Properties

Label 126.8.a.l.1.2
Level $126$
Weight $8$
Character 126.1
Self dual yes
Analytic conductor $39.361$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [126,8,Mod(1,126)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("126.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(126, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 126.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,16,0,128,-168] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.3605132110\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3691}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3691 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(60.7536\) of defining polynomial
Character \(\chi\) \(=\) 126.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.00000 q^{2} +64.0000 q^{4} +280.522 q^{5} +343.000 q^{7} +512.000 q^{8} +2244.17 q^{10} +196.349 q^{11} +5990.52 q^{13} +2744.00 q^{14} +4096.00 q^{16} +3301.39 q^{17} +12080.5 q^{19} +17953.4 q^{20} +1570.79 q^{22} -5184.16 q^{23} +567.370 q^{25} +47924.1 q^{26} +21952.0 q^{28} -48572.5 q^{29} +49276.4 q^{31} +32768.0 q^{32} +26411.1 q^{34} +96218.9 q^{35} +138418. q^{37} +96644.1 q^{38} +143627. q^{40} +156453. q^{41} +413137. q^{43} +12566.3 q^{44} -41473.3 q^{46} +760991. q^{47} +117649. q^{49} +4538.96 q^{50} +383393. q^{52} +1.43961e6 q^{53} +55080.1 q^{55} +175616. q^{56} -388580. q^{58} +2.24055e6 q^{59} -1.90900e6 q^{61} +394211. q^{62} +262144. q^{64} +1.68047e6 q^{65} -4.83392e6 q^{67} +211289. q^{68} +769751. q^{70} +3.41753e6 q^{71} -1.07075e6 q^{73} +1.10735e6 q^{74} +773153. q^{76} +67347.6 q^{77} -1.90535e6 q^{79} +1.14902e6 q^{80} +1.25162e6 q^{82} +1.09310e6 q^{83} +926112. q^{85} +3.30510e6 q^{86} +100531. q^{88} -6.70115e6 q^{89} +2.05475e6 q^{91} -331786. q^{92} +6.08793e6 q^{94} +3.38885e6 q^{95} +8.04200e6 q^{97} +941192. q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 16 q^{2} + 128 q^{4} - 168 q^{5} + 686 q^{7} + 1024 q^{8} - 1344 q^{10} + 5496 q^{11} - 5516 q^{13} + 5488 q^{14} + 8192 q^{16} + 10248 q^{17} + 6664 q^{19} - 10752 q^{20} + 43968 q^{22} + 45768 q^{23}+ \cdots + 1882384 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.00000 0.707107
\(3\) 0 0
\(4\) 64.0000 0.500000
\(5\) 280.522 1.00362 0.501812 0.864977i \(-0.332667\pi\)
0.501812 + 0.864977i \(0.332667\pi\)
\(6\) 0 0
\(7\) 343.000 0.377964
\(8\) 512.000 0.353553
\(9\) 0 0
\(10\) 2244.17 0.709670
\(11\) 196.349 0.0444789 0.0222394 0.999753i \(-0.492920\pi\)
0.0222394 + 0.999753i \(0.492920\pi\)
\(12\) 0 0
\(13\) 5990.52 0.756245 0.378123 0.925756i \(-0.376570\pi\)
0.378123 + 0.925756i \(0.376570\pi\)
\(14\) 2744.00 0.267261
\(15\) 0 0
\(16\) 4096.00 0.250000
\(17\) 3301.39 0.162977 0.0814884 0.996674i \(-0.474033\pi\)
0.0814884 + 0.996674i \(0.474033\pi\)
\(18\) 0 0
\(19\) 12080.5 0.404062 0.202031 0.979379i \(-0.435246\pi\)
0.202031 + 0.979379i \(0.435246\pi\)
\(20\) 17953.4 0.501812
\(21\) 0 0
\(22\) 1570.79 0.0314513
\(23\) −5184.16 −0.0888446 −0.0444223 0.999013i \(-0.514145\pi\)
−0.0444223 + 0.999013i \(0.514145\pi\)
\(24\) 0 0
\(25\) 567.370 0.00726234
\(26\) 47924.1 0.534746
\(27\) 0 0
\(28\) 21952.0 0.188982
\(29\) −48572.5 −0.369826 −0.184913 0.982755i \(-0.559200\pi\)
−0.184913 + 0.982755i \(0.559200\pi\)
\(30\) 0 0
\(31\) 49276.4 0.297080 0.148540 0.988906i \(-0.452543\pi\)
0.148540 + 0.988906i \(0.452543\pi\)
\(32\) 32768.0 0.176777
\(33\) 0 0
\(34\) 26411.1 0.115242
\(35\) 96218.9 0.379334
\(36\) 0 0
\(37\) 138418. 0.449250 0.224625 0.974445i \(-0.427884\pi\)
0.224625 + 0.974445i \(0.427884\pi\)
\(38\) 96644.1 0.285715
\(39\) 0 0
\(40\) 143627. 0.354835
\(41\) 156453. 0.354520 0.177260 0.984164i \(-0.443277\pi\)
0.177260 + 0.984164i \(0.443277\pi\)
\(42\) 0 0
\(43\) 413137. 0.792418 0.396209 0.918160i \(-0.370326\pi\)
0.396209 + 0.918160i \(0.370326\pi\)
\(44\) 12566.3 0.0222394
\(45\) 0 0
\(46\) −41473.3 −0.0628227
\(47\) 760991. 1.06915 0.534573 0.845122i \(-0.320473\pi\)
0.534573 + 0.845122i \(0.320473\pi\)
\(48\) 0 0
\(49\) 117649. 0.142857
\(50\) 4538.96 0.00513525
\(51\) 0 0
\(52\) 383393. 0.378123
\(53\) 1.43961e6 1.32825 0.664126 0.747621i \(-0.268804\pi\)
0.664126 + 0.747621i \(0.268804\pi\)
\(54\) 0 0
\(55\) 55080.1 0.0446401
\(56\) 175616. 0.133631
\(57\) 0 0
\(58\) −388580. −0.261506
\(59\) 2.24055e6 1.42028 0.710139 0.704062i \(-0.248632\pi\)
0.710139 + 0.704062i \(0.248632\pi\)
\(60\) 0 0
\(61\) −1.90900e6 −1.07684 −0.538421 0.842676i \(-0.680979\pi\)
−0.538421 + 0.842676i \(0.680979\pi\)
\(62\) 394211. 0.210067
\(63\) 0 0
\(64\) 262144. 0.125000
\(65\) 1.68047e6 0.758986
\(66\) 0 0
\(67\) −4.83392e6 −1.96353 −0.981765 0.190097i \(-0.939120\pi\)
