Properties

Label 126.4.t.a.47.18
Level $126$
Weight $4$
Character 126.47
Analytic conductor $7.434$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [126,4,Mod(47,126)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("126.47"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(126, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 5])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 126.t (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.43424066072\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 47.18
Character \(\chi\) \(=\) 126.47
Dual form 126.4.t.a.59.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.73205 - 1.00000i) q^{2} +(-0.660361 - 5.15402i) q^{3} +(2.00000 - 3.46410i) q^{4} -14.9619 q^{5} +(-6.29780 - 8.26666i) q^{6} +(-6.35399 + 17.3962i) q^{7} -8.00000i q^{8} +(-26.1278 + 6.80703i) q^{9} +(-25.9148 + 14.9619i) q^{10} -47.7531i q^{11} +(-19.1748 - 8.02048i) q^{12} +(-26.1335 + 15.0882i) q^{13} +(6.39074 + 36.4850i) q^{14} +(9.88027 + 77.1140i) q^{15} +(-8.00000 - 13.8564i) q^{16} +(47.9201 + 83.0001i) q^{17} +(-38.4477 + 37.9180i) q^{18} +(-63.9852 - 36.9418i) q^{19} +(-29.9238 + 51.8296i) q^{20} +(93.8561 + 21.2608i) q^{21} +(-47.7531 - 82.7108i) q^{22} -204.225i q^{23} +(-41.2322 + 5.28289i) q^{24} +98.8591 q^{25} +(-30.1764 + 52.2671i) q^{26} +(52.3374 + 130.168i) q^{27} +(47.5541 + 56.8032i) q^{28} +(-116.156 - 67.0628i) q^{29} +(94.2272 + 123.685i) q^{30} +(-126.147 - 72.8312i) q^{31} +(-27.7128 - 16.0000i) q^{32} +(-246.121 + 31.5343i) q^{33} +(166.000 + 95.8402i) q^{34} +(95.0679 - 260.280i) q^{35} +(-28.6755 + 104.124i) q^{36} +(55.9343 - 96.8810i) q^{37} -147.767 q^{38} +(95.0225 + 124.729i) q^{39} +119.695i q^{40} +(-126.125 - 218.454i) q^{41} +(183.824 - 57.0313i) q^{42} +(33.0683 - 57.2760i) q^{43} +(-165.422 - 95.5062i) q^{44} +(390.923 - 101.846i) q^{45} +(-204.225 - 353.729i) q^{46} +(238.319 + 412.780i) q^{47} +(-66.1333 + 50.3824i) q^{48} +(-262.254 - 221.070i) q^{49} +(171.229 - 98.8591i) q^{50} +(396.140 - 301.791i) q^{51} +120.706i q^{52} +(231.396 - 133.597i) q^{53} +(220.819 + 173.121i) q^{54} +714.478i q^{55} +(139.169 + 50.8319i) q^{56} +(-148.146 + 354.176i) q^{57} -268.251 q^{58} +(406.178 - 703.520i) q^{59} +(286.891 + 120.002i) q^{60} +(-112.510 + 64.9574i) q^{61} -291.325 q^{62} +(47.5999 - 497.776i) q^{63} -64.0000 q^{64} +(391.008 - 225.749i) q^{65} +(-394.759 + 300.740i) q^{66} +(-124.586 + 215.789i) q^{67} +383.361 q^{68} +(-1052.58 + 134.862i) q^{69} +(-95.6177 - 545.886i) q^{70} +553.009i q^{71} +(54.4562 + 209.023i) q^{72} +(-193.425 + 111.674i) q^{73} -223.737i q^{74} +(-65.2827 - 509.522i) q^{75} +(-255.941 + 147.767i) q^{76} +(830.721 + 303.423i) q^{77} +(289.313 + 121.015i) q^{78} +(585.759 + 1014.56i) q^{79} +(119.695 + 207.318i) q^{80} +(636.329 - 355.706i) q^{81} +(-436.908 - 252.249i) q^{82} +(430.563 - 745.757i) q^{83} +(261.362 - 282.606i) q^{84} +(-716.977 - 1241.84i) q^{85} -132.273i q^{86} +(-268.938 + 642.957i) q^{87} -382.025 q^{88} +(-26.0013 + 45.0356i) q^{89} +(575.252 - 567.326i) q^{90} +(-96.4248 - 550.494i) q^{91} +(-707.457 - 408.451i) q^{92} +(-292.071 + 698.261i) q^{93} +(825.560 + 476.637i) q^{94} +(957.341 + 552.721i) q^{95} +(-64.1639 + 153.398i) q^{96} +(-1019.74 - 588.749i) q^{97} +(-675.307 - 120.651i) q^{98} +(325.057 + 1247.69i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 96 q^{4} - 12 q^{7} + 18 q^{9} - 72 q^{13} - 132 q^{14} + 132 q^{15} - 384 q^{16} - 144 q^{17} - 72 q^{18} + 270 q^{21} + 48 q^{24} + 1200 q^{25} - 120 q^{26} + 450 q^{27} + 48 q^{28} + 42 q^{29}+ \cdots - 5076 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.73205 1.00000i 0.612372 0.353553i
\(3\) −0.660361 5.15402i −0.127087 0.991892i
\(4\) 2.00000 3.46410i 0.250000 0.433013i
\(5\) −14.9619 −1.33824 −0.669118 0.743157i \(-0.733328\pi\)
−0.669118 + 0.743157i \(0.733328\pi\)
\(6\) −6.29780 8.26666i −0.428511 0.562475i
\(7\) −6.35399 + 17.3962i −0.343083 + 0.939305i
\(8\) 8.00000i 0.353553i
\(9\) −26.1278 + 6.80703i −0.967698 + 0.252112i
\(10\) −25.9148 + 14.9619i −0.819498 + 0.473138i
\(11\) 47.7531i 1.30892i −0.756097 0.654459i \(-0.772896\pi\)
0.756097 0.654459i \(-0.227104\pi\)
\(12\) −19.1748 8.02048i −0.461273 0.192943i
\(13\) −26.1335 + 15.0882i −0.557549 + 0.321901i −0.752161 0.658979i \(-0.770989\pi\)
0.194612 + 0.980880i \(0.437655\pi\)
\(14\) 6.39074 + 36.4850i 0.122000 + 0.696503i
\(15\) 9.88027 + 77.1140i 0.170072 + 1.32738i
\(16\) −8.00000 13.8564i −0.125000 0.216506i
\(17\) 47.9201 + 83.0001i 0.683667 + 1.18415i 0.973854 + 0.227176i \(0.0729492\pi\)
−0.290187 + 0.956970i \(0.593717\pi\)
\(18\) −38.4477 + 37.9180i −0.503456 + 0.496519i
\(19\) −63.9852 36.9418i −0.772589 0.446055i 0.0612081 0.998125i \(-0.480505\pi\)
−0.833798 + 0.552070i \(0.813838\pi\)
\(20\) −29.9238 + 51.8296i −0.334559 + 0.579473i
\(21\) 93.8561 + 21.2608i 0.975290 + 0.220928i
\(22\) −47.7531 82.7108i −0.462773 0.801546i
\(23\) 204.225i 1.85148i −0.378166 0.925738i \(-0.623445\pi\)
0.378166 0.925738i \(-0.376555\pi\)
\(24\) −41.2322 + 5.28289i −0.350687 + 0.0449319i
\(25\) 98.8591 0.790873
\(26\) −30.1764 + 52.2671i −0.227618 + 0.394247i
