Defining parameters
Level: | \( N \) | \(=\) | \( 126 = 2 \cdot 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 126.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 13 \) | ||
Sturm bound: | \(192\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(126))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 176 | 18 | 158 |
Cusp forms | 160 | 18 | 142 |
Eisenstein series | 16 | 0 | 16 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(7\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(2\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(2\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(2\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(3\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(2\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(2\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(3\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(2\) |
Plus space | \(+\) | \(10\) | ||
Minus space | \(-\) | \(8\) |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(126))\) into newform subspaces
Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(126))\) into lower level spaces
\( S_{8}^{\mathrm{old}}(\Gamma_0(126)) \simeq \) \(S_{8}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 2}\)