885i 0.324337 + 0.561769i
\(771\) 21.0000 36.3731i 0.756297 1.30994i
\(772\) 23.0000 0.827788
\(773\) −3.00000 + 5.19615i −0.107903 + 0.186893i −0.914920 0.403634i \(-0.867747\pi\)
0.807018 + 0.590527i \(0.201080\pi\)
\(774\) −5.00000 + 8.66025i −0.179721 + 0.311286i
\(775\) −40.0000 −1.43684
\(776\) 1.00000 1.73205i 0.0358979 0.0621770i
\(777\) −1.00000 1.73205i −0.0358748 0.0621370i
\(778\) −16.5000 28.5788i −0.591554 1.02460i
\(779\) 12.0000 0.429945
\(780\) 15.0000 15.5885i 0.537086 0.558156i
\(781\) 0 0
\(782\) 9.00000 + 15.5885i 0.321839 + 0.557442i
\(783\) −6.00000 10.3923i −0.214423 0.371391i
\(784\) −0.500000 + 0.866025i −0.0178571 + 0.0309295i
\(785\) 21.0000 0.749522
\(786\) 0 0
\(787\) 5.00000 8.66025i 0.178231 0.308705i −0.763044 0.646347i \(-0.776296\pi\)
0.941275 + 0.337642i \(0.109629\pi\)
\(788\) 18.0000 0.641223
\(789\) −6.00000 + 10.3923i −0.213606 + 0.369976i
\(790\) −21.0000 36.3731i −0.747146 1.29410i
\(791\) −1.50000 2.59808i −0.0533339 0.0923770i
\(792\) 6.00000 0.213201
\(793\) −7.00000 24.2487i −0.248577 0.861097i
\(794\) 34.0000 1.20661
\(795\) 27.0000 + 46.7654i 0.957591 + 1.65860i
\(796\) 2.00000 + 3.46410i 0.0708881 + 0.122782i
\(797\) −3.00000 + 5.19615i −0.106265 + 0.184057i −0.914255 0.405140i \(-0.867223\pi\)
0.807989 + 0.589197i \(0.200556\pi\)
\(798\) −8.00000 −0.283197
\(799\) 0 0
\(800\) 2.00000 3.46410i 0.0707107 0.122474i
\(801\) −6.00000 −0.212000
\(802\) 7.50000 12.9904i 0.264834 0.458706i
\(803\) −21.0000 36.3731i −0.741074 1.28358i
\(804\) 2.00000 + 3.46410i 0.0705346 + 0.122169i
\(805\) 18.0000 0.634417
\(806\) −35.0000 8.66025i −1.23282 0.305044i
\(807\) −36.0000 −1.26726
\(808\) −1.50000 2.59808i −0.0527698 0.0914000i
\(809\) −25.5000 44.1673i −0.896532 1.55284i −0.831897 0.554930i \(-0.812745\pi\)
−0.0646355 0.997909i \(-0.520588\pi\)
\(810\) 16.5000 28.5788i 0.579751 1.00416i
\(811\) 26.0000 0.912983 0.456492 0.889728i \(-0.349106\pi\)
0.456492 + 0.889728i \(0.349106\pi\)
\(812\) −1.50000 + 2.59808i −0.0526397 + 0.0911746i
\(813\) 2.00000 3.46410i 0.0701431 0.121491i
\(814\) −6.00000 −0.210300
\(815\) 3.00000 5.19615i 0.105085 0.182013i
\(816\) −3.00000 5.19615i −0.105021 0.181902i
\(817\) −20.0000 34.6410i −0.699711 1.21194i
\(818\) −5.00000 −0.174821
\(819\) −3.50000 0.866025i −0.122300 0.0302614i
\(820\) 9.00000 0.314294
\(821\) 21.0000 + 36.3731i 0.732905 + 1.26943i 0.955636 + 0.294549i \(0.0951694\pi\)
−0.222731 + 0.974880i \(0.571497\pi\)
\(822\) −3.00000 5.19615i −0.104637 0.181237i