\(27\) 52.3374 + 130.168i 0.373049 + 0.927812i
\(28\) 47.5541 + 56.8032i 0.320960 + 0.383386i
\(29\) −116.156 67.0628i −0.743782 0.429423i 0.0796609 0.996822i \(-0.474616\pi\)
−0.823443 + 0.567399i \(0.807950\pi\)
\(30\) 94.2272 + 123.685i 0.573448 + 0.752724i
\(31\) −126.147 72.8312i −0.730862 0.421964i 0.0878753 0.996131i \(-0.471992\pi\)
−0.818738 + 0.574168i \(0.805326\pi\)
\(32\) −27.7128 16.0000i −0.153093 0.0883883i
\(33\) −246.121 + 31.5343i −1.29831 + 0.166346i
\(34\) 166.000 + 95.8402i 0.837317 + 0.483425i
\(35\) 95.0679 260.280i 0.459126 1.25701i
\(36\) −28.6755 + 104.124i −0.132757 + 0.482054i
\(37\) 55.9343 96.8810i 0.248528 0.430463i −0.714590 0.699544i \(-0.753387\pi\)
0.963118 + 0.269081i \(0.0867199\pi\)
\(38\) −147.767 −0.630817
\(39\) 95.0225 + 124.729i 0.390148 + 0.512119i
\(40\) 119.695i 0.473138i
\(41\) −126.125 218.454i −0.480423 0.832117i 0.519325 0.854577i \(-0.326184\pi\)
−0.999748 + 0.0224598i \(0.992850\pi\)
\(42\) 183.824 57.0313i 0.675351 0.209527i
\(43\) 33.0683 57.2760i 0.117276 0.203128i −0.801411 0.598114i \(-0.795917\pi\)
0.918687 + 0.394986i \(0.129250\pi\)
\(44\) −165.422 95.5062i −0.566778 0.327230i
\(45\) 390.923 101.846i 1.29501 0.337385i
\(46\) −204.225 353.729i −0.654595 1.13379i
\(47\) 238.319 + 412.780i 0.739624 + 1.28107i 0.952665 + 0.304023i \(0.0983301\pi\)
−0.213040 + 0.977043i \(0.568337\pi\)
\(48\) −66.1333 + 50.3824i −0.198865 + 0.151501i
\(49\) −262.254 221.070i −0.764588 0.644520i
\(50\) 171.229 98.8591i 0.484309 0.279616i
\(51\) 396.140 301.791i 1.08766 0.828612i
\(52\) 120.706i 0.321901i
\(53\) 231.396 133.597i 0.599712 0.346244i −0.169217 0.985579i \(-0.554124\pi\)
0.768928 + 0.639335i \(0.220790\pi\)
\(54\) 220.819 + 173.121i 0.556476 + 0.436273i
\(55\) 714.478i 1.75164i
\(56\) 139.169 + 50.8319i 0.332094 + 0.121298i
\(57\) −148.146 + 354.176i −0.344252 + 0.823013i
\(58\) −268.251 −0.607295
\(59\) 406.178 703.520i 0.896268 1.55238i 0.0640413 0.997947i \(-0.479601\pi\)
0.832227 0.554435i \(-0.187066\pi\)
\(60\) 286.891 + 120.002i 0.617292 + 0.258203i
\(61\) −112.510 + 64.9574i −0.236154 + 0.136343i −0.613408 0.789766i \(-0.710202\pi\)
0.377254 + 0.926110i \(0.376868\pi\)
\(62\) −291.325 −0.596747
\(63\) 47.5999 497.776i 0.0951908 0.995459i
\(64\) −64.0000 −0.125000
\(65\) 391.008 225.749i 0.746132 0.430779i
\(66\) −394.759 + 300.740i −0.736234 + 0.560886i
\(67\) −124.586 + 215.789i −0.227173 + 0.393476i −0.956969 0.290189i \(-0.906282\pi\)
0.729796 + 0.683665i \(0.239615\pi\)
\(68\) 383.361 0.683667
\(69\) −1052.58 + 134.862i −1.83646 + 0.235298i
\(70\) −95.6177 545.886i −0.163264 0.932084i
\(71\) 553.009i 0.924368i 0.886784 + 0.462184i \(0.152934\pi\)
−0.886784 + 0.462184i \(0.847066\pi\)
\(72\) 54.4562 + 209.023i 0.0891351 + 0.342133i
\(73\) −193.425 + 111.674i −0.310119 + 0.179047i −0.646980 0.762507i \(-0.723968\pi\)
0.336861 + 0.941555i \(0.390635\pi\)
\(74\) 223.737i 0.351472i
\(75\) −65.2827 509.522i −0.100509 0.784460i
\(76\) −255.941 + 147.767i −0.386295 + 0.223027i
\(77\) 830.721 + 303.423i 1.22947 + 0.449068i
\(78\) 289.313 + 121.015i 0.419977 + 0.175669i
\(79\) 585.759 + 1014.56i 0.834215 + 1.44490i 0.894668 + 0.446732i \(0.147412\pi\)
−0.0604523 + 0.998171i \(0.519254\pi\)
\(80\) 119.695 + 207.318i 0.167279 + 0.289736i
\(81\) 636.329 355.706i 0.872879 0.487937i
\(82\) −436.908 252.249i −0.588396 0.339710i
\(83\) 430.563 745.757i 0.569403 0.986234i −0.427223 0.904146i \(-0.640508\pi\)
0.996625 0.0820876i \(-0.0261587\pi\)
\(84\) 261.362 282.606i 0.339487 0.367081i
\(85\) −716.977 1241.84i −0.914907 1.58467i
\(86\) 132.273i 0.165853i
\(87\) −268.938 + 642.957i −0.331416 + 0.792325i
\(88\) −382.025 −0.462773
\(89\) −26.0013 + 45.0356i −0.0309678 + 0.0536378i −0.881094 0.472941i \(-0.843192\pi\)
0.850126 + 0.526579i \(0.176526\pi\)
\(90\) 575.252 567.326i 0.673743 0.664460i
\(91\) −96.4248 550.494i −0.111078 0.634148i
\(92\) −707.457 408.451i −0.801712 0.462869i
\(93\) −292.071 + 698.261i −0.325659 + 0.778562i
\(94\) 825.560 + 476.637i 0.905851 + 0.522993i
\(95\) 957.341 + 552.721i 1.03391 + 0.596926i
\(96\) −64.1639 + 153.398i −0.0682156 + 0.163085i
\(97\) −1019.74 588.749i −1.06742 0.616273i −0.139941 0.990160i \(-0.544691\pi\)
−0.927474 + 0.373887i \(0.878025\pi\)
\(98\) −675.307 120.651i −0.696085 0.124363i
\(99\) 325.057 + 1247.69i 0.329994 + 1.26664i
\(100\) 197.718 342.458i 0.197718 0.342458i
\(101\) −480.392 −0.473276 −0.236638 0.971598i \(-0.576045\pi\)
−0.236638 + 0.971598i \(0.576045\pi\)
\(102\) 384.342 918.857i 0.373094 0.891965i
\(103\) 976.169i 0.933833i 0.884301 + 0.466917i \(0.154635\pi\)
−0.884301 + 0.466917i \(0.845365\pi\)
\(104\) 120.706 + 209.068i 0.113809 + 0.197123i
\(105\) −1404.27 318.103i −1.30517 0.295654i
\(106\) 267.193 462.792i 0.244831 0.424060i
\(107\) −674.564 389.459i −0.609463 0.351874i 0.163292 0.986578i \(-0.447789\pi\)
−0.772755 + 0.634704i \(0.781122\pi\)
\(108\) 555.591 + 79.0347i 0.495016 + 0.0704178i
\(109\) 300.868 + 521.119i 0.264385 + 0.457928i 0.967402 0.253245i \(-0.0814977\pi\)
−0.703017 + 0.711173i \(0.748164\pi\)
\(110\) 714.478 + 1237.51i 0.619299 + 1.07266i