−0.981765 + 0.190097i \(0.939120\pi\)
\(68\) 211289. 0.0814884
\(69\) 0 0
\(70\) 769751. 0.268230
\(71\) 3.41753e6 1.13320 0.566602 0.823991i \(-0.308258\pi\)
0.566602 + 0.823991i \(0.308258\pi\)
\(72\) 0 0
\(73\) −1.07075e6 −0.322149 −0.161075 0.986942i \(-0.551496\pi\)
−0.161075 + 0.986942i \(0.551496\pi\)
\(74\) 1.10735e6 0.317667
\(75\) 0 0
\(76\) 773153. 0.202031
\(77\) 67347.6 0.0168114
\(78\) 0 0
\(79\) −1.90535e6 −0.434790 −0.217395 0.976084i \(-0.569756\pi\)
−0.217395 + 0.976084i \(0.569756\pi\)
\(80\) 1.14902e6 0.250906
\(81\) 0 0
\(82\) 1.25162e6 0.250683
\(83\) 1.09310e6 0.209840 0.104920 0.994481i \(-0.466541\pi\)
0.104920 + 0.994481i \(0.466541\pi\)
\(84\) 0 0
\(85\) 926112. 0.163568
\(86\) 3.30510e6 0.560324
\(87\) 0 0
\(88\) 100531. 0.0157257
\(89\) −6.70115e6 −1.00759 −0.503796 0.863823i \(-0.668064\pi\)
−0.503796 + 0.863823i \(0.668064\pi\)
\(90\) 0 0
\(91\) 2.05475e6 0.285834
\(92\) −331786. −0.0444223
\(93\) 0 0
\(94\) 6.08793e6 0.756000
\(95\) 3.38885e6 0.405527
\(96\) 0 0
\(97\) 8.04200e6 0.894670 0.447335 0.894366i \(-0.352373\pi\)
0.447335 + 0.894366i \(0.352373\pi\)
\(98\) 941192. 0.101015
\(99\) 0 0
\(100\) 36311.7 0.00363117
\(101\) −397856. −0.0384239 −0.0192119 0.999815i \(-0.506116\pi\)
−0.0192119 + 0.999815i \(0.506116\pi\)
\(102\) 0 0
\(103\) −1.07693e7 −0.971086 −0.485543 0.874213i \(-0.661378\pi\)
−0.485543 + 0.874213i \(0.661378\pi\)
\(104\) 3.06715e6 0.267373
\(105\) 0 0
\(106\) 1.15169e7 0.939216
\(107\) 8.73645e6 0.689432 0.344716 0.938707i \(-0.387975\pi\)
0.344716 + 0.938707i \(0.387975\pi\)
\(108\) 0 0
\(109\) −1.16892e7 −0.864555 −0.432277 0.901741i \(-0.642290\pi\)
−0.432277 + 0.901741i \(0.642290\pi\)
\(110\) 440641. 0.0315653
\(111\) 0 0
\(112\) 1.40493e6 0.0944911
\(113\) −6.69795e6 −0.436684 −0.218342 0.975872i \(-0.570065\pi\)
−0.218342 + 0.975872i \(0.570065\pi\)
\(114\) 0 0
\(115\) −1.45427e6 −0.0891667
\(116\) −3.10864e6 −0.184913
\(117\) 0 0
\(118\) 1.79244e7 1.00429
\(119\) 1.13238e6 0.0615995
\(120\) 0 0
\(121\) −1.94486e7 −0.998022
\(122\) −1.52720e7 −0.761442
\(123\) 0 0
\(124\) 3.15369e6 0.148540
\(125\) −2.17566e7 −0.996336
\(126\) 0 0
\(127\) 3.28044e6 0.142108 0.0710541 0.997472i \(-0.477364\pi\)
0.0710541 + 0.997472i \(0.477364\pi\)
\(128\) 2.09715e6 0.0883883
\(129\) 0 0
\(130\) 1.34438e7 0.536684
\(131\) −2.94925e7 −1.14621 −0.573103 0.819484i \(-0.694260\pi\)
−0.573103 + 0.819484i \(0.694260\pi\)
\(132\) 0 0
\(133\) 4.14362e6 0.152721
\(134\) −3.86714e7 −1.38843
\(135\) 0 0
\(136\) 1.69031e6 0.0576210
\(137\) −9.07574e6 −0.301551 −0.150775 0.988568i \(-0.548177\pi\)
−0.150775 + 0.988568i \(0.548177\pi\)
\(138\) 0 0
\(139\) −3.99435e6 −0.126152 −0.0630760 0.998009i \(-0.520091\pi\)
−0.0630760 + 0.998009i \(0.520091\pi\)
\(140\) 6.15801e6 0.189667
\(141\) 0 0
\(142\) 2.73403e7 0.801297
\(143\) 1.17623e6 0.0336369
\(144\) 0 0
\(145\) −1.36256e7 −0.371166
\(146\) −8.56598e6 −0.227794
\(147\) 0 0
\(148\) 8.85878e6 0.224625
\(149\) −4.40528e7 −1.09099 −0.545496 0.838114i \(-0.683659\pi\)
−0.545496 + 0.838114i \(0.683659\pi\)
\(150\) 0 0
\(151\) 1.98489e7 0.469156 0.234578 0.972097i \(-0.424629\pi\)
0.234578 + 0.972097i \(0.424629\pi\)
\(152\) 6.18523e6 0.142857
\(153\) 0 0
\(154\) 538781. 0.0118875
\(155\) 1.38231e7 0.298156
\(156\) 0 0
\(157\) −8.20955e7 −1.69305 −0.846527 0.532346i \(-0.821310\pi\)
−0.846527 + 0.532346i \(0.821310\pi\)
\(158\) −1.52428e7 −0.307443
\(159\) 0 0
\(160\) 9.19213e6 0.177417
\(161\) −1.77817e6 −0.0335801
\(162\) 0 0
\(163\) −6.14662e7 −1.11168 −0.555840 0.831289i \(-0.687603\pi\)
−0.555840 + 0.831289i \(0.687603\pi\)
\(164\) 1.00130e7 0.177260
\(165\) 0 0
\(166\) 8.74483e6 0.148379
\(167\) −8.68806e7 −1.44350 −0.721748 0.692156i \(-0.756661\pi\)
−0.721748 + 0.692156i \(0.756661\pi\)
\(168\) 0 0
\(169\) −2.68622e7 −0.428093
\(170\) 7.40889e6 0.115660
\(171\) 0 0
\(172\) 2.64408e7 0.396209
\(173\) −2.88102e7 −0.423043 −0.211521 0.977373i \(-0.567842\pi\)
−0.211521 + 0.977373i \(0.567842\pi\)
\(174\) 0 0
\(175\) 194608. 0.00274491
\(176\) 804245. 0.0111197
\(177\) 0 0
\(178\) −5.36092e7 −0.712475
\(179\) 1.01430e7 0.132185 0.0660924 0.997814i \(-0.478947\pi\)
0.0660924 + 0.997814i \(0.478947\pi\)
\(180\) 0 0
\(181\) −7.72824e7 −0.968737 −0.484368 0.874864i \(-0.660951\pi\)
−0.484368 + 0.874864i \(0.660951\pi\)
\(182\) 1.64380e7 0.202115
\(183\) 0 0
\(184\) −2.65429e6 −0.0314113
\(185\) 3.88293e7 0.450878
\(186\) 0 0
\(187\) 648224. 0.00724903
\(188\) 4.87034e7 0.534573
\(189\) 0 0
\(190\) 2.71108e7 0.286751
\(191\) 1.22532e7 0.127242 0.0636212 0.997974i \(-0.479735\pi\)
0.0636212 + 0.997974i \(0.479735\pi\)
\(192\) 0 0
\(193\) 1.43432e8 1.43614 0.718069 0.695972i \(-0.245026\pi\)
