Properties

Label 126.8.a.j
Level $126$
Weight $8$
Character orbit 126.a
Self dual yes
Analytic conductor $39.361$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [126,8,Mod(1,126)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("126.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(126, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 126.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-16,0,128,56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.3605132110\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{499}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 499 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 6\sqrt{499}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 8 q^{2} + 64 q^{4} + (\beta + 28) q^{5} - 343 q^{7} - 512 q^{8} + ( - 8 \beta - 224) q^{10} + ( - 21 \beta + 1508) q^{11} + (88 \beta - 2142) q^{13} + 2744 q^{14} + 4096 q^{16} + (135 \beta + 11396) q^{17}+ \cdots - 941192 q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 16 q^{2} + 128 q^{4} + 56 q^{5} - 686 q^{7} - 1024 q^{8} - 448 q^{10} + 3016 q^{11} - 4284 q^{13} + 5488 q^{14} + 8192 q^{16} + 22792 q^{17} - 15176 q^{19} + 3584 q^{20} - 24128 q^{22} + 52792 q^{23}+ \cdots - 1882384 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−22.3383
22.3383
−8.00000 0 64.0000 −106.030 0 −343.000 −512.000 0 848.239
1.2 −8.00000 0 64.0000 162.030 0 −343.000 −512.000 0 −1296.24
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 126.8.a.j 2
3.b odd 2 1 126.8.a.m yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
126.8.a.j 2 1.a even 1 1 trivial
126.8.a.m yes 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - 56T_{5} - 17180 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(126))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 8)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 56T - 17180 \) Copy content Toggle raw display
$7$ \( (T + 343)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 3016 T - 5648060 \) Copy content Toggle raw display
$13$ \( T^{2} + 4284 T - 134525052 \) Copy content Toggle raw display
$17$ \( T^{2} - 22792 T - 197525084 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots - 1047280112 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 2163137948 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 39554773184 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 11760496272 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 129454449500 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 144288297468 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 134132111216 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 699327068688 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 281599875216 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 639834821008 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 2216323599012 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 1462529789200 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 6072438504580 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 8979931120892 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 4275555115968 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 15717088167680 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 49678412623524 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 20756643857284 \) Copy content Toggle raw display
show more
show less