\(111\) −536.263 224.310i −0.458557 0.191807i
\(112\) 291.880 51.1259i 0.246251 0.0431334i
\(113\) −880.086 + 508.118i −0.732669 + 0.423006i −0.819398 0.573225i \(-0.805692\pi\)
0.0867290 + 0.996232i \(0.472359\pi\)
\(114\) 97.5798 + 761.596i 0.0801683 + 0.625702i
\(115\) 3055.60i 2.47771i
\(116\) −464.625 + 268.251i −0.371891 + 0.214711i
\(117\) 580.107 572.114i 0.458384 0.452068i
\(118\) 1624.71i 1.26751i
\(119\) −1748.37 + 306.245i −1.34683 + 0.235911i
\(120\) 616.912 79.0422i 0.469301 0.0601294i
\(121\) −949.360 −0.713269
\(122\) −129.915 + 225.019i −0.0964093 + 0.166986i
\(123\) −1042.63 + 794.307i −0.764315 + 0.582279i
\(124\) −504.589 + 291.325i −0.365431 + 0.210982i
\(125\) 391.118 0.279861
\(126\) −415.331 909.774i −0.293656 0.643247i
\(127\) 134.168 0.0937438 0.0468719 0.998901i \(-0.485075\pi\)
0.0468719 + 0.998901i \(0.485075\pi\)
\(128\) −110.851 + 64.0000i −0.0765466 + 0.0441942i
\(129\) −317.039 132.612i −0.216385 0.0905103i
\(130\) 451.497 782.016i 0.304607 0.527595i
\(131\) −2550.69 −1.70118 −0.850592 0.525827i \(-0.823756\pi\)
−0.850592 + 0.525827i \(0.823756\pi\)
\(132\) −383.003 + 915.655i −0.252547 + 0.603769i
\(133\) 1049.21 878.369i 0.684044 0.572663i
\(134\) 498.344i 0.321272i
\(135\) −783.068 1947.57i −0.499228 1.24163i
\(136\) 664.001 383.361i 0.418659 0.241713i
\(137\) 2810.14i 1.75246i −0.481897 0.876228i \(-0.660052\pi\)
0.481897 0.876228i \(-0.339948\pi\)
\(138\) −1688.26 + 1286.17i −1.04141 + 0.793377i
\(139\) −1408.55 + 813.225i −0.859506 + 0.496236i −0.863847 0.503754i \(-0.831952\pi\)
0.00434059 + 0.999991i \(0.498618\pi\)
\(140\) −711.501 849.885i −0.429520 0.513060i
\(141\) 1970.10 1500.88i 1.17668 0.896433i
\(142\) 553.009 + 957.840i 0.326813 + 0.566058i
\(143\) 720.509 + 1247.96i 0.421342 + 0.729787i
\(144\) 303.344 + 307.582i 0.175546 + 0.177999i
\(145\) 1737.92 + 1003.39i 0.995355 + 0.574668i
\(146\) −223.348 + 386.850i −0.126606 + 0.219287i
\(147\) −966.218 + 1497.65i −0.542125 + 0.840298i
\(148\) −223.737 387.524i −0.124264 0.215232i
\(149\) 703.405i 0.386746i 0.981125 + 0.193373i \(0.0619428\pi\)
−0.981125 + 0.193373i \(0.938057\pi\)
\(150\) −622.595 817.235i −0.338898 0.444846i
\(151\) 1672.60 0.901416 0.450708 0.892671i \(-0.351171\pi\)
0.450708 + 0.892671i \(0.351171\pi\)
\(152\) −295.535 + 511.881i −0.157704 + 0.273152i
\(153\) −1817.03 1842.42i −0.960121 0.973535i
\(154\) 1742.27 305.178i 0.911666 0.159688i
\(155\) 1887.41 + 1089.69i 0.978065 + 0.564686i
\(156\) 622.119 79.7093i 0.319291 0.0409093i
\(157\) 1.90639 + 1.10065i 0.000969085 + 0.000559501i 0.500484 0.865746i \(-0.333155\pi\)
−0.499515 + 0.866305i \(0.666489\pi\)
\(158\) 2029.13 + 1171.52i 1.02170 + 0.589879i
\(159\) −841.365 1104.40i −0.419651 0.550846i
\(160\) 414.637 + 239.391i 0.204875 + 0.118284i
\(161\) 3552.74 + 1297.65i 1.73910 + 0.635210i
\(162\) 746.448 1252.43i 0.362015 0.607408i
\(163\) 1487.47 2576.38i 0.714773 1.23802i −0.248275 0.968690i \(-0.579864\pi\)
0.963047 0.269333i \(-0.0868031\pi\)
\(164\) −1009.00 −0.480423
\(165\) 3682.44 471.814i 1.73744 0.222610i
\(166\) 1722.25i 0.805257i
\(167\) −405.855 702.962i −0.188060 0.325729i 0.756543 0.653943i \(-0.226887\pi\)
−0.944603 + 0.328214i \(0.893553\pi\)
\(168\) 170.087 750.849i 0.0781100 0.344817i
\(169\) −643.192 + 1114.04i −0.292759 + 0.507074i
\(170\) −2483.68 1433.95i −1.12053 0.646937i
\(171\) 1923.26 + 529.662i 0.860089 + 0.236867i
\(172\) −132.273 229.104i −0.0586380 0.101564i
\(173\) 233.703 + 404.786i 0.102706 + 0.177892i 0.912799 0.408410i \(-0.133917\pi\)
−0.810093 + 0.586302i \(0.800583\pi\)
\(174\) 177.143 + 1382.57i 0.0771791 + 0.602371i
\(175\) −628.150 + 1719.77i −0.271335 + 0.742871i
\(176\) −661.687 + 382.025i −0.283389 + 0.163615i
\(177\) −3894.18 1628.87i −1.65370 0.691714i
\(178\) 104.005i 0.0437951i
\(179\) 1551.29 895.637i 0.647758 0.373983i −0.139839 0.990174i \(-0.544658\pi\)
0.787597 + 0.616191i \(0.211325\pi\)
\(180\) 429.040 1557.89i 0.177660 0.645101i
\(181\) 127.734i 0.0524554i 0.999656 + 0.0262277i \(0.00834949\pi\)
−0.999656 + 0.0262277i \(0.991651\pi\)
\(182\) −717.506 857.058i −0.292226 0.349063i
\(183\) 409.089 + 536.981i 0.165250 + 0.216911i
\(184\) −1633.80 −0.654595
\(185\) −836.884 + 1449.53i −0.332589 + 0.576061i
\(186\) 192.380 + 1501.49i 0.0758384 + 0.591908i
\(187\) 3963.51 2288.34i 1.54995 0.894864i
\(188\) 1906.55 0.739624
\(189\) −2596.98 + 83.3814i −0.999485 + 0.0320905i
\(190\) 2210.88 0.844181
\(191\) −1535.66 + 886.613i −0.581761 + 0.335880i −0.761833 0.647773i \(-0.775700\pi\)
0.180072 + 0.983653i \(0.442367\pi\)
\(192\) 42.2631 + 329.857i 0.0158858 + 0.123986i
\(193\) 1439.97 2494.11i 0.537055 0.930207i −0.462006 0.886877i \(-0.652870\pi\)
0.999061 0.0433299i \(-0.0137966\pi\)
\(194\) −2355.00 −0.871541
\(195\) −1421.72 1866.19i −0.522110 0.685336i
\(196\) −1290.32 + 466.333i −0.470232 + 0.169946i
\(197\) 1601.95i 0.579362i −0.957123 0.289681i \(-0.906451\pi\)
0.957123 0.289681i \(-0.0935493\pi\)
\(198\) 1810.70 + 1836.00i 0.649904 + 0.658984i
\(199\) 3569.66 2060.95i 1.27159 0.734154i 0.296304 0.955094i \(-0.404246\pi\)
0.975287 + 0.220940i \(0.0709124\pi\)
\(200\) 790.873i 0.279616i