0.718069 + 0.695972i \(0.245026\pi\)
\(194\) 6.43360e7 0.632627
\(195\) 0 0
\(196\) 7.52954e6 0.0714286
\(197\) 1.83570e8 1.71069 0.855344 0.518061i \(-0.173346\pi\)
0.855344 + 0.518061i \(0.173346\pi\)
\(198\) 0 0
\(199\) −1.36806e8 −1.23060 −0.615301 0.788292i \(-0.710966\pi\)
−0.615301 + 0.788292i \(0.710966\pi\)
\(200\) 290494. 0.00256763
\(201\) 0 0
\(202\) −3.18285e6 −0.0271698
\(203\) −1.66604e7 −0.139781
\(204\) 0 0
\(205\) 4.38885e7 0.355805
\(206\) −8.61545e7 −0.686662
\(207\) 0 0
\(208\) 2.45372e7 0.189061
\(209\) 2.37199e6 0.0179722
\(210\) 0 0
\(211\) 1.94368e8 1.42441 0.712206 0.701970i \(-0.247696\pi\)
0.712206 + 0.701970i \(0.247696\pi\)
\(212\) 9.21353e7 0.664126
\(213\) 0 0
\(214\) 6.98916e7 0.487502
\(215\) 1.15894e8 0.795291
\(216\) 0 0
\(217\) 1.69018e7 0.112286
\(218\) −9.35137e7 −0.611333
\(219\) 0 0
\(220\) 3.52512e6 0.0223200
\(221\) 1.97770e7 0.123250
\(222\) 0 0
\(223\) 9.02307e7 0.544863 0.272432 0.962175i \(-0.412172\pi\)
0.272432 + 0.962175i \(0.412172\pi\)
\(224\) 1.12394e7 0.0668153
\(225\) 0 0
\(226\) −5.35836e7 −0.308782
\(227\) −2.23570e7 −0.126860 −0.0634298 0.997986i \(-0.520204\pi\)
−0.0634298 + 0.997986i \(0.520204\pi\)
\(228\) 0 0
\(229\) 1.32826e8 0.730904 0.365452 0.930830i \(-0.380914\pi\)
0.365452 + 0.930830i \(0.380914\pi\)
\(230\) −1.16342e7 −0.0630504
\(231\) 0 0
\(232\) −2.48691e7 −0.130753
\(233\) 2.78915e8 1.44453 0.722264 0.691617i \(-0.243102\pi\)
0.722264 + 0.691617i \(0.243102\pi\)
\(234\) 0 0
\(235\) 2.13474e8 1.07302
\(236\) 1.43395e8 0.710139
\(237\) 0 0
\(238\) 9.05902e6 0.0435574
\(239\) 2.23103e8 1.05709 0.528547 0.848904i \(-0.322737\pi\)
0.528547 + 0.848904i \(0.322737\pi\)
\(240\) 0 0
\(241\) −2.80301e8 −1.28993 −0.644964 0.764213i \(-0.723128\pi\)
−0.644964 + 0.764213i \(0.723128\pi\)
\(242\) −1.55589e8 −0.705708
\(243\) 0 0
\(244\) −1.22176e8 −0.538421
\(245\) 3.30031e7 0.143375
\(246\) 0 0
\(247\) 7.23686e7 0.305570
\(248\) 2.52295e7 0.105033
\(249\) 0 0
\(250\) −1.74053e8 −0.704516
\(251\) −3.21735e7 −0.128422 −0.0642111 0.997936i \(-0.520453\pi\)
−0.0642111 + 0.997936i \(0.520453\pi\)
\(252\) 0 0
\(253\) −1.01790e6 −0.00395171
\(254\) 2.62435e7 0.100486
\(255\) 0 0
\(256\) 1.67772e7 0.0625000
\(257\) 3.09856e8 1.13866 0.569330 0.822109i \(-0.307203\pi\)
0.569330 + 0.822109i \(0.307203\pi\)
\(258\) 0 0
\(259\) 4.74775e7 0.169800
\(260\) 1.07550e8 0.379493
\(261\) 0 0
\(262\) −2.35940e8 −0.810490
\(263\) −2.73930e8 −0.928528 −0.464264 0.885697i \(-0.653681\pi\)
−0.464264 + 0.885697i \(0.653681\pi\)
\(264\) 0 0
\(265\) 4.03843e8 1.33307
\(266\) 3.31489e7 0.107990
\(267\) 0 0
\(268\) −3.09371e8 −0.981765
\(269\) −3.00741e7 −0.0942019 −0.0471009 0.998890i \(-0.514998\pi\)
−0.0471009 + 0.998890i \(0.514998\pi\)
\(270\) 0 0
\(271\) −1.97765e8 −0.603611 −0.301806 0.953370i \(-0.597589\pi\)
−0.301806 + 0.953370i \(0.597589\pi\)
\(272\) 1.35225e7 0.0407442
\(273\) 0 0
\(274\) −7.26059e7 −0.213228
\(275\) 111402. 0.000323021 0
\(276\) 0 0
\(277\) −1.60160e8 −0.452768 −0.226384 0.974038i \(-0.572690\pi\)
−0.226384 + 0.974038i \(0.572690\pi\)
\(278\) −3.19548e7 −0.0892029
\(279\) 0 0
\(280\) 4.92641e7 0.134115
\(281\) 1.66702e8 0.448196 0.224098 0.974567i \(-0.428056\pi\)
0.224098 + 0.974567i \(0.428056\pi\)
\(282\) 0 0
\(283\) 1.51666e8 0.397774 0.198887 0.980022i \(-0.436267\pi\)
0.198887 + 0.980022i \(0.436267\pi\)
\(284\) 2.18722e8 0.566602
\(285\) 0 0
\(286\) 9.40985e6 0.0237849
\(287\) 5.36634e7 0.133996
\(288\) 0 0
\(289\) −3.99439e8 −0.973439
\(290\) −1.09005e8 −0.262454
\(291\) 0 0
\(292\) −6.85279e7 −0.161075
\(293\) −8.31560e8 −1.93133 −0.965665 0.259789i \(-0.916347\pi\)
−0.965665 + 0.259789i \(0.916347\pi\)
\(294\) 0 0
\(295\) 6.28524e8 1.42543
\(296\) 7.08702e7 0.158834
\(297\) 0 0
\(298\) −3.52422e8 −0.771448
\(299\) −3.10558e7 −0.0671883
\(300\) 0 0
\(301\) 1.41706e8 0.299506
\(302\) 1.58791e8 0.331744
\(303\) 0 0
\(304\) 4.94818e7 0.101015
\(305\) −5.35516e8 −1.08074
\(306\) 0 0
\(307\) 2.70903e8 0.534354 0.267177 0.963647i \(-0.413909\pi\)
0.267177 + 0.963647i \(0.413909\pi\)
\(308\) 4.31025e6 0.00840572
\(309\) 0 0
\(310\) 1.10585e8 0.210828
\(311\) −3.70799e8 −0.699000 −0.349500 0.936936i \(-0.613649\pi\)
−0.349500 + 0.936936i \(0.613649\pi\)
\(312\) 0 0
\(313\) −2.28334e8 −0.420887 −0.210443 0.977606i \(-0.567491\pi\)
−0.210443 + 0.977606i \(0.567491\pi\)
\(314\) −6.56764e8 −1.19717
\(315\) 0 0
\(316\) −1.21942e8 −0.217395
\(317\) −3.72789e8 −0.657288 −0.328644 0.944454i \(-0.606592\pi\)
−0.328644 + 0.944454i \(0.606592\pi\)
\(318\) 0 0
\(319\) −9.53714e6 −0.0164494
\(320\) 7.35371e7 0.125453
\(321\) 0 0
\(322\) −1.42253e7 −0.0237447
\(323\) 3.98825e7 0.0658527
\(324\) 0 0