\(823\) 2.00000 3.46410i 0.0697156 0.120751i −0.829060 0.559159i \(-0.811124\pi\)
0.898776 + 0.438408i \(0.144457\pi\)
\(824\) 4.00000 0.139347
\(825\) −24.0000 + 41.5692i −0.835573 + 1.44725i
\(826\) −3.00000 + 5.19615i −0.104383 + 0.180797i
\(827\) 42.0000 1.46048 0.730242 0.683189i \(-0.239408\pi\)
0.730242 + 0.683189i \(0.239408\pi\)
\(828\) 3.00000 5.19615i 0.104257 0.180579i
\(829\) 3.50000 + 6.06218i 0.121560 + 0.210548i 0.920383 0.391018i \(-0.127877\pi\)
−0.798823 + 0.601566i \(0.794544\pi\)
\(830\) 27.0000 + 46.7654i 0.937184 + 1.62325i
\(831\) 2.00000 0.0693792
\(832\) 2.50000 2.59808i 0.0866719 0.0900721i
\(833\) −3.00000 −0.103944
\(834\) −2.00000 3.46410i −0.0692543 0.119952i
\(835\) −9.00000 15.5885i −0.311458 0.539461i
\(836\) −12.0000 + 20.7846i −0.415029 + 0.718851i
\(837\) −40.0000 −1.38260
\(838\) 3.00000 5.19615i 0.103633 0.179498i
\(839\) −6.00000 + 10.3923i −0.207143 + 0.358782i −0.950813 0.309764i \(-0.899750\pi\)
0.743670 + 0.668546i \(0.233083\pi\)
\(840\) −6.00000 −0.207020
\(841\) 10.0000 17.3205i 0.344828 0.597259i
\(842\) 17.5000 + 30.3109i 0.603090 + 1.04458i
\(843\) 27.0000 + 46.7654i 0.929929 + 1.61068i
\(844\) −22.0000 −0.757271
\(845\) 1.50000 + 38.9711i 0.0516016 + 1.34065i
\(846\) 0 0
\(847\) −12.5000 21.6506i −0.429505 0.743925i
\(848\) 4.50000 + 7.79423i 0.154531 + 0.267655i
\(849\) −22.0000 + 38.1051i −0.755038 + 1.30776i
\(850\) 12.0000 0.411597
\(851\) −3.00000 + 5.19615i −0.102839 + 0.178122i
\(852\) 0 0
\(853\) −19.0000 −0.650548 −0.325274 0.945620i \(-0.605456\pi\)
−0.325274 + 0.945620i \(0.605456\pi\)
\(854\) −3.50000 + 6.06218i −0.119768 + 0.207443i
\(855\) −6.00000 10.3923i −0.205196 0.355409i
\(856\) 0 0
\(857\) 33.0000 1.12726 0.563629 0.826028i \(-0.309405\pi\)
0.563629 + 0.826028i \(0.309405\pi\)
\(858\) −30.0000 + 31.1769i −1.02418 + 1.06436i
\(859\) 14.0000 0.477674 0.238837 0.971060i \(-0.423234\pi\)
0.238837 + 0.971060i \(0.423234\pi\)
\(860\) −15.0000 25.9808i −0.511496 0.885937i
\(861\) −3.00000 5.19615i −0.102240 0.177084i
\(862\) −6.00000 + 10.3923i −0.204361 + 0.353963i
\(863\) 54.0000 1.83818 0.919091 0.394046i \(-0.128925\pi\)
0.919091 + 0.394046i \(0.128925\pi\)
\(864\) 2.00000 3.46410i 0.0680414 0.117851i
\(865\) 9.00000 15.5885i 0.306009 0.530023i
\(866\) −5.00000 −0.169907
\(867\) −8.00000 + 13.8564i −0.271694 + 0.470588i
\(868\) 5.00000 + 8.66025i 0.169711 + 0.293948i
\(869\) 42.0000 + 72.7461i 1.42475 + 2.46774i
\(870\) −18.0000 −0.610257
\(871\) −7.00000 1.73205i −0.237186 0.0586883i
\(872\) −2.00000 −0.0677285