\(201\) 1194.46 + 499.620i 0.419156 + 0.175326i
\(202\) −832.064 + 480.392i −0.289821 + 0.167328i
\(203\) 1904.69 1594.56i 0.658538 0.551310i
\(204\) −253.157 1975.85i −0.0868848 0.678123i
\(205\) 1887.07 + 3268.49i 0.642919 + 1.11357i
\(206\) 976.169 + 1690.77i 0.330160 + 0.571854i
\(207\) 1390.17 + 5335.97i 0.466779 + 1.79167i
\(208\) 418.137 + 241.411i 0.139387 + 0.0804753i
\(209\) −1764.09 + 3055.49i −0.583849 + 1.01126i
\(210\) −2750.37 + 853.298i −0.903778 + 0.280396i
\(211\) 2234.38 + 3870.05i 0.729008 + 1.26268i 0.957303 + 0.289087i \(0.0933518\pi\)
−0.228294 + 0.973592i \(0.573315\pi\)
\(212\) 1068.77i 0.346244i
\(213\) 2850.22 365.186i 0.916873 0.117475i
\(214\) −1557.84 −0.497624
\(215\) −494.765 + 856.959i −0.156943 + 0.271833i
\(216\) 1041.35 418.699i 0.328031 0.131893i
\(217\) 2068.52 1731.71i 0.647099 0.541734i
\(218\) 1042.24 + 601.737i 0.323804 + 0.186948i
\(219\) 703.301 + 923.172i 0.217008 + 0.284850i
\(220\) 2475.03 + 1428.96i 0.758483 + 0.437910i
\(221\) −2504.64 1446.06i −0.762356 0.440146i
\(222\) −1153.15 + 147.747i −0.348622 + 0.0446673i
\(223\) −3421.82 1975.59i −1.02754 0.593251i −0.111262 0.993791i \(-0.535489\pi\)
−0.916279 + 0.400540i \(0.868823\pi\)
\(224\) 454.426 380.433i 0.135547 0.113477i
\(225\) −2582.98 + 672.937i −0.765326 + 0.199389i
\(226\) −1016.24 + 1760.17i −0.299111 + 0.518075i
\(227\) 88.7404 0.0259467 0.0129734 0.999916i \(-0.495870\pi\)
0.0129734 + 0.999916i \(0.495870\pi\)
\(228\) 930.609 + 1221.54i 0.270312 + 0.354819i
\(229\) 780.926i 0.225349i −0.993632 0.112675i \(-0.964058\pi\)
0.993632 0.112675i \(-0.0359418\pi\)
\(230\) 3055.60 + 5292.46i 0.876002 + 1.51728i
\(231\) 1015.27 4481.92i 0.289177 1.27658i
\(232\) −536.503 + 929.250i −0.151824 + 0.262967i
\(233\) −4189.61 2418.87i −1.17799 0.680111i −0.222438 0.974947i \(-0.571402\pi\)
−0.955548 + 0.294836i \(0.904735\pi\)
\(234\) 432.661 1571.04i 0.120872 0.438897i
\(235\) −3565.70 6175.98i −0.989791 1.71437i
\(236\) −1624.71 2814.08i −0.448134 0.776191i
\(237\) 4842.27 3688.99i 1.32717 1.01108i
\(238\) −2722.02 + 2278.80i −0.741354 + 0.620641i
\(239\) −4386.37 + 2532.47i −1.18716 + 0.685405i −0.957659 0.287904i \(-0.907042\pi\)
−0.229497 + 0.973309i \(0.573708\pi\)
\(240\) 989.481 753.817i 0.266128 0.202745i
\(241\) 3252.23i 0.869273i −0.900606 0.434636i \(-0.856877\pi\)
0.900606 0.434636i \(-0.143123\pi\)
\(242\) −1644.34 + 949.360i −0.436786 + 0.252179i
\(243\) −2253.52 3044.76i −0.594912 0.803791i
\(244\) 519.659i 0.136343i
\(245\) 3923.82 + 3307.64i 1.02320 + 0.862519i
\(246\) −1011.58 + 2418.41i −0.262179 + 0.626797i
\(247\) 2229.54 0.574342
\(248\) −582.650 + 1009.18i −0.149187 + 0.258399i
\(249\) −4127.97 1726.66i −1.05060 0.439449i
\(250\) 677.436 391.118i 0.171379 0.0989458i
\(251\) 1905.25 0.479117 0.239558 0.970882i \(-0.422997\pi\)
0.239558 + 0.970882i \(0.422997\pi\)
\(252\) −1629.15 1160.44i −0.407249 0.290084i
\(253\) −9752.40 −2.42343
\(254\) 232.385 134.168i 0.0574061 0.0331434i
\(255\) −5927.01 + 4515.38i −1.45554 + 1.10888i
\(256\) −128.000 + 221.703i −0.0312500 + 0.0541266i
\(257\) −992.231 −0.240831 −0.120416 0.992724i \(-0.538423\pi\)
−0.120416 + 0.992724i \(0.538423\pi\)
\(258\) −681.739 + 87.3481i −0.164509 + 0.0210777i
\(259\) 1329.95 + 1588.62i 0.319070 + 0.381128i
\(260\) 1805.99i 0.430779i
\(261\) 3491.41 + 961.529i 0.828019 + 0.228035i
\(262\) −4417.93 + 2550.69i −1.04176 + 0.601459i
\(263\) 38.4269i 0.00900953i 0.999990 + 0.00450477i \(0.00143392\pi\)
−0.999990 + 0.00450477i \(0.998566\pi\)
\(264\) 252.274 + 1968.96i 0.0588122 + 0.459020i
\(265\) −3462.13 + 1998.86i −0.802555 + 0.463355i
\(266\) 938.912 2570.59i 0.216423 0.592529i
\(267\) 249.285 + 104.272i 0.0571385 + 0.0239001i
\(268\) 498.344 + 863.158i 0.113587 + 0.196738i
\(269\) −1376.57 2384.29i −0.312011 0.540419i 0.666787 0.745249i \(-0.267669\pi\)
−0.978798 + 0.204830i \(0.934336\pi\)
\(270\) −3303.88 2590.22i −0.744696 0.583836i
\(271\) 4665.04 + 2693.36i 1.04569 + 0.603727i 0.921438 0.388525i \(-0.127015\pi\)
0.124247 + 0.992251i \(0.460348\pi\)
\(272\) 766.722 1328.00i 0.170917 0.296036i
\(273\) −2773.58 + 860.500i −0.614889 + 0.190769i
\(274\) −2810.14 4867.30i −0.619587 1.07316i
\(275\) 4720.83i 1.03519i
\(276\) −1637.99 + 3915.97i −0.357229 + 0.854036i
\(277\) −906.051 −0.196532 −0.0982659 0.995160i \(-0.531330\pi\)
−0.0982659 + 0.995160i \(0.531330\pi\)
\(278\) −1626.45 + 2817.09i −0.350892 + 0.607763i
\(279\) 3791.72 + 1044.23i 0.813636 + 0.224074i
\(280\) −2082.24 760.543i −0.444420 0.162326i
\(281\) 2686.33 + 1550.95i 0.570294 + 0.329260i 0.757267 0.653105i \(-0.226534\pi\)
−0.186972 + 0.982365i \(0.559868\pi\)
\(282\) 1911.43 4569.70i 0.403631 0.964971i
\(283\) −6418.55 3705.75i −1.34821 0.778389i −0.360213 0.932870i \(-0.617296\pi\)
−0.987996 + 0.154481i \(0.950629\pi\)
\(284\) 1915.68 + 1106.02i 0.400263 + 0.231092i
\(285\) 2216.54 5299.15i 0.460690 1.10138i
\(286\) 2495.92 + 1441.02i 0.516037 + 0.297934i
\(287\) 4601.66 806.029i 0.946437 0.165778i
\(288\) 832.989 + 229.404i 0.170432 + 0.0469366i
\(289\) −2136.18 + 3699.97i −0.434801 + 0.753097i
\(290\) 4013.56 0.812704