\(325\) 3.39884e6 0.00549211
\(326\) −4.91730e8 −0.786076
\(327\) 0 0
\(328\) 8.01040e7 0.125342
\(329\) 2.61020e8 0.404099
\(330\) 0 0
\(331\) −7.75556e7 −0.117548 −0.0587740 0.998271i \(-0.518719\pi\)
−0.0587740 + 0.998271i \(0.518719\pi\)
\(332\) 6.99586e7 0.104920
\(333\) 0 0
\(334\) −6.95045e8 −1.02071
\(335\) −1.35602e9 −1.97065
\(336\) 0 0
\(337\) −1.49893e6 −0.00213343 −0.00106671 0.999999i \(-0.500340\pi\)
−0.00106671 + 0.999999i \(0.500340\pi\)
\(338\) −2.14898e8 −0.302708
\(339\) 0 0
\(340\) 5.92712e7 0.0817838
\(341\) 9.67535e6 0.0132138
\(342\) 0 0
\(343\) 4.03536e7 0.0539949
\(344\) 2.11526e8 0.280162
\(345\) 0 0
\(346\) −2.30481e8 −0.299136
\(347\) 1.29273e8 0.166094 0.0830471 0.996546i \(-0.473535\pi\)
0.0830471 + 0.996546i \(0.473535\pi\)
\(348\) 0 0
\(349\) 1.34850e8 0.169810 0.0849049 0.996389i \(-0.472941\pi\)
0.0849049 + 0.996389i \(0.472941\pi\)
\(350\) 1.55686e6 0.00194094
\(351\) 0 0
\(352\) 6.43396e6 0.00786283
\(353\) −6.10080e8 −0.738202 −0.369101 0.929389i \(-0.620334\pi\)
−0.369101 + 0.929389i \(0.620334\pi\)
\(354\) 0 0
\(355\) 9.58691e8 1.13731
\(356\) −4.28874e8 −0.503796
\(357\) 0 0
\(358\) 8.11442e7 0.0934688
\(359\) 1.72057e9 1.96264 0.981320 0.192380i \(-0.0616207\pi\)
0.981320 + 0.192380i \(0.0616207\pi\)
\(360\) 0 0
\(361\) −7.47933e8 −0.836734
\(362\) −6.18260e8 −0.685000
\(363\) 0 0
\(364\) 1.31504e8 0.142917
\(365\) −3.00368e8 −0.323317
\(366\) 0 0
\(367\) 9.02388e8 0.952932 0.476466 0.879193i \(-0.341917\pi\)
0.476466 + 0.879193i \(0.341917\pi\)
\(368\) −2.12343e7 −0.0222112
\(369\) 0 0
\(370\) 3.10635e8 0.318819
\(371\) 4.93788e8 0.502032
\(372\) 0 0
\(373\) −4.87618e7 −0.0486518 −0.0243259 0.999704i \(-0.507744\pi\)
−0.0243259 + 0.999704i \(0.507744\pi\)
\(374\) 5.18579e6 0.00512584
\(375\) 0 0
\(376\) 3.89627e8 0.378000
\(377\) −2.90974e8 −0.279679
\(378\) 0 0
\(379\) 5.62104e8 0.530370 0.265185 0.964198i \(-0.414567\pi\)
0.265185 + 0.964198i \(0.414567\pi\)
\(380\) 2.16886e8 0.202763
\(381\) 0 0
\(382\) 9.80254e7 0.0899740
\(383\) 1.11329e9 1.01254 0.506270 0.862375i \(-0.331024\pi\)
0.506270 + 0.862375i \(0.331024\pi\)
\(384\) 0 0
\(385\) 1.88925e7 0.0168724
\(386\) 1.14746e9 1.01550
\(387\) 0 0
\(388\) 5.14688e8 0.447335
\(389\) −2.00360e9 −1.72579 −0.862894 0.505385i \(-0.831350\pi\)
−0.862894 + 0.505385i \(0.831350\pi\)
\(390\) 0 0
\(391\) −1.71150e7 −0.0144796
\(392\) 6.02363e7 0.0505076
\(393\) 0 0
\(394\) 1.46856e9 1.20964
\(395\) −5.34491e8 −0.436366
\(396\) 0 0
\(397\) −2.24640e8 −0.180186 −0.0900930 0.995933i \(-0.528716\pi\)
−0.0900930 + 0.995933i \(0.528716\pi\)
\(398\) −1.09444e9 −0.870168
\(399\) 0 0
\(400\) 2.32395e6 0.00181559
\(401\) 2.47523e9 1.91695 0.958475 0.285176i \(-0.0920519\pi\)
0.958475 + 0.285176i \(0.0920519\pi\)
\(402\) 0 0
\(403\) 2.95191e8 0.224665
\(404\) −2.54628e7 −0.0192119
\(405\) 0 0
\(406\) −1.33283e8 −0.0988401
\(407\) 2.71783e7 0.0199821
\(408\) 0 0
\(409\) −1.11095e9 −0.802905 −0.401452 0.915880i \(-0.631494\pi\)
−0.401452 + 0.915880i \(0.631494\pi\)
\(410\) 3.51108e8 0.251592
\(411\) 0 0
\(412\) −6.89236e8 −0.485543
\(413\) 7.68510e8 0.536814
\(414\) 0 0
\(415\) 3.06639e8 0.210600
\(416\) 1.96297e8 0.133687
\(417\) 0 0
\(418\) 1.89760e7 0.0127083
\(419\) −1.82836e9 −1.21426 −0.607132 0.794601i \(-0.707680\pi\)
−0.607132 + 0.794601i \(0.707680\pi\)
\(420\) 0 0
\(421\) −2.26838e9 −1.48159 −0.740796 0.671730i \(-0.765551\pi\)
−0.740796 + 0.671730i \(0.765551\pi\)
\(422\) 1.55494e9 1.00721
\(423\) 0 0
\(424\) 7.37082e8 0.469608
\(425\) 1.87311e6 0.00118359
\(426\) 0 0
\(427\) −6.54788e8 −0.407008
\(428\) 5.59133e8 0.344716
\(429\) 0 0
\(430\) 9.27151e8 0.562355
\(431\) 5.62754e8 0.338570 0.169285 0.985567i \(-0.445854\pi\)
0.169285 + 0.985567i \(0.445854\pi\)
\(432\) 0 0
\(433\) −3.19554e9 −1.89163 −0.945817 0.324700i \(-0.894737\pi\)
−0.945817 + 0.324700i \(0.894737\pi\)
\(434\) 1.35214e8 0.0793979
\(435\) 0 0
\(436\) −7.48110e8 −0.432277
\(437\) −6.26274e7 −0.0358987
\(438\) 0 0
\(439\) 9.19706e8 0.518828 0.259414 0.965766i \(-0.416471\pi\)
0.259414 + 0.965766i \(0.416471\pi\)
\(440\) 2.82010e7 0.0157827
\(441\) 0 0
\(442\) 1.58216e8 0.0871512
\(443\) 1.67060e9 0.912975 0.456488 0.889730i \(-0.349107\pi\)
0.456488 + 0.889730i \(0.349107\pi\)
\(444\) 0 0
\(445\) −1.87982e9 −1.01124
\(446\) 7.21846e8 0.385276
\(447\) 0 0
\(448\) 8.99154e7 0.0472456
\(449\) 3.15186e9 1.64325 0.821626 0.570027i \(-0.193067\pi\)
0.821626 + 0.570027i \(0.193067\pi\)
\(450\) 0 0
\(451\) 3.07194e7 0.0157686
\(452\) −4.28669e8 −0.218342
\(453\) 0 0
\(454\) −1.78856e8 −0.0897034
\(455\) 5.76401e8 0.286870
\(456\) 0 0
\(457\) −8.74505e8 −0.428603 −0.214302 0.976768i \(-0.568748\pi\)