\(873\) −1.00000 1.73205i −0.0338449 0.0586210i
\(874\) 12.0000 + 20.7846i 0.405906 + 0.703050i
\(875\) −1.50000 + 2.59808i −0.0507093 + 0.0878310i
\(876\) 14.0000 0.473016
\(877\) 24.5000 42.4352i 0.827306 1.43294i −0.0728377 0.997344i \(-0.523206\pi\)
0.900144 0.435593i \(-0.143461\pi\)
\(878\) −11.0000 + 19.0526i −0.371232 + 0.642993i
\(879\) 6.00000 0.202375
\(880\) −9.00000 + 15.5885i −0.303390 + 0.525487i
\(881\) −22.5000 38.9711i −0.758044 1.31297i −0.943847 0.330384i \(-0.892822\pi\)
0.185802 0.982587i \(-0.440512\pi\)
\(882\) 0.500000 + 0.866025i 0.0168359 + 0.0291606i
\(883\) 38.0000 1.27880 0.639401 0.768874i \(-0.279182\pi\)
0.639401 + 0.768874i \(0.279182\pi\)
\(884\) 10.5000 + 2.59808i 0.353153 + 0.0873828i
\(885\) −36.0000 −1.21013
\(886\) −12.0000 20.7846i −0.403148 0.698273i
\(887\) 12.0000 + 20.7846i 0.402921 + 0.697879i 0.994077 0.108678i \(-0.0346618\pi\)
−0.591156 + 0.806557i \(0.701328\pi\)
\(888\) 1.00000 1.73205i 0.0335578 0.0581238i
\(889\) 20.0000 0.670778
\(890\) 9.00000 15.5885i 0.301681 0.522526i
\(891\) −33.0000 + 57.1577i −1.10554 + 1.91485i
\(892\) −28.0000 −0.937509
\(893\) 0 0
\(894\) 21.0000 + 36.3731i 0.702345 + 1.21650i
\(895\) 0 0
\(896\) −1.00000 −0.0334077
\(897\) 12.0000 + 41.5692i 0.400668 + 1.38796i
\(898\) −30.0000 −1.00111
\(899\) 15.0000 + 25.9808i 0.500278 + 0.866507i
\(900\) −2.00000 3.46410i −0.0666667 0.115470i
\(901\) −13.5000 + 23.3827i −0.449750 + 0.778990i
\(902\) −18.0000 −0.599334
\(903\) −10.0000 + 17.3205i −0.332779 + 0.576390i
\(904\) 1.50000 2.59808i 0.0498893 0.0864107i
\(905\) −15.0000 −0.498617
\(906\) −8.00000 + 13.8564i −0.265782 + 0.460348i
\(907\) −7.00000 12.1244i −0.232431 0.402583i 0.726092 0.687598i \(-0.241335\pi\)
−0.958523 + 0.285015i \(0.908001\pi\)
\(908\) 3.00000 + 5.19615i 0.0995585 + 0.172440i
\(909\) −3.00000 −0.0995037
\(910\) 7.50000 7.79423i 0.248623 0.258376i
\(911\) 12.0000 0.397578 0.198789 0.980042i \(-0.436299\pi\)
0.198789 + 0.980042i \(0.436299\pi\)
\(912\) −4.00000 6.92820i −0.132453 0.229416i
\(913\) −54.0000 93.5307i −1.78714 3.09542i
\(914\) −12.5000 + 21.6506i −0.413463 + 0.716139i
\(915\) −42.0000 −1.38848
\(916\) −7.00000 + 12.1244i −0.231287 + 0.400600i
\(917\) 0 0
\(918\) 12.0000 0.396059
\(919\) 8.00000 13.8564i 0.263896 0.457081i −0.703378 0.710816i \(-0.748326\pi\)
0.967274 + 0.253735i \(0.0816592\pi\)
\(920\) 9.00000 + 15.5885i 0.296721 + 0.513936i
\(921\) −22.0000 38.1051i −0.724925 1.25561i
\(922\) −33.0000 −1.08680
\(923\) 0 0
\(924\) 12.0000 0.394771