\(291\) −2361.03 + 5644.57i −0.475622 + 1.13708i
\(292\) 893.392i 0.179047i
\(293\) 1091.50 + 1890.53i 0.217631 + 0.376949i 0.954083 0.299541i \(-0.0968336\pi\)
−0.736452 + 0.676490i \(0.763500\pi\)
\(294\) −175.893 + 3560.22i −0.0348921 + 0.706245i
\(295\) −6077.20 + 10526.0i −1.19942 + 2.07745i
\(296\) −775.048 447.474i −0.152192 0.0878679i
\(297\) 6215.94 2499.27i 1.21443 0.488291i
\(298\) 703.405 + 1218.33i 0.136735 + 0.236833i
\(299\) 3081.39 + 5337.13i 0.595992 + 1.03229i
\(300\) −1895.60 792.898i −0.364809 0.152593i
\(301\) 786.267 + 939.193i 0.150564 + 0.179848i
\(302\) 2897.02 1672.60i 0.552003 0.318699i
\(303\) 317.232 + 2475.95i 0.0601469 + 0.469438i
\(304\) 1182.14i 0.223027i
\(305\) 1683.36 971.888i 0.316029 0.182460i
\(306\) −4989.61 1374.13i −0.932148 0.256712i
\(307\) 2602.62i 0.483841i −0.970296 0.241920i \(-0.922223\pi\)
0.970296 0.241920i \(-0.0777773\pi\)
\(308\) 2712.53 2270.86i 0.501821 0.420111i
\(309\) 5031.20 644.624i 0.926261 0.118678i
\(310\) 4358.78 0.798587
\(311\) 4203.94 7281.44i 0.766507 1.32763i −0.172939 0.984933i \(-0.555326\pi\)
0.939446 0.342697i \(-0.111340\pi\)
\(312\) 997.833 760.180i 0.181061 0.137938i
\(313\) 2427.06 1401.27i 0.438293 0.253049i −0.264580 0.964364i \(-0.585233\pi\)
0.702873 + 0.711315i \(0.251900\pi\)
\(314\) 4.40261 0.000791254
\(315\) −712.185 + 7447.69i −0.127388 + 1.33216i
\(316\) 4686.07 0.834215
\(317\) −4937.51 + 2850.67i −0.874821 + 0.505078i −0.868947 0.494905i \(-0.835203\pi\)
−0.00587380 + 0.999983i \(0.501870\pi\)
\(318\) −2561.69 1071.51i −0.451736 0.188954i
\(319\) −3202.46 + 5546.82i −0.562079 + 0.973550i
\(320\) 957.563 0.167279
\(321\) −1561.83 + 3733.90i −0.271566 + 0.649239i
\(322\) 7451.17 1305.15i 1.28956 0.225880i
\(323\) 7081.03i 1.21981i
\(324\) 40.4559 2915.72i 0.00693689 0.499952i
\(325\) −2583.54 + 1491.61i −0.440951 + 0.254583i
\(326\) 5949.89i 1.01084i
\(327\) 2487.18 1894.81i 0.420615 0.320438i
\(328\) −1747.63 + 1009.00i −0.294198 + 0.169855i
\(329\) −8695.06 + 1523.03i −1.45707 + 0.255220i
\(330\) 5906.35 4499.64i 0.985255 0.750597i
\(331\) 2016.29 + 3492.32i 0.334820 + 0.579926i 0.983450 0.181178i \(-0.0579910\pi\)
−0.648630 + 0.761104i \(0.724658\pi\)
\(332\) −1722.25 2983.03i −0.284701 0.493117i
\(333\) −801.970 + 2912.04i −0.131975 + 0.479215i
\(334\) −1405.92 811.710i −0.230326 0.132978i
\(335\) 1864.05 3228.63i 0.304011 0.526563i
\(336\) −456.250 1470.60i −0.0740789 0.238773i
\(337\) −4776.54 8273.21i −0.772091 1.33730i −0.936415 0.350894i \(-0.885878\pi\)
0.164324 0.986406i \(-0.447456\pi\)
\(338\) 2572.77i 0.414024i
\(339\) 3200.03 + 4200.44i 0.512689 + 0.672970i
\(340\) −5735.82 −0.914907
\(341\) −3477.92 + 6023.93i −0.552316 + 0.956639i
\(342\) 3860.84 1005.86i 0.610440 0.159037i
\(343\) 5512.13 3157.53i 0.867718 0.497057i
\(344\) −458.208 264.546i −0.0718166 0.0414633i
\(345\) 15748.6 2017.80i 2.45762 0.314883i
\(346\) 809.571 + 467.406i 0.125789 + 0.0726240i
\(347\) 8208.02 + 4738.90i 1.26983 + 0.733135i 0.974955 0.222402i \(-0.0713898\pi\)
0.294872 + 0.955537i \(0.404723\pi\)
\(348\) 1689.39 + 2217.54i 0.260233 + 0.341589i
\(349\) −5142.47 2969.01i −0.788740 0.455379i 0.0507786 0.998710i \(-0.483830\pi\)
−0.839519 + 0.543331i \(0.817163\pi\)
\(350\) 631.783 + 3606.88i 0.0964863 + 0.550845i
\(351\) −3331.77 2612.08i −0.506657 0.397216i
\(352\) −764.050 + 1323.37i −0.115693 + 0.200386i
\(353\) −3662.83 −0.552274 −0.276137 0.961118i \(-0.589054\pi\)
−0.276137 + 0.961118i \(0.589054\pi\)
\(354\) −8373.79 + 1072.90i −1.25724 + 0.161084i
\(355\) 8274.08i 1.23702i
\(356\) 104.005 + 180.142i 0.0154839 + 0.0268189i
\(357\) 2732.95 + 8808.89i 0.405162 + 1.30593i
\(358\) 1791.27 3102.58i 0.264446 0.458034i
\(359\) −7861.57 4538.88i −1.15576 0.667278i −0.205475 0.978662i \(-0.565874\pi\)
−0.950284 + 0.311384i \(0.899207\pi\)
\(360\) −814.770 3127.38i −0.119284 0.457854i
\(361\) −700.100 1212.61i −0.102070 0.176791i
\(362\) 127.734 + 221.243i 0.0185458 + 0.0321222i
\(363\) 626.921 + 4893.02i 0.0906468 + 0.707485i
\(364\) −2099.82 766.962i −0.302363 0.110439i
\(365\) 2894.01 1670.86i 0.415012 0.239607i
\(366\) 1245.54 + 520.990i 0.177884 + 0.0744060i
\(367\) 9421.19i 1.34001i −0.742358 0.670003i \(-0.766293\pi\)
0.742358 0.670003i \(-0.233707\pi\)
\(368\) −2829.83 + 1633.80i −0.400856 + 0.231434i
\(369\) 4782.39 + 4849.20i 0.674691 + 0.684118i
\(370\) 3347.54i 0.470352i
\(371\) 853.781 + 4874.28i 0.119477 + 0.682102i
\(372\) 1834.70 + 2408.28i 0.255712 + 0.335655i
\(373\) −3712.30 −0.515323 −0.257662 0.966235i \(-0.582952\pi\)
−0.257662 + 0.966235i \(0.582952\pi\)
\(374\) 4576.67 7927.03i 0.632765 1.09598i
\(375\) −258.279 2015.83i −0.0355666 0.277592i
\(376\) 3302.24 1906.55i 0.452926 0.261497i
\(377\) 4047.43 0.552927
\(378\) −4414.72 + 2741.40i −0.600711 + 0.373023i
\(379\) 2909.96 0.394393 0.197196 0.980364i \(-0.436816\pi\)
0.197196 + 0.980364i \(0.436816\pi\)
\(380\) 3829.36 2210.88i 0.516953 0.298463i
\(381\) −88.5991 691.503i −0.0119136 0.0929837i
\(382\) −1773.23 + 3071.32i −0.237503 + 0.411367i
\(383\) 528.709 0.0705372 0.0352686 0.999378i \(-0.488771\pi\)
0.0352686 + 0.999378i \(0.488771\pi\)
\(384\) 403.059 + 529.066i 0.0535639 + 0.0703094i
