Properties

Label 126.8.a
Level $126$
Weight $8$
Character orbit 126.a
Rep. character $\chi_{126}(1,\cdot)$
Character field $\Q$
Dimension $18$
Newform subspaces $13$
Sturm bound $192$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 126.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 13 \)
Sturm bound: \(192\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(126))\).

Total New Old
Modular forms 176 18 158
Cusp forms 160 18 142
Eisenstein series 16 0 16

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(7\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(24\)\(2\)\(22\)\(22\)\(2\)\(20\)\(2\)\(0\)\(2\)
\(+\)\(+\)\(-\)\(-\)\(20\)\(2\)\(18\)\(18\)\(2\)\(16\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(+\)\(-\)\(21\)\(2\)\(19\)\(19\)\(2\)\(17\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(+\)\(23\)\(3\)\(20\)\(21\)\(3\)\(18\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(+\)\(-\)\(22\)\(2\)\(20\)\(20\)\(2\)\(18\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(+\)\(22\)\(2\)\(20\)\(20\)\(2\)\(18\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(+\)\(21\)\(3\)\(18\)\(19\)\(3\)\(16\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(-\)\(-\)\(23\)\(2\)\(21\)\(21\)\(2\)\(19\)\(2\)\(0\)\(2\)
Plus space\(+\)\(90\)\(10\)\(80\)\(82\)\(10\)\(72\)\(8\)\(0\)\(8\)
Minus space\(-\)\(86\)\(8\)\(78\)\(78\)\(8\)\(70\)\(8\)\(0\)\(8\)

Trace form

\( 18 q + 1152 q^{4} - 394 q^{5} - 3120 q^{10} + 6244 q^{11} - 17754 q^{13} - 5488 q^{14} + 73728 q^{16} - 23456 q^{17} + 3558 q^{19} - 25216 q^{20} - 52128 q^{22} + 144376 q^{23} + 394098 q^{25} - 143728 q^{26}+ \cdots + 2555472 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(126))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 7
126.8.a.a 126.a 1.a $1$ $39.361$ \(\Q\) None 42.8.a.f \(-8\) \(0\) \(-470\) \(-343\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-8q^{2}+2^{6}q^{4}-470q^{5}-7^{3}q^{7}+\cdots\)
126.8.a.b 126.a 1.a $1$ $39.361$ \(\Q\) None 42.8.a.e \(-8\) \(0\) \(-30\) \(343\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-8q^{2}+2^{6}q^{4}-30q^{5}+7^{3}q^{7}-2^{9}q^{8}+\cdots\)
126.8.a.c 126.a 1.a $1$ $39.361$ \(\Q\) None 14.8.a.b \(-8\) \(0\) \(400\) \(-343\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-8q^{2}+2^{6}q^{4}+20^{2}q^{5}-7^{3}q^{7}+\cdots\)
126.8.a.d 126.a 1.a $1$ $39.361$ \(\Q\) None 14.8.a.a \(8\) \(0\) \(-448\) \(-343\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+8q^{2}+2^{6}q^{4}-448q^{5}-7^{3}q^{7}+\cdots\)
126.8.a.e 126.a 1.a $1$ $39.361$ \(\Q\) None 42.8.a.d \(8\) \(0\) \(-270\) \(343\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+8q^{2}+2^{6}q^{4}-270q^{5}+7^{3}q^{7}+\cdots\)
126.8.a.f 126.a 1.a $1$ $39.361$ \(\Q\) None 42.8.a.b \(8\) \(0\) \(18\) \(343\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+8q^{2}+2^{6}q^{4}+18q^{5}+7^{3}q^{7}+2^{9}q^{8}+\cdots\)
126.8.a.g 126.a 1.a $1$ $39.361$ \(\Q\) None 42.8.a.c \(8\) \(0\) \(122\) \(-343\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+8q^{2}+2^{6}q^{4}+122q^{5}-7^{3}q^{7}+\cdots\)
126.8.a.h 126.a 1.a $1$ $39.361$ \(\Q\) None 42.8.a.a \(8\) \(0\) \(410\) \(-343\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+8q^{2}+2^{6}q^{4}+410q^{5}-7^{3}q^{7}+\cdots\)
126.8.a.i 126.a 1.a $2$ $39.361$ \(\Q(\sqrt{1969}) \) None 14.8.a.c \(-16\) \(0\) \(-126\) \(686\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-8q^{2}+2^{6}q^{4}+(-63-\beta )q^{5}+7^{3}q^{7}+\cdots\)
126.8.a.j 126.a 1.a $2$ $39.361$ \(\Q(\sqrt{499}) \) None 126.8.a.j \(-16\) \(0\) \(56\) \(-686\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-8q^{2}+2^{6}q^{4}+(28+\beta )q^{5}-7^{3}q^{7}+\cdots\)
126.8.a.k 126.a 1.a $2$ $39.361$ \(\Q(\sqrt{3691}) \) None 126.8.a.k \(-16\) \(0\) \(168\) \(686\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-8q^{2}+2^{6}q^{4}+(84+\beta )q^{5}+7^{3}q^{7}+\cdots\)
126.8.a.l 126.a 1.a $2$ $39.361$ \(\Q(\sqrt{3691}) \) None 126.8.a.k \(16\) \(0\) \(-168\) \(686\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+8q^{2}+2^{6}q^{4}+(-84+\beta )q^{5}+7^{3}q^{7}+\cdots\)
126.8.a.m 126.a 1.a $2$ $39.361$ \(\Q(\sqrt{499}) \) None 126.8.a.j \(16\) \(0\) \(-56\) \(-686\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+8q^{2}+2^{6}q^{4}+(-28+\beta )q^{5}-7^{3}q^{7}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(126))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_0(126)) \simeq \) \(S_{8}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 2}\)