\(925\) 2.00000 + 3.46410i 0.0657596 + 0.113899i
\(926\) −11.0000 19.0526i −0.361482 0.626106i
\(927\) 2.00000 3.46410i 0.0656886 0.113776i
\(928\) −3.00000 −0.0984798
\(929\) −16.5000 + 28.5788i −0.541347 + 0.937641i 0.457480 + 0.889220i \(0.348752\pi\)
−0.998827 + 0.0484211i \(0.984581\pi\)
\(930\) −30.0000 + 51.9615i −0.983739 + 1.70389i
\(931\) −4.00000 −0.131095
\(932\) 9.00000 15.5885i 0.294805 0.510617i
\(933\) −18.0000 31.1769i −0.589294 1.02069i
\(934\) −9.00000 15.5885i −0.294489 0.510070i
\(935\) −54.0000 −1.76599
\(936\) −1.00000 3.46410i −0.0326860 0.113228i
\(937\) −19.0000 −0.620703 −0.310351 0.950622i \(-0.600447\pi\)
−0.310351 + 0.950622i \(0.600447\pi\)
\(938\) 1.00000 + 1.73205i 0.0326512 + 0.0565535i
\(939\) −10.0000 17.3205i −0.326338 0.565233i
\(940\) 0 0
\(941\) 30.0000 0.977972 0.488986 0.872292i \(-0.337367\pi\)
0.488986 + 0.872292i \(0.337367\pi\)
\(942\) 7.00000 12.1244i 0.228072 0.395033i
\(943\) −9.00000 + 15.5885i −0.293080 + 0.507630i
\(944\) −6.00000 −0.195283
\(945\) 6.00000 10.3923i 0.195180 0.338062i
\(946\) 30.0000 + 51.9615i 0.975384 + 1.68941i
\(947\) 21.0000 + 36.3731i 0.682408 + 1.18197i 0.974244 + 0.225497i \(0.0724007\pi\)
−0.291835 + 0.956469i \(0.594266\pi\)
\(948\) −28.0000 −0.909398
\(949\) −17.5000 + 18.1865i −0.568074 + 0.590360i
\(950\) 16.0000 0.519109
\(951\) −9.00000 15.5885i −0.291845 0.505490i
\(952\) −1.50000 2.59808i −0.0486153 0.0842041i
\(953\) −3.00000 + 5.19615i −0.0971795 + 0.168320i −0.910516 0.413473i \(-0.864315\pi\)
0.813337 + 0.581793i \(0.197649\pi\)
\(954\) 9.00000 0.291386
\(955\) 27.0000 46.7654i 0.873699 1.51329i
\(956\) 3.00000 5.19615i 0.0970269 0.168056i
\(957\) 36.0000 1.16371
\(958\) 21.0000 36.3731i 0.678479 1.17516i
\(959\) −1.50000 2.59808i −0.0484375 0.0838963i
\(960\) −3.00000 5.19615i −0.0968246 0.167705i
\(961\) 69.0000 2.22581
\(962\) 1.00000 + 3.46410i 0.0322413 + 0.111687i
\(963\) 0 0
\(964\) −8.50000 14.7224i −0.273767 0.474178i
\(965\) 34.5000 + 59.7558i 1.11059 + 1.92361i
\(966\) 6.00000 10.3923i 0.193047 0.334367i
\(967\) −34.0000 −1.09337 −0.546683 0.837340i \(-0.684110\pi\)
−0.546683 + 0.837340i \(0.684110\pi\)
\(968\) 12.5000 21.6506i 0.401765 0.695878i
\(969\) 12.0000 20.7846i 0.385496 0.667698i
\(970\) 6.00000 0.192648
\(971\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(972\) −5.00000 8.66025i −0.160375 0.277778i
\(973\) −1.00000 1.73205i −0.0320585 0.0555270i
\(974\) −32.0000 −1.02535
\(975\) 28.0000 + 6.92820i 0.896718 + 0.221880i
\(976\) −7.00000 −0.224065