\(385\) −12429.2 4539.79i −1.64533 0.600959i
\(386\) 5759.90i 0.759511i
\(387\) −474.124 + 1721.60i −0.0622767 + 0.226133i
\(388\) −4078.98 + 2355.00i −0.533708 + 0.308136i
\(389\) 4550.81i 0.593150i −0.955010 0.296575i \(-0.904155\pi\)
0.955010 0.296575i \(-0.0958445\pi\)
\(390\) −4328.68 1810.61i −0.562028 0.235087i
\(391\) 16950.7 9786.50i 2.19242 1.26579i
\(392\) −1768.56 + 2098.03i −0.227872 + 0.270323i
\(393\) 1684.38 + 13146.3i 0.216198 + 1.68739i
\(394\) −1601.95 2774.66i −0.204836 0.354786i
\(395\) −8764.08 15179.8i −1.11638 1.93362i
\(396\) 4972.23 + 1369.34i 0.630969 + 0.173768i
\(397\) 3240.73 + 1871.04i 0.409692 + 0.236536i 0.690657 0.723182i \(-0.257321\pi\)
−0.280965 + 0.959718i \(0.590655\pi\)
\(398\) 4121.89 7139.33i 0.519125 0.899151i
\(399\) −5219.99 4827.60i −0.654953 0.605720i
\(400\) −790.873 1369.83i −0.0988591 0.171229i
\(401\) 9776.12i 1.21745i −0.793383 0.608723i \(-0.791682\pi\)
0.793383 0.608723i \(-0.208318\pi\)
\(402\) 2568.48 329.087i 0.318667 0.0408293i
\(403\) 4395.57 0.543322
\(404\) −960.785 + 1664.13i −0.118319 + 0.204934i
\(405\) −9520.70 + 5322.04i −1.16812 + 0.652974i
\(406\) 1704.47 4666.55i 0.208353 0.570436i
\(407\) −4626.37 2671.04i −0.563441 0.325303i
\(408\) −2414.33 3169.12i −0.292959 0.384546i
\(409\) 6630.48 + 3828.11i 0.801604 + 0.462807i 0.844032 0.536293i \(-0.180176\pi\)
−0.0424275 + 0.999100i \(0.513509\pi\)
\(410\) 6536.99 + 3774.13i 0.787412 + 0.454612i
\(411\) −14483.5 + 1855.71i −1.73825 + 0.222714i
\(412\) 3381.55 + 1952.34i 0.404362 + 0.233458i
\(413\) 9657.71 + 11536.1i 1.15067 + 1.37447i
\(414\) 7743.81 + 7852.00i 0.919293 + 0.932137i
\(415\) −6442.05 + 11158.0i −0.761994 + 1.31981i
\(416\) 965.645 0.113809
\(417\) 5121.53 + 6722.66i 0.601444 + 0.789472i
\(418\) 7056.35i 0.825688i
\(419\) −5384.89 9326.90i −0.627850 1.08747i −0.987982 0.154567i \(-0.950602\pi\)
0.360132 0.932901i \(-0.382731\pi\)
\(420\) −3910.48 + 4228.32i −0.454314 + 0.491240i
\(421\) 7365.56 12757.5i 0.852673 1.47687i −0.0261145 0.999659i \(-0.508313\pi\)
0.878787 0.477214i \(-0.158353\pi\)
\(422\) 7740.10 + 4468.75i 0.892849 + 0.515487i
\(423\) −9036.56 9162.81i −1.03871 1.05322i
\(424\) −1068.77 1851.17i −0.122416 0.212030i
\(425\) 4737.34 + 8205.32i 0.540694 + 0.936509i
\(426\) 4571.54 3482.74i 0.519934 0.396102i
\(427\) −415.126 2369.97i −0.0470477 0.268597i
\(428\) −2698.25 + 1557.84i −0.304731 + 0.175937i
\(429\) 5956.20 4537.62i 0.670322 0.510672i
\(430\) 1979.06i 0.221951i
\(431\) −12525.1 + 7231.37i −1.39980 + 0.808173i −0.994371 0.105955i \(-0.966210\pi\)
−0.405426 + 0.914128i \(0.632877\pi\)
\(432\) 1384.97 1766.55i 0.154246 0.196744i
\(433\) 8295.44i 0.920678i 0.887743 + 0.460339i \(0.152272\pi\)
−0.887743 + 0.460339i \(0.847728\pi\)
\(434\) 1851.07 5067.94i 0.204734 0.560527i
\(435\) 4023.83 9619.88i 0.443513 1.06032i
\(436\) 2406.95 0.264385
\(437\) −7544.46 + 13067.4i −0.825859 + 1.43043i
\(438\) 2141.32 + 895.680i 0.233599 + 0.0977106i
\(439\) −1539.61 + 888.893i −0.167384 + 0.0966391i −0.581352 0.813652i \(-0.697476\pi\)
0.413968 + 0.910292i \(0.364143\pi\)
\(440\) 5715.83 0.619299
\(441\) 8356.95 + 3990.92i 0.902381 + 0.430938i
\(442\) −5784.23 −0.622461
\(443\) −1911.30 + 1103.49i −0.204985 + 0.118348i −0.598979 0.800765i \(-0.704427\pi\)
0.393994 + 0.919113i \(0.371093\pi\)
\(444\) −1849.56 + 1409.05i −0.197694 + 0.150609i
\(445\) 389.030 673.819i 0.0414422 0.0717800i
\(446\) −7902.34 −0.838984
\(447\) 3625.36 464.501i 0.383610 0.0491502i
\(448\) 406.655 1113.36i 0.0428854 0.117413i
\(449\) 6480.36i 0.681129i 0.940221 + 0.340565i \(0.110618\pi\)
−0.940221 + 0.340565i \(0.889382\pi\)
\(450\) −3800.91 + 3748.54i −0.398170 + 0.392684i
\(451\) −10431.9 + 6022.84i −1.08917 + 0.628835i
\(452\) 4064.94i 0.423006i
\(453\) −1104.52 8620.59i −0.114558 0.894107i
\(454\) 153.703 88.7404i 0.0158891 0.00917355i
\(455\) 1442.70 + 8236.45i 0.148648 + 0.848638i
\(456\) 2833.41 + 1185.17i 0.290979 + 0.121712i
\(457\) 9249.66 + 16020.9i 0.946785 + 1.63988i 0.752137 + 0.659007i \(0.229023\pi\)
0.194648 + 0.980873i \(0.437643\pi\)
\(458\) −780.926 1352.60i −0.0796730 0.137998i
\(459\) −8295.97 + 10581.7i −0.843623 + 1.07606i
\(460\) 10584.9 + 6111.21i 1.07288 + 0.619427i
\(461\) −4678.44 + 8103.29i −0.472661 + 0.818672i −0.999510 0.0312862i \(-0.990040\pi\)
0.526850 + 0.849958i \(0.323373\pi\)
\(462\) −2723.42 8778.19i −0.274253 0.883979i
\(463\) 9033.99 + 15647.3i 0.906793 + 1.57061i 0.818492 + 0.574518i \(0.194810\pi\)
0.0883011 + 0.996094i \(0.471856\pi\)
\(464\) 2146.01i 0.214711i
\(465\) 4369.94 10447.3i 0.435809 1.04190i
\(466\) −9675.50 −0.961822
\(467\) 4674.04 8095.67i 0.463145 0.802191i −0.535971 0.844237i \(-0.680054\pi\)
0.999116 + 0.0420458i \(0.0133875\pi\)
\(468\) −821.647 3153.78i −0.0811552 0.311503i
\(469\) −2962.29 3538.45i −0.291654 0.348380i
\(470\) −12352.0 7131.41i −1.21224 0.699888i
\(471\) 4.41389 10.5524i 0.000431807 0.00103233i
\(472\) −5628.16 3249.42i −0.548850 0.316879i
\(473\) −2735.11 1579.11i −0.265878 0.153505i
\(474\) 4698.07 11231.8i 0.455252 1.08838i
\(475\) −6325.52 3652.04i −0.611020 0.352773i
