Properties

Label 126.8.a.l
Level $126$
Weight $8$
Character orbit 126.a
Self dual yes
Analytic conductor $39.361$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [126,8,Mod(1,126)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("126.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(126, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 126.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,16,0,128,-168] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.3605132110\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3691}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3691 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 6\sqrt{3691}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 8 q^{2} + 64 q^{4} + (\beta - 84) q^{5} + 343 q^{7} + 512 q^{8} + (8 \beta - 672) q^{10} + ( - 7 \beta + 2748) q^{11} + (24 \beta - 2758) q^{13} + 2744 q^{14} + 4096 q^{16} + ( - 5 \beta + 5124) q^{17}+ \cdots + 941192 q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 16 q^{2} + 128 q^{4} - 168 q^{5} + 686 q^{7} + 1024 q^{8} - 1344 q^{10} + 5496 q^{11} - 5516 q^{13} + 5488 q^{14} + 8192 q^{16} + 10248 q^{17} + 6664 q^{19} - 10752 q^{20} + 43968 q^{22} + 45768 q^{23}+ \cdots + 1882384 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−60.7536
60.7536
8.00000 0 64.0000 −448.522 0 343.000 512.000 0 −3588.17
1.2 8.00000 0 64.0000 280.522 0 343.000 512.000 0 2244.17
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 126.8.a.l yes 2
3.b odd 2 1 126.8.a.k 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
126.8.a.k 2 3.b odd 2 1
126.8.a.l yes 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 168T_{5} - 125820 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(126))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 8)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 168T - 125820 \) Copy content Toggle raw display
$7$ \( (T - 343)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 5496 T + 1040580 \) Copy content Toggle raw display
$13$ \( T^{2} + 5516 T - 68930012 \) Copy content Toggle raw display
$17$ \( T^{2} - 10248 T + 22933476 \) Copy content Toggle raw display
$19$ \( T^{2} - 6664 T - 65434352 \) Copy content Toggle raw display
$23$ \( T^{2} - 45768 T - 264144348 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 11521995264 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 8463494032 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 36113024740 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots + 63600513732 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 234123533936 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 83318443632 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 852922259856 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 3638171701008 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 2267844045308 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 20445282631280 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 10348078644540 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 6279868157188 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 11564786539072 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 1220376268800 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 56022646632156 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 103335380149436 \) Copy content Toggle raw display
show more
show less