−0.214302 + 0.976768i \(0.568748\pi\)
\(458\) 1.06261e9 0.516827
\(459\) 0 0
\(460\) −9.30733e7 −0.0445833
\(461\) −2.25666e9 −1.07279 −0.536393 0.843969i \(-0.680213\pi\)
−0.536393 + 0.843969i \(0.680213\pi\)
\(462\) 0 0
\(463\) −1.73804e9 −0.813815 −0.406907 0.913469i \(-0.633393\pi\)
−0.406907 + 0.913469i \(0.633393\pi\)
\(464\) −1.98953e8 −0.0924564
\(465\) 0 0
\(466\) 2.23132e9 1.02144
\(467\) 3.03539e9 1.37913 0.689566 0.724222i \(-0.257801\pi\)
0.689566 + 0.724222i \(0.257801\pi\)
\(468\) 0 0
\(469\) −1.65803e9 −0.742145
\(470\) 1.70779e9 0.758740
\(471\) 0 0
\(472\) 1.14716e9 0.502144
\(473\) 8.11189e7 0.0352459
\(474\) 0 0
\(475\) 6.85413e6 0.00293444
\(476\) 7.24722e7 0.0307997
\(477\) 0 0
\(478\) 1.78483e9 0.747478
\(479\) −8.71018e8 −0.362120 −0.181060 0.983472i \(-0.557953\pi\)
−0.181060 + 0.983472i \(0.557953\pi\)
\(480\) 0 0
\(481\) 8.29198e8 0.339743
\(482\) −2.24241e9 −0.912117
\(483\) 0 0
\(484\) −1.24471e9 −0.499011
\(485\) 2.25596e9 0.897913
\(486\) 0 0
\(487\) 1.54718e9 0.607001 0.303500 0.952831i \(-0.401845\pi\)
0.303500 + 0.952831i \(0.401845\pi\)
\(488\) −9.77409e8 −0.380721
\(489\) 0 0
\(490\) 2.64025e8 0.101381
\(491\) 2.31714e9 0.883421 0.441711 0.897158i \(-0.354372\pi\)
0.441711 + 0.897158i \(0.354372\pi\)
\(492\) 0 0
\(493\) −1.60357e8 −0.0602730
\(494\) 5.78949e8 0.216071
\(495\) 0 0
\(496\) 2.01836e8 0.0742699
\(497\) 1.17221e9 0.428311
\(498\) 0 0
\(499\) 2.72420e9 0.981493 0.490746 0.871302i \(-0.336724\pi\)
0.490746 + 0.871302i \(0.336724\pi\)
\(500\) −1.39242e9 −0.498168
\(501\) 0 0
\(502\) −2.57388e8 −0.0908082
\(503\) −4.39360e9 −1.53933 −0.769666 0.638447i \(-0.779577\pi\)
−0.769666 + 0.638447i \(0.779577\pi\)
\(504\) 0 0
\(505\) −1.11607e8 −0.0385631
\(506\) −8.14323e6 −0.00279428
\(507\) 0 0
\(508\) 2.09948e8 0.0710541
\(509\) 1.88221e9 0.632639 0.316320 0.948653i \(-0.397553\pi\)
0.316320 + 0.948653i \(0.397553\pi\)
\(510\) 0 0
\(511\) −3.67267e8 −0.121761
\(512\) 1.34218e8 0.0441942
\(513\) 0 0
\(514\) 2.47885e9 0.805155
\(515\) −3.02103e9 −0.974606
\(516\) 0 0
\(517\) 1.49420e8 0.0475544
\(518\) 3.79820e8 0.120067
\(519\) 0 0
\(520\) 8.60401e8 0.268342
\(521\) 2.44662e9 0.757939 0.378970 0.925409i \(-0.376278\pi\)
0.378970 + 0.925409i \(0.376278\pi\)
\(522\) 0 0
\(523\) 3.39937e9 1.03907 0.519533 0.854451i \(-0.326106\pi\)
0.519533 + 0.854451i \(0.326106\pi\)
\(524\) −1.88752e9 −0.573103
\(525\) 0 0
\(526\) −2.19144e9 −0.656569
\(527\) 1.62681e8 0.0484171
\(528\) 0 0
\(529\) −3.37795e9 −0.992107
\(530\) 3.23074e9 0.942620
\(531\) 0 0
\(532\) 2.65192e8 0.0763605
\(533\) 9.37235e8 0.268104
\(534\) 0 0
\(535\) 2.45076e9 0.691931
\(536\) −2.47497e9 −0.694213
\(537\) 0 0
\(538\) −2.40593e8 −0.0666108
\(539\) 2.31002e7 0.00635412
\(540\) 0 0
\(541\) −2.21284e9 −0.600841 −0.300421 0.953807i \(-0.597127\pi\)
−0.300421 + 0.953807i \(0.597127\pi\)
\(542\) −1.58212e9 −0.426817
\(543\) 0 0
\(544\) 1.08180e8 0.0288105
\(545\) −3.27908e9 −0.867689
\(546\) 0 0
\(547\) 6.02381e8 0.157368 0.0786838 0.996900i \(-0.474928\pi\)
0.0786838 + 0.996900i \(0.474928\pi\)
\(548\) −5.80847e8 −0.150775
\(549\) 0 0
\(550\) 891220. 0.000228410 0
\(551\) −5.86781e8 −0.149433
\(552\) 0 0
\(553\) −6.53535e8 −0.164335
\(554\) −1.28128e9 −0.320155
\(555\) 0 0
\(556\) −2.55638e8 −0.0630760
\(557\) −6.49640e9 −1.59287 −0.796434 0.604725i \(-0.793283\pi\)
−0.796434 + 0.604725i \(0.793283\pi\)
\(558\) 0 0
\(559\) 2.47491e9 0.599263
\(560\) 3.94113e8 0.0948336
\(561\) 0 0
\(562\) 1.33361e9 0.316922
\(563\) −6.47285e9 −1.52868 −0.764339 0.644814i \(-0.776935\pi\)
−0.764339 + 0.644814i \(0.776935\pi\)
\(564\) 0 0
\(565\) −1.87892e9 −0.438267
\(566\) 1.21333e9 0.281268
\(567\) 0 0
\(568\) 1.74978e9 0.400648
\(569\) −3.11762e9 −0.709464 −0.354732 0.934968i \(-0.615428\pi\)
−0.354732 + 0.934968i \(0.615428\pi\)
\(570\) 0 0
\(571\) −3.37414e9 −0.758467 −0.379234 0.925301i \(-0.623812\pi\)
−0.379234 + 0.925301i \(0.623812\pi\)
\(572\) 7.52788e7 0.0168185
\(573\) 0 0
\(574\) 4.29307e8 0.0947494
\(575\) −2.94134e6 −0.000645220 0
\(576\) 0 0
\(577\) 3.99174e9 0.865062 0.432531 0.901619i \(-0.357621\pi\)
0.432531 + 0.901619i \(0.357621\pi\)
\(578\) −3.19552e9 −0.688325
\(579\) 0 0
\(580\) −8.72040e8 −0.185583
\(581\) 3.74934e8 0.0793120
\(582\) 0 0
\(583\) 2.82666e8 0.0590792
\(584\) −5.48223e8 −0.113897
\(585\) 0 0
\(586\) −6.65248e9 −1.36566
\(587\) −9.66439e9 −1.97215 −0.986077 0.166287i \(-0.946822\pi\)
−0.986077 + 0.166287i \(0.946822\pi\)
\(588\) 0 0
\(589\) 5.95284e8 0.120039
\(590\) 5.02819e9 1.00793
\(591\) 0 0
\(592\) 5.66962e8 0.112312
\(593\) 1.36501e9 0.268810 0.134405 0.990927i \(-0.457088\pi\)
0.134405 + 0.990927i \(0.457088\pi\)
\(594\) 0 0