\(476\) −2435.87 + 6669.01i −0.234555 + 0.642172i
\(477\) −5136.49 + 5065.71i −0.493047 + 0.486254i
\(478\) −5064.94 + 8772.73i −0.484655 + 0.839447i
\(479\) −8691.21 −0.829042 −0.414521 0.910040i \(-0.636051\pi\)
−0.414521 + 0.910040i \(0.636051\pi\)
\(480\) 960.015 2295.13i 0.0912885 0.218246i
\(481\) 3375.79i 0.320006i
\(482\) −3252.23 5633.03i −0.307334 0.532319i
\(483\) 4342.00 19167.8i 0.409043 1.80573i
\(484\) −1898.72 + 3288.68i −0.178317 + 0.308854i
\(485\) 15257.3 + 8808.82i 1.42845 + 0.824718i
\(486\) −6947.97 3020.15i −0.648491 0.281887i
\(487\) −4786.52 8290.50i −0.445376 0.771414i 0.552702 0.833379i \(-0.313597\pi\)
−0.998078 + 0.0619649i \(0.980263\pi\)
\(488\) 519.659 + 900.077i 0.0482047 + 0.0834929i
\(489\) −14261.0 5965.13i −1.31882 0.551641i
\(490\) 10103.9 + 1805.17i 0.931525 + 0.166427i
\(491\) 2590.96 1495.89i 0.238143 0.137492i −0.376180 0.926547i \(-0.622762\pi\)
0.614323 + 0.789055i \(0.289429\pi\)
\(492\) 666.302 + 5200.39i 0.0610553 + 0.476528i
\(493\) 12854.6i 1.17433i
\(494\) 3861.68 2229.54i 0.351711 0.203061i
\(495\) −4863.47 18667.8i −0.441610 1.69506i
\(496\) 2330.60i 0.210982i
\(497\) −9620.25 3513.82i −0.868264 0.317135i
\(498\) −8876.52 + 1137.31i −0.798727 + 0.102337i
\(499\) 9202.58 0.825579 0.412790 0.910826i \(-0.364555\pi\)
0.412790 + 0.910826i \(0.364555\pi\)
\(500\) 782.236 1354.87i 0.0699653 0.121183i
\(501\) −3355.07 + 2555.99i −0.299188 + 0.227931i
\(502\) 3299.99 1905.25i 0.293398 0.169393i
\(503\) 10936.9 0.969491 0.484745 0.874655i \(-0.338912\pi\)
0.484745 + 0.874655i \(0.338912\pi\)
\(504\) −3982.21 380.799i −0.351948 0.0336550i
\(505\) 7187.59 0.633354
\(506\) −16891.6 + 9752.40i −1.48404 + 0.856812i
\(507\) 6166.53 + 2579.36i 0.540168 + 0.225943i
\(508\) 268.335 464.771i 0.0234359 0.0405922i
\(509\) 2609.48 0.227236 0.113618 0.993525i \(-0.463756\pi\)
0.113618 + 0.993525i \(0.463756\pi\)
\(510\) −5750.50 + 13747.9i −0.499287 + 1.19366i
\(511\) −713.680 4074.43i −0.0617834 0.352725i
\(512\) 512.000i 0.0441942i
\(513\) 1459.84 10262.3i 0.125641 0.883218i
\(514\) −1718.59 + 992.231i −0.147478 + 0.0851467i
\(515\) 14605.4i 1.24969i
\(516\) −1093.46 + 833.030i −0.0932884 + 0.0710700i
\(517\) 19711.5 11380.5i 1.67681 0.968108i
\(518\) 3892.17 + 1421.62i 0.330139 + 0.120584i
\(519\) 1931.95 1471.82i 0.163397 0.124481i
\(520\) −1805.99 3128.06i −0.152304 0.263797i
\(521\) 8382.84 + 14519.5i 0.704911 + 1.22094i 0.966724 + 0.255823i \(0.0823465\pi\)
−0.261812 + 0.965119i \(0.584320\pi\)
\(522\) 7008.83 1825.99i 0.587678 0.153107i
\(523\) 1961.93 + 1132.72i 0.164033 + 0.0947045i 0.579769 0.814781i \(-0.303143\pi\)
−0.415736 + 0.909485i \(0.636476\pi\)
\(524\) −5101.38 + 8835.86i −0.425296 + 0.736634i
\(525\) 9278.54 + 2101.83i 0.771331 + 0.174726i
\(526\) 38.4269 + 66.5574i 0.00318535 + 0.00551719i
\(527\) 13960.3i 1.15393i
\(528\) 2405.92 + 3158.07i 0.198303 + 0.260298i
\(529\) −29541.0 −2.42796
\(530\) −3997.73 + 6924.26i −0.327642 + 0.567492i
\(531\) −5823.67 + 21146.3i −0.475943 + 1.72820i
\(532\) −944.343 5391.30i −0.0769595 0.439366i
\(533\) 6592.16 + 3805.99i 0.535719 + 0.309298i
\(534\) 536.045 68.6810i 0.0434400 0.00556577i
\(535\) 10092.8 + 5827.06i 0.815605 + 0.470889i
\(536\) 1726.32 + 996.689i 0.139115 + 0.0803179i
\(537\) −5640.54 7403.93i −0.453272 0.594978i
\(538\) −4768.58 2753.14i −0.382134 0.220625i
\(539\) −10556.8 + 12523.4i −0.843624 + 1.00078i
\(540\) −8312.71 1182.51i −0.662448 0.0942356i
\(541\) 1881.94 3259.61i 0.149558 0.259042i −0.781506 0.623897i \(-0.785548\pi\)
0.931064 + 0.364856i \(0.118882\pi\)
\(542\) 10773.4 0.853799
\(543\) 658.346 84.3509i 0.0520301 0.00666637i
\(544\) 3066.89i 0.241713i
\(545\) −4501.57 7796.95i −0.353809 0.612816i
\(546\) −3943.48 + 4264.01i −0.309094 + 0.334218i
\(547\) −6136.55 + 10628.8i −0.479671 + 0.830815i −0.999728 0.0233169i \(-0.992577\pi\)
0.520057 + 0.854131i \(0.325911\pi\)
\(548\) −9734.61 5620.28i −0.758836 0.438114i
\(549\) 2497.47 2463.05i 0.194152 0.191476i
\(550\) −4720.83 8176.72i −0.365994 0.633921i
\(551\) 4954.85 + 8582.05i 0.383092 + 0.663535i
\(552\) 1078.90 + 8420.65i 0.0831903 + 0.649288i
\(553\) −21371.4 + 3743.43i −1.64341 + 0.287861i
\(554\) −1569.33 + 906.051i −0.120351 + 0.0694845i
\(555\) 8023.53 + 3356.11i 0.613658 + 0.256683i
\(556\) 6505.80i 0.496236i
\(557\) 12642.7 7299.26i 0.961738 0.555260i 0.0650305 0.997883i \(-0.479286\pi\)
0.896708 + 0.442624i \(0.145952\pi\)
\(558\) 7611.69 1983.06i 0.577470 0.150447i
\(559\) 1995.77i 0.151005i
\(560\) −4367.09 + 764.942i −0.329542 + 0.0577227i
\(561\) −14411.5 18916.9i −1.08459 1.42366i
\(562\) 6203.80 0.465643
\(563\) −11710.6 + 20283.3i −0.876630 + 1.51837i −0.0216135 + 0.999766i \(0.506880\pi\)
−0.855016 + 0.518601i \(0.826453\pi\)
\(564\) −1259.01 9826.39i −0.0939963 0.733627i
\(565\) 13167.8 7602.42i 0.980483 0.566082i
\(566\) −14823.0 −1.10081
\(567\) 2144.70 + 13329.8i 0.158851 + 0.987303i
\(568\) 4424.08 0.326813
\(569\) −5237.49 + 3023.87i −0.385882 + 0.222789i −0.680375 0.732865i \(-0.738183\pi\)
0.294492 + 0.955654i \(0.404850\pi\)
\(570\) −1459.98 11394.9i −0.107284 0.837336i
\(571\) −3668.02 + 6353.20i −0.268830 + 0.465627i −0.968560 0.248780i \(-0.919970\pi\)
