Properties

Label 1274.2.g.a
Level $1274$
Weight $2$
Character orbit 1274.g
Analytic conductor $10.173$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1274,2,Mod(295,1274)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1274.295"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1274, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1274 = 2 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1274.g (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-1,0,-1,2,0,0,2,3,-1,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1729412175\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{6} - 1) q^{2} - \zeta_{6} q^{4} + q^{5} + q^{8} + 3 \zeta_{6} q^{9} + (\zeta_{6} - 1) q^{10} + (4 \zeta_{6} - 4) q^{11} + ( - \zeta_{6} - 3) q^{13} + (\zeta_{6} - 1) q^{16} + 3 \zeta_{6} q^{17} + \cdots - 12 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - q^{4} + 2 q^{5} + 2 q^{8} + 3 q^{9} - q^{10} - 4 q^{11} - 7 q^{13} - q^{16} + 3 q^{17} - 6 q^{18} - q^{20} - 4 q^{22} + 4 q^{23} - 8 q^{25} + 5 q^{26} + q^{29} - 8 q^{31} - q^{32} - 6 q^{34}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1274\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
295.1
0.500000 + 0.866025i
0.500000 0.866025i
−0.500000 + 0.866025i 0 −0.500000 0.866025i 1.00000 0 0 1.00000 1.50000 + 2.59808i −0.500000 + 0.866025i
393.1 −0.500000 0.866025i 0 −0.500000 + 0.866025i 1.00000 0 0 1.00000 1.50000 2.59808i −0.500000 0.866025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1274.2.g.a 2
7.b odd 2 1 26.2.c.a 2
7.c even 3 1 1274.2.e.m 2
7.c even 3 1 1274.2.h.a 2
7.d odd 6 1 1274.2.e.n 2
7.d odd 6 1 1274.2.h.b 2
13.c even 3 1 inner 1274.2.g.a 2
21.c even 2 1 234.2.h.c 2
28.d even 2 1 208.2.i.b 2
35.c odd 2 1 650.2.e.c 2
35.f even 4 2 650.2.o.c 4
56.e even 2 1 832.2.i.f 2
56.h odd 2 1 832.2.i.e 2
84.h odd 2 1 1872.2.t.k 2
91.b odd 2 1 338.2.c.e 2
91.g even 3 1 1274.2.e.m 2
91.h even 3 1 1274.2.h.a 2
91.i even 4 2 338.2.e.b 4
91.m odd 6 1 1274.2.e.n 2
91.n odd 6 1 26.2.c.a 2
91.n odd 6 1 338.2.a.e 1
91.t odd 6 1 338.2.a.c 1
91.t odd 6 1 338.2.c.e 2
91.v odd 6 1 1274.2.h.b 2
91.bc even 12 2 338.2.b.b 2
91.bc even 12 2 338.2.e.b 4
273.u even 6 1 3042.2.a.k 1
273.bn even 6 1 234.2.h.c 2
273.bn even 6 1 3042.2.a.e 1
273.ca odd 12 2 3042.2.b.e 2
364.v even 6 1 208.2.i.b 2
364.v even 6 1 2704.2.a.h 1
364.bc even 6 1 2704.2.a.i 1
364.bv odd 12 2 2704.2.f.g 2
455.be odd 6 1 8450.2.a.s 1
455.bp odd 6 1 650.2.e.c 2
455.bp odd 6 1 8450.2.a.f 1
455.dc even 12 2 650.2.o.c 4
728.ce odd 6 1 832.2.i.e 2
728.da even 6 1 832.2.i.f 2
1092.dd odd 6 1 1872.2.t.k 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.2.c.a 2 7.b odd 2 1
26.2.c.a 2 91.n odd 6 1
208.2.i.b 2 28.d even 2 1
208.2.i.b 2 364.v even 6 1
234.2.h.c 2 21.c even 2 1
234.2.h.c 2 273.bn even 6 1
338.2.a.c 1 91.t odd 6 1
338.2.a.e 1 91.n odd 6 1
338.2.b.b 2 91.bc even 12 2
338.2.c.e 2 91.b odd 2 1
338.2.c.e 2 91.t odd 6 1
338.2.e.b 4 91.i even 4 2
338.2.e.b 4 91.bc even 12 2
650.2.e.c 2 35.c odd 2 1
650.2.e.c 2 455.bp odd 6 1
650.2.o.c 4 35.f even 4 2
650.2.o.c 4 455.dc even 12 2
832.2.i.e 2 56.h odd 2 1
832.2.i.e 2 728.ce odd 6 1
832.2.i.f 2 56.e even 2 1
832.2.i.f 2 728.da even 6 1
1274.2.e.m 2 7.c even 3 1
1274.2.e.m 2 91.g even 3 1
1274.2.e.n 2 7.d odd 6 1
1274.2.e.n 2 91.m odd 6 1
1274.2.g.a 2 1.a even 1 1 trivial
1274.2.g.a 2 13.c even 3 1 inner
1274.2.h.a 2 7.c even 3 1
1274.2.h.a 2 91.h even 3 1
1274.2.h.b 2 7.d odd 6 1
1274.2.h.b 2 91.v odd 6 1
1872.2.t.k 2 84.h odd 2 1
1872.2.t.k 2 1092.dd odd 6 1
2704.2.a.h 1 364.v even 6 1
2704.2.a.i 1 364.bc even 6 1
2704.2.f.g 2 364.bv odd 12 2
3042.2.a.e 1 273.bn even 6 1
3042.2.a.k 1 273.u even 6 1
3042.2.b.e 2 273.ca odd 12 2
8450.2.a.f 1 455.bp odd 6 1
8450.2.a.s 1 455.be odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1274, [\chi])\):

\( T_{3} \) Copy content Toggle raw display
\( T_{5} - 1 \) Copy content Toggle raw display
\( T_{11}^{2} + 4T_{11} + 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T - 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$13$ \( T^{2} + 7T + 13 \) Copy content Toggle raw display
$17$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$29$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$31$ \( (T + 4)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$41$ \( T^{2} + 9T + 81 \) Copy content Toggle raw display
$43$ \( T^{2} - 8T + 64 \) Copy content Toggle raw display
$47$ \( (T - 8)^{2} \) Copy content Toggle raw display
$53$ \( (T + 9)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$61$ \( T^{2} - 7T + 49 \) Copy content Toggle raw display
$67$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$71$ \( T^{2} - 8T + 64 \) Copy content Toggle raw display
$73$ \( (T + 11)^{2} \) Copy content Toggle raw display
$79$ \( (T + 4)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$97$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
show more
show less