\(595\) 3.17656e8 0.0618227
\(596\) −2.81938e9 −0.545496
\(597\) 0 0
\(598\) −2.48447e8 −0.0475093
\(599\) 9.30699e8 0.176936 0.0884679 0.996079i \(-0.471803\pi\)
0.0884679 + 0.996079i \(0.471803\pi\)
\(600\) 0 0
\(601\) −1.68577e9 −0.316765 −0.158383 0.987378i \(-0.550628\pi\)
−0.158383 + 0.987378i \(0.550628\pi\)
\(602\) 1.13365e9 0.211783
\(603\) 0 0
\(604\) 1.27033e9 0.234578
\(605\) −5.45576e9 −1.00164
\(606\) 0 0
\(607\) 8.90039e9 1.61528 0.807641 0.589674i \(-0.200744\pi\)
0.807641 + 0.589674i \(0.200744\pi\)
\(608\) 3.95854e8 0.0714287
\(609\) 0 0
\(610\) −4.28413e9 −0.764202
\(611\) 4.55873e9 0.808536
\(612\) 0 0
\(613\) −3.31058e9 −0.580487 −0.290244 0.956953i \(-0.593736\pi\)
−0.290244 + 0.956953i \(0.593736\pi\)
\(614\) 2.16722e9 0.377845
\(615\) 0 0
\(616\) 3.44820e7 0.00594374
\(617\) 7.49974e9 1.28543 0.642715 0.766106i \(-0.277808\pi\)
0.642715 + 0.766106i \(0.277808\pi\)
\(618\) 0 0
\(619\) 2.53875e9 0.430232 0.215116 0.976589i \(-0.430987\pi\)
0.215116 + 0.976589i \(0.430987\pi\)
\(620\) 8.84678e8 0.149078
\(621\) 0 0
\(622\) −2.96639e9 −0.494268
\(623\) −2.29850e9 −0.380834
\(624\) 0 0
\(625\) −6.14752e9 −1.00721
\(626\) −1.82667e9 −0.297612
\(627\) 0 0
\(628\) −5.25411e9 −0.846527
\(629\) 4.56973e8 0.0732173
\(630\) 0 0
\(631\) 9.36480e9 1.48387 0.741935 0.670472i \(-0.233908\pi\)
0.741935 + 0.670472i \(0.233908\pi\)
\(632\) −9.75538e8 −0.153722
\(633\) 0 0
\(634\) −2.98231e9 −0.464773
\(635\) 9.20234e8 0.142623
\(636\) 0 0
\(637\) 7.04779e8 0.108035
\(638\) −7.62972e7 −0.0116315
\(639\) 0 0
\(640\) 5.88296e8 0.0887087
\(641\) −8.69833e9 −1.30447 −0.652233 0.758018i \(-0.726168\pi\)
−0.652233 + 0.758018i \(0.726168\pi\)
\(642\) 0 0
\(643\) 8.35753e9 1.23977 0.619883 0.784694i \(-0.287180\pi\)
0.619883 + 0.784694i \(0.287180\pi\)
\(644\) −1.13803e8 −0.0167901
\(645\) 0 0
\(646\) 3.19060e8 0.0465649
\(647\) 4.40456e9 0.639349 0.319674 0.947527i \(-0.396426\pi\)
0.319674 + 0.947527i \(0.396426\pi\)
\(648\) 0 0
\(649\) 4.39930e8 0.0631723
\(650\) 2.71907e7 0.00388351
\(651\) 0 0
\(652\) −3.93384e9 −0.555840
\(653\) 2.34457e9 0.329509 0.164755 0.986335i \(-0.447317\pi\)
0.164755 + 0.986335i \(0.447317\pi\)
\(654\) 0 0
\(655\) −8.27329e9 −1.15036
\(656\) 6.40832e8 0.0886300
\(657\) 0 0
\(658\) 2.08816e9 0.285741
\(659\) 3.06032e9 0.416551 0.208275 0.978070i \(-0.433215\pi\)
0.208275 + 0.978070i \(0.433215\pi\)
\(660\) 0 0
\(661\) −7.61767e9 −1.02593 −0.512964 0.858410i \(-0.671453\pi\)
−0.512964 + 0.858410i \(0.671453\pi\)
\(662\) −6.20445e8 −0.0831190
\(663\) 0 0
\(664\) 5.59669e8 0.0741896
\(665\) 1.16237e9 0.153275
\(666\) 0 0
\(667\) 2.51808e8 0.0328570
\(668\) −5.56036e9 −0.721748
\(669\) 0 0
\(670\) −1.08482e10 −1.39346
\(671\) −3.74830e8 −0.0478967
\(672\) 0 0
\(673\) 1.88715e9 0.238646 0.119323 0.992855i \(-0.461928\pi\)
0.119323 + 0.992855i \(0.461928\pi\)
\(674\) −1.19915e7 −0.00150856
\(675\) 0 0
\(676\) −1.71918e9 −0.214047
\(677\) −8.23130e9 −1.01955 −0.509775 0.860308i \(-0.670271\pi\)
−0.509775 + 0.860308i \(0.670271\pi\)
\(678\) 0 0
\(679\) 2.75841e9 0.338154
\(680\) 4.74169e8 0.0578299
\(681\) 0 0
\(682\) 7.74028e7 0.00934354
\(683\) 1.53495e10 1.84341 0.921705 0.387892i \(-0.126797\pi\)
0.921705 + 0.387892i \(0.126797\pi\)
\(684\) 0 0
\(685\) −2.54594e9 −0.302644
\(686\) 3.22829e8 0.0381802
\(687\) 0 0
\(688\) 1.69221e9 0.198105
\(689\) 8.62403e9 1.00448
\(690\) 0 0
\(691\) 5.36543e9 0.618630 0.309315 0.950960i \(-0.399900\pi\)
0.309315 + 0.950960i \(0.399900\pi\)
\(692\) −1.84385e9 −0.211521
\(693\) 0 0
\(694\) 1.03418e9 0.117446
\(695\) −1.12050e9 −0.126609
\(696\) 0 0
\(697\) 5.16513e8 0.0577785
\(698\) 1.07880e9 0.120074
\(699\) 0 0
\(700\) 1.24549e7 0.00137245
\(701\) 8.98780e9 0.985463 0.492732 0.870181i \(-0.335998\pi\)
0.492732 + 0.870181i \(0.335998\pi\)
\(702\) 0 0
\(703\) 1.67217e9 0.181525
\(704\) 5.14717e7 0.00555986
\(705\) 0 0
\(706\) −4.88064e9 −0.521988
\(707\) −1.36465e8 −0.0145229
\(708\) 0 0
\(709\) −2.23219e9 −0.235218 −0.117609 0.993060i \(-0.537523\pi\)
−0.117609 + 0.993060i \(0.537523\pi\)
\(710\) 7.66953e9 0.804201
\(711\) 0 0
\(712\) −3.43099e9 −0.356237
\(713\) −2.55457e8 −0.0263939
\(714\) 0 0
\(715\) 3.29958e8 0.0337589
\(716\) 6.49153e8 0.0660924
\(717\) 0 0
\(718\) 1.37645e10 1.38780
\(719\) 1.00409e10 1.00745 0.503723 0.863865i \(-0.331963\pi\)
0.503723 + 0.863865i \(0.331963\pi\)
\(720\) 0 0
\(721\) −3.69388e9 −0.367036
\(722\) −5.98346e9 −0.591660
\(723\) 0 0
\(724\) −4.94608e9 −0.484368
\(725\) −2.75586e7 −0.00268580
\(726\) 0 0
\(727\) 1.40935e10 1.36034 0.680172 0.733053i \(-0.261905\pi\)
0.680172 + 0.733053i \(0.261905\pi\)
\(728\) 1.05203e9 0.101058
\(729\) 0 0
\(730\) −2.40294e9 −0.228620