\(977\) −25.5000 44.1673i −0.815817 1.41304i −0.908740 0.417364i \(-0.862954\pi\)
0.0929223 0.995673i \(-0.470379\pi\)
\(978\) −2.00000 3.46410i −0.0639529 0.110770i
\(979\) −18.0000 + 31.1769i −0.575282 + 0.996419i
\(980\) −3.00000 −0.0958315
\(981\) −1.00000 + 1.73205i −0.0319275 + 0.0553001i
\(982\) 0 0
\(983\) −24.0000 −0.765481 −0.382741 0.923856i \(-0.625020\pi\)
−0.382741 + 0.923856i \(0.625020\pi\)
\(984\) 3.00000 5.19615i 0.0956365 0.165647i
\(985\) 27.0000 + 46.7654i 0.860292 + 1.49007i
\(986\) −4.50000 7.79423i −0.143309 0.248219i
\(987\) 0 0
\(988\) 14.0000 + 3.46410i 0.445399 + 0.110208i
\(989\) 60.0000 1.90789
\(990\) 9.00000 + 15.5885i 0.286039 + 0.495434i
\(991\) 5.00000 + 8.66025i 0.158830 + 0.275102i 0.934447 0.356102i \(-0.115894\pi\)
−0.775617 + 0.631204i \(0.782561\pi\)
\(992\) −5.00000 + 8.66025i −0.158750 + 0.274963i
\(993\) 20.0000 0.634681
\(994\) 0 0
\(995\) −6.00000 + 10.3923i −0.190213 + 0.329458i
\(996\) 36.0000 1.14070
\(997\) −26.5000 + 45.8993i −0.839263 + 1.45365i 0.0512480 + 0.998686i \(0.483680\pi\)
−0.890511 + 0.454961i \(0.849653\pi\)
\(998\) −11.0000 19.0526i −0.348199 0.603098i
\(999\) 2.00000 + 3.46410i 0.0632772 + 0.109599i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 182.2.g.c.29.1 2
3.2 odd 2 1638.2.r.m.757.1 2
4.3 odd 2 1456.2.s.a.1121.1 2
7.2 even 3 1274.2.h.e.263.1 2
7.3 odd 6 1274.2.e.b.471.1 2
7.4 even 3 1274.2.e.k.471.1 2
7.5 odd 6 1274.2.h.l.263.1 2
7.6 odd 2 1274.2.g.c.393.1 2
13.2 odd 12 2366.2.d.a.337.2 2
13.3 even 3 2366.2.a.a.1.1 1
13.9 even 3 inner 182.2.g.c.113.1 yes 2
13.10 even 6 2366.2.a.k.1.1 1
13.11 odd 12 2366.2.d.a.337.1 2
39.35 odd 6 1638.2.r.m.1387.1 2
52.35 odd 6 1456.2.s.a.113.1 2
91.9 even 3 1274.2.e.k.165.1 2
91.48 odd 6 1274.2.g.c.295.1 2
91.61 odd 6 1274.2.e.b.165.1 2
91.74 even 3 1274.2.h.e.373.1 2
91.87 odd 6 1274.2.h.l.373.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
182.2.g.c.29.1 2 1.1 even 1 trivial
182.2.g.c.113.1 yes 2 13.9 even 3 inner
1274.2.e.b.165.1 2 91.61 odd 6
1274.2.e.b.471.1 2 7.3 odd 6
1274.2.e.k.165.1 2 91.9 even 3
1274.2.e.k.471.1 2 7.4 even 3
1274.2.g.c.295.1 2 91.48 odd 6
1274.2.g.c.393.1 2 7.6 odd 2
1274.2.h.e.263.1 2 7.2 even 3
1274.2.h.e.373.1 2 91.74 even 3
1274.2.h.l.263.1 2 7.5 odd 6
1274.2.h.l.373.1 2 91.87 odd 6
1456.2.s.a.113.1 2 52.35 odd 6
1456.2.s.a.1121.1 2 4.3 odd 2
1638.2.r.m.757.1 2 3.2 odd 2
1638.2.r.m.1387.1 2 39.35 odd 6
2366.2.a.a.1.1 1 13.3 even 3
2366.2.a.k.1.1 1 13.10 even 6
2366.2.d.a.337.1 2 13.11 odd 12
2366.2.d.a.337.2 2 13.2 odd 12