\(731\) 1.36393e9 0.129146
\(732\) 0 0
\(733\) 1.38425e10 1.29823 0.649115 0.760690i \(-0.275139\pi\)
0.649115 + 0.760690i \(0.275139\pi\)
\(734\) 7.21910e9 0.673825
\(735\) 0 0
\(736\) −1.69875e8 −0.0157057
\(737\) −9.49134e8 −0.0873356
\(738\) 0 0
\(739\) 1.62204e10 1.47844 0.739222 0.673462i \(-0.235194\pi\)
0.739222 + 0.673462i \(0.235194\pi\)
\(740\) 2.48508e9 0.225439
\(741\) 0 0
\(742\) 3.95030e9 0.354990
\(743\) 1.36993e9 0.122529 0.0612643 0.998122i \(-0.480487\pi\)
0.0612643 + 0.998122i \(0.480487\pi\)
\(744\) 0 0
\(745\) −1.23578e10 −1.09495
\(746\) −3.90095e8 −0.0344020
\(747\) 0 0
\(748\) 4.14864e7 0.00362451
\(749\) 2.99660e9 0.260581
\(750\) 0 0
\(751\) −1.56987e9 −0.135246 −0.0676228 0.997711i \(-0.521541\pi\)
−0.0676228 + 0.997711i \(0.521541\pi\)
\(752\) 3.11702e9 0.267286
\(753\) 0 0
\(754\) −2.32779e9 −0.197763
\(755\) 5.56805e9 0.470857
\(756\) 0 0
\(757\) 2.22871e10 1.86732 0.933658 0.358166i \(-0.116598\pi\)
0.933658 + 0.358166i \(0.116598\pi\)
\(758\) 4.49683e9 0.375028
\(759\) 0 0
\(760\) 1.73509e9 0.143375
\(761\) −9.35667e9 −0.769617 −0.384809 0.922996i \(-0.625733\pi\)
−0.384809 + 0.922996i \(0.625733\pi\)
\(762\) 0 0
\(763\) −4.00940e9 −0.326771
\(764\) 7.84203e8 0.0636212
\(765\) 0 0
\(766\) 8.90630e9 0.715973
\(767\) 1.34221e10 1.07408
\(768\) 0 0
\(769\) 6.34341e9 0.503015 0.251507 0.967855i \(-0.419074\pi\)
0.251507 + 0.967855i \(0.419074\pi\)
\(770\) 1.51140e8 0.0119306
\(771\) 0 0
\(772\) 9.17966e9 0.718069
\(773\) 1.80394e10 1.40474 0.702368 0.711814i \(-0.252126\pi\)
0.702368 + 0.711814i \(0.252126\pi\)
\(774\) 0 0
\(775\) 2.79580e7 0.00215749
\(776\) 4.11750e9 0.316314
\(777\) 0 0
\(778\) −1.60288e10 −1.22032
\(779\) 1.89003e9 0.143248
\(780\) 0 0
\(781\) 6.71028e8 0.0504037
\(782\) −1.36920e8 −0.0102386
\(783\) 0 0
\(784\) 4.81890e8 0.0357143
\(785\) −2.30296e10 −1.69919
\(786\) 0 0
\(787\) −2.08167e10 −1.52230 −0.761151 0.648575i \(-0.775365\pi\)
−0.761151 + 0.648575i \(0.775365\pi\)
\(788\) 1.17485e10 0.855344
\(789\) 0 0
\(790\) −4.27593e9 −0.308557
\(791\) −2.29740e9 −0.165051
\(792\) 0 0
\(793\) −1.14359e10 −0.814357
\(794\) −1.79712e9 −0.127411
\(795\) 0 0
\(796\) −8.75555e9 −0.615301
\(797\) 1.98274e10 1.38728 0.693638 0.720324i \(-0.256007\pi\)
0.693638 + 0.720324i \(0.256007\pi\)
\(798\) 0 0
\(799\) 2.51233e9 0.174246
\(800\) 1.85916e7 0.00128381
\(801\) 0 0
\(802\) 1.98019e10 1.35549
\(803\) −2.10240e8 −0.0143288
\(804\) 0 0
\(805\) −4.98815e8 −0.0337018
\(806\) 2.36153e9 0.158862
\(807\) 0 0
\(808\) −2.03702e8 −0.0135849
\(809\) −2.72229e9 −0.180765 −0.0903824 0.995907i \(-0.528809\pi\)
−0.0903824 + 0.995907i \(0.528809\pi\)
\(810\) 0 0
\(811\) −1.89351e10 −1.24650 −0.623252 0.782021i \(-0.714189\pi\)
−0.623252 + 0.782021i \(0.714189\pi\)
\(812\) −1.06626e9 −0.0698905
\(813\) 0 0
\(814\) 2.17426e8 0.0141295
\(815\) −1.72426e10 −1.11571
\(816\) 0 0
\(817\) 4.99091e9 0.320186
\(818\) −8.88762e9 −0.567739
\(819\) 0 0
\(820\) 2.80886e9 0.177902
\(821\) −1.35074e10 −0.851865 −0.425933 0.904755i \(-0.640054\pi\)
−0.425933 + 0.904755i \(0.640054\pi\)
\(822\) 0 0
\(823\) −2.88388e9 −0.180334 −0.0901671 0.995927i \(-0.528740\pi\)
−0.0901671 + 0.995927i \(0.528740\pi\)
\(824\) −5.51389e9 −0.343331
\(825\) 0 0
\(826\) 6.14808e9 0.379585
\(827\) −2.42144e10 −1.48869 −0.744346 0.667795i \(-0.767238\pi\)
−0.744346 + 0.667795i \(0.767238\pi\)
\(828\) 0 0
\(829\) −1.94299e10 −1.18449 −0.592243 0.805759i \(-0.701758\pi\)
−0.592243 + 0.805759i \(0.701758\pi\)
\(830\) 2.45311e9 0.148917
\(831\) 0 0
\(832\) 1.57038e9 0.0945307
\(833\) 3.88405e8 0.0232824
\(834\) 0 0
\(835\) −2.43719e10 −1.44873
\(836\) 1.51808e8 0.00898611
\(837\) 0 0
\(838\) −1.46269e10 −0.858615
\(839\) 2.30928e9 0.134992 0.0674961 0.997720i \(-0.478499\pi\)
0.0674961 + 0.997720i \(0.478499\pi\)
\(840\) 0 0
\(841\) −1.48906e10 −0.863229
\(842\) −1.81470e10 −1.04764
\(843\) 0 0
\(844\) 1.24395e10 0.712206
\(845\) −7.53543e9 −0.429645
\(846\) 0 0
\(847\) −6.67088e9 −0.377217
\(848\) 5.89666e9 0.332063
\(849\) 0 0
\(850\) 1.49849e7 0.000836927 0
\(851\) −7.17583e8 −0.0399134
\(852\) 0 0
\(853\) 5.09877e9 0.281283 0.140642 0.990061i \(-0.455083\pi\)
0.140642 + 0.990061i \(0.455083\pi\)
\(854\) −5.23830e9 −0.287798
\(855\) 0 0
\(856\) 4.47306e9 0.243751
\(857\) −9.73503e9 −0.528329 −0.264164 0.964478i \(-0.585096\pi\)
−0.264164 + 0.964478i \(0.585096\pi\)
\(858\) 0 0
\(859\) 1.98547e10 1.06878 0.534388 0.845239i \(-0.320542\pi\)
0.534388 + 0.845239i \(0.320542\pi\)
\(860\) 7.41721e9 0.397645
\(861\) 0 0
\(862\) 4.50203e9 0.239405
\(863\) 3.31264e9 0.175443 0.0877217 0.996145i \(-0.472041\pi\)
0.0877217 + 0.996145i \(0.472041\pi\)
\(864\) 0 0
\(865\) −8.08187e9 −0.424576
\(866\) −2.55643e10 −1.33759
\(867\) 0 0
\(868\) 1.08171e9 0.0561428
\(869\) −3.74113e8 −0.0193390
\(870\) 0 0
\(871\) −2.89577e10 −1.48491
\(872\) −5.98488e9 −0.305666
\(873\) 0 0
\(874\) −5.01019e8 −0.0253842
\(875\) −7.46251e9 −0.376580
\(876\) 0 0
\(877\) 9.94078e9 0.497648 0.248824 0.968549i \(-0.419956\pi\)
0.248824 + 0.968549i \(0.419956\pi\)
\(878\) 7.35764e9 0.366866
\(879\) 0 0
\(880\) 2.25608e8 0.0111600
\(881\) 2.51302e10 1.23817 0.619086 0.785324i \(-0.287503\pi\)
0.619086 + 0.785324i \(0.287503\pi\)
\(882\) 0 0
\(883\) 1.44118e10 0.704458 0.352229 0.935914i \(-0.385424\pi\)
0.352229 + 0.935914i \(0.385424\pi\)
\(884\) 1.26573e9 0.0616252
\(885\) 0 0
\(886\) 1.33648e10 0.645571
\(887\) −2.40854e10 −1.15883 −0.579416 0.815032i \(-0.696719\pi\)
−0.579416 + 0.815032i \(0.696719\pi\)
\(888\) 0 0
\(889\) 1.12519e9 0.0537118
\(890\) −1.50385e10 −0.715057
\(891\) 0 0
\(892\) 5.77477e9 0.272432
\(893\) 9.19316e9 0.432001
\(894\) 0 0
\(895\) 2.84534e9 0.132664
\(896\) 7.19323e8 0.0334077
\(897\) 0 0
\(898\) 2.52148e10 1.16195
\(899\) −2.39347e9 −0.109868
\(900\) 0 0
\(901\) 4.75273e9 0.216474
\(902\) 2.45755e8 0.0111501
\(903\) 0 0
\(904\) −3.42935e9 −0.154391
\(905\) −2.16794e10 −0.972248
\(906\) 0 0
\(907\) −1.02624e10 −0.456690 −0.228345 0.973580i \(-0.573331\pi\)
−0.228345 + 0.973580i \(0.573331\pi\)
\(908\) −1.43085e9 −0.0634298
\(909\) 0 0
\(910\) 4.61121e9 0.202848
\(911\) −1.93711e10 −0.848866 −0.424433 0.905459i \(-0.639527\pi\)
−0.424433 + 0.905459i \(0.639527\pi\)
\(912\) 0 0
\(913\) 2.14629e8 0.00933344
\(914\) −6.99604e9 −0.303068
\(915\) 0 0
\(916\) 8.50089e9 0.365452
\(917\) −1.01159e10 −0.433225
\(918\) 0 0
\(919\) −2.63726e10 −1.12085 −0.560426 0.828205i \(-0.689363\pi\)
−0.560426 + 0.828205i \(0.689363\pi\)
\(920\) −7.44586e8 −0.0315252
\(921\) 0 0
\(922\) −1.80533e10 −0.758574
\(923\) 2.04728e10 0.856981
\(924\) 0 0
\(925\) 7.85345e7 0.00326260
\(926\) −1.39043e10 −0.575454
\(927\) 0 0
\(928\) −1.59162e9 −0.0653766
\(929\) −3.77372e9 −0.154424 −0.0772121 0.997015i \(-0.524602\pi\)
−0.0772121 + 0.997015i \(0.524602\pi\)
\(930\) 0 0
\(931\) 1.42126e9 0.0577231
\(932\) 1.78506e10 0.722264
\(933\) 0 0
\(934\) 2.42832e10 0.975194
\(935\) 1.81841e8 0.00727530
\(936\) 0 0
\(937\) −4.40888e9 −0.175081 −0.0875406 0.996161i \(-0.527901\pi\)
−0.0875406 + 0.996161i \(0.527901\pi\)
\(938\) −1.32643e10 −0.524776
\(939\) 0 0
\(940\) 1.36624e10 0.536510
\(941\) 8.51871e9 0.333281 0.166640 0.986018i \(-0.446708\pi\)
0.166640 + 0.986018i \(0.446708\pi\)
\(942\) 0 0
\(943\) −8.11078e8 −0.0314972
\(944\) 9.17731e9 0.355069
\(945\) 0 0
\(946\) 6.48952e8 0.0249226
\(947\) −2.94470e10 −1.12672 −0.563360 0.826212i \(-0.690491\pi\)
−0.563360 + 0.826212i \(0.690491\pi\)
\(948\) 0 0
\(949\) −6.41434e9 −0.243624
\(950\) 5.48330e7 0.00207496
\(951\) 0 0
\(952\) 5.79777e8 0.0217787
\(953\) −1.86093e10 −0.696473 −0.348236 0.937407i \(-0.613219\pi\)
−0.348236 + 0.937407i \(0.613219\pi\)
\(954\) 0 0
\(955\) 3.43728e9 0.127704
\(956\) 1.42786e10 0.528547
\(957\) 0 0
\(958\) −6.96814e9 −0.256058
\(959\) −3.11298e9 −0.113975
\(960\) 0 0
\(961\) −2.50845e10 −0.911744
\(962\) 6.63358e9 0.240235
\(963\) 0 0
\(964\) −1.79393e10 −0.644964
\(965\) 4.02358e10 1.44134
\(966\) 0 0
\(967\) 2.05267e10 0.730006 0.365003 0.931006i \(-0.381068\pi\)
0.365003 + 0.931006i \(0.381068\pi\)
\(968\) −9.95769e9 −0.352854
\(969\) 0 0
\(970\) 1.80476e10 0.634921
\(971\) −2.67970e8 −0.00939333 −0.00469667 0.999989i \(-0.501495\pi\)
−0.00469667 + 0.999989i \(0.501495\pi\)
\(972\) 0 0
\(973\) −1.37006e9 −0.0476810
\(974\) 1.23774e10 0.429214
\(975\) 0 0
\(976\) −7.81927e9 −0.269210
\(977\) −1.53498e10 −0.526590 −0.263295 0.964715i \(-0.584809\pi\)
−0.263295 + 0.964715i \(0.584809\pi\)
\(978\) 0 0
\(979\) −1.31576e9 −0.0448165
\(980\) 2.11220e9 0.0716875
\(981\) 0 0
\(982\) 1.85372e10 0.624673
\(983\) 1.23280e10 0.413958 0.206979 0.978345i \(-0.433637\pi\)
0.206979 + 0.978345i \(0.433637\pi\)
\(984\) 0 0
\(985\) 5.14954e10 1.71689
\(986\) −1.28285e9 −0.0426195
\(987\) 0 0
\(988\) 4.63159e9 0.152785
\(989\) −2.14177e9 −0.0704021
\(990\) 0 0
\(991\) −5.90638e10 −1.92781 −0.963904 0.266249i \(-0.914216\pi\)
−0.963904 + 0.266249i \(0.914216\pi\)
\(992\) 1.61469e9 0.0525167
\(993\) 0 0
\(994\) 9.37771e9 0.302862
\(995\) −3.83769e10 −1.23506
\(996\) 0 0
\(997\) 2.68495e10 0.858031 0.429015 0.903297i \(-0.358861\pi\)
0.429015 + 0.903297i \(0.358861\pi\)
\(998\) 2.17936e10 0.694020
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.8.a.l.1.2 yes 2
3.2 odd 2 126.8.a.k.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.8.a.k.1.1 2 3.2 odd 2
126.8.a.l.1.2 yes 2 1.1 even 1 trivial