0.699730 + 0.714408i \(0.253304\pi\)
\(572\) 5764.07 0.421342
\(573\) 5583.71 + 7329.33i 0.407091 + 0.534358i
\(574\) 7164.28 5997.74i 0.520960 0.436134i
\(575\) 20189.5i 1.46428i
\(576\) 1672.18 435.650i 0.120962 0.0315140i
\(577\) 14135.8 8161.32i 1.01990 0.588839i 0.105824 0.994385i \(-0.466252\pi\)
0.914075 + 0.405546i \(0.132919\pi\)
\(578\) 8544.70i 0.614901i
\(579\) −13805.6 5774.65i −0.990917 0.414484i
\(580\) 6951.68 4013.56i 0.497677 0.287334i
\(581\) 10237.5 + 12228.7i 0.731022 + 0.873203i
\(582\) 1555.15 + 12137.7i 0.110761 + 0.864474i
\(583\) −6379.66 11049.9i −0.453205 0.784974i
\(584\) 893.392 + 1547.40i 0.0633028 + 0.109644i
\(585\) −8679.52 + 8559.93i −0.613426 + 0.604973i
\(586\) 3781.06 + 2183.00i 0.266543 + 0.153889i
\(587\) 6038.44 10458.9i 0.424588 0.735407i −0.571794 0.820397i \(-0.693752\pi\)
0.996382 + 0.0849898i \(0.0270858\pi\)
\(588\) 3255.56 + 6342.37i 0.228329 + 0.444821i
\(589\) 5381.04 + 9320.23i 0.376438 + 0.652009i
\(590\) 24308.8i 1.69623i
\(591\) −8256.50 + 1057.87i −0.574665 + 0.0736292i
\(592\) −1789.90 −0.124264
\(593\) −5293.49 + 9168.60i −0.366573 + 0.634923i −0.989027 0.147733i \(-0.952802\pi\)
0.622455 + 0.782656i \(0.286136\pi\)
\(594\) 8267.06 10544.8i 0.571046 0.728382i
\(595\) 26158.9 4582.01i 1.80237 0.315705i
\(596\) 2436.67 + 1406.81i 0.167466 + 0.0966865i
\(597\) −12979.4 17037.2i −0.889803 1.16798i
\(598\) 10674.3 + 6162.79i 0.729938 + 0.421430i
\(599\) 676.342 + 390.486i 0.0461345 + 0.0266358i 0.522890 0.852400i \(-0.324854\pi\)
−0.476755 + 0.879036i \(0.658187\pi\)
\(600\) −4076.18 + 522.262i −0.277349 + 0.0355354i
\(601\) 4942.99 + 2853.84i 0.335489 + 0.193694i 0.658275 0.752777i \(-0.271286\pi\)
−0.322787 + 0.946472i \(0.604620\pi\)
\(602\) 2301.05 + 840.463i 0.155787 + 0.0569015i
\(603\) 1786.28 6486.18i 0.120635 0.438039i
\(604\) 3345.19 5794.04i 0.225354 0.390325i
\(605\) 14204.3 0.954521
\(606\) 3025.41 + 3971.24i 0.202804 + 0.266206i
\(607\) 21428.4i 1.43287i 0.697653 + 0.716436i \(0.254228\pi\)
−0.697653 + 0.716436i \(0.745772\pi\)
\(608\) 1182.14 + 2047.52i 0.0788521 + 0.136576i
\(609\) −9476.17 8763.84i −0.630531 0.583134i
\(610\) 1943.78 3366.72i 0.129018 0.223466i
\(611\) −12456.2 7191.60i −0.824754 0.476172i
\(612\) −10016.4 + 2609.55i −0.661583 + 0.172361i
\(613\) 6070.57 + 10514.5i 0.399980 + 0.692786i 0.993723 0.111869i \(-0.0356836\pi\)
−0.593743 + 0.804655i \(0.702350\pi\)
\(614\) −2602.62 4507.86i −0.171064 0.296291i
\(615\) 15599.7 11884.4i 1.02283 0.779226i
\(616\) 2427.38 6645.77i 0.158770 0.434685i
\(617\) 11439.2 6604.45i 0.746397 0.430932i −0.0779938 0.996954i \(-0.524851\pi\)
0.824390 + 0.566022i \(0.191518\pi\)
\(618\) 8069.66 6147.72i 0.525258 0.400158i
\(619\) 4968.67i 0.322630i 0.986903 + 0.161315i \(0.0515734\pi\)
−0.986903 + 0.161315i \(0.948427\pi\)
\(620\) 7549.63 4358.78i 0.489033 0.282343i
\(621\) 26583.7 10688.6i 1.71782 0.690692i
\(622\) 16815.8i 1.08401i
\(623\) −618.235 738.479i −0.0397577 0.0474905i
\(624\) 968.117 2314.50i 0.0621085 0.148484i
\(625\) −18209.3 −1.16539
\(626\) 2802.53 4854.13i 0.178932 0.309920i
\(627\) 16913.0 + 7074.42i 1.07726 + 0.450598i
\(628\) 7.62555 4.40261i 0.000484542 0.000279751i
\(629\) 10721.5 0.679641
\(630\) 6214.15 + 13612.0i 0.392980 + 0.860815i
\(631\) −7879.82 −0.497132 −0.248566 0.968615i \(-0.579959\pi\)
−0.248566 + 0.968615i \(0.579959\pi\)
\(632\) 8116.51 4686.07i 0.510850 0.294940i
\(633\) 18470.8 14071.6i 1.15979 0.883567i
\(634\) −5701.35 + 9875.02i −0.357144 + 0.618592i
\(635\) −2007.41 −0.125451
\(636\) −5508.48 + 705.776i −0.343436 + 0.0440029i
\(637\) 10189.2 + 1820.41i 0.633767 + 0.113230i
\(638\) 12809.8i 0.794900i
\(639\) −3764.35 14448.9i −0.233044 0.894509i
\(640\) 1658.55 957.563i 0.102437 0.0591422i
\(641\) 19452.1i 1.19861i −0.800520 0.599306i \(-0.795443\pi\)
0.800520 0.599306i \(-0.204557\pi\)
\(642\) 1028.74 + 8029.13i 0.0632413 + 0.493589i
\(643\) −614.956 + 355.045i −0.0377162 + 0.0217754i −0.518740 0.854932i \(-0.673599\pi\)
0.481023 + 0.876708i \(0.340265\pi\)
\(644\) 11600.7 9711.76i 0.709829 0.594250i
\(645\) 4743.51 + 1984.13i 0.289574 + 0.121124i
\(646\) −7081.03 12264.7i −0.431268 0.746979i
\(647\) −2657.16 4602.33i −0.161458 0.279654i 0.773934 0.633267i \(-0.218286\pi\)
−0.935392 + 0.353613i \(0.884953\pi\)
\(648\) −2845.65 5090.63i −0.172512 0.308609i
\(649\) −33595.3 19396.3i −2.03194 1.17314i
\(650\) −2983.21 + 5167.08i −0.180017 + 0.311799i
\(651\) −10291.3 9517.65i −0.619579 0.573005i
\(652\) −5949.89 10305.5i −0.357386 0.619011i
\(653\) 360.047i 0.0215769i 0.999942 + 0.0107885i \(0.00343414\pi\)
−0.999942 + 0.0107885i \(0.996566\pi\)
\(654\) 2413.11 5769.08i 0.144281 0.344937i
\(655\) 38163.3 2.27658
\(656\) −2017.99 + 3495.27i −0.120106 + 0.208029i
\(657\) 4293.61 4234.45i 0.254962 0.251449i
\(658\) −13537.3 + 11333.0i −0.802033 + 0.671440i
\(659\) −1135.85 655.784i −0.0671419 0.0387644i 0.466053 0.884757i \(-0.345676\pi\)
−0.533195 + 0.845992i \(0.679009\pi\)
\(660\) 5730.46 13700.0i 0.337967 0.807985i
\(661\) −979.289 565.393i −0.0576247 0.0332696i 0.470911 0.882181i \(-0.343925\pi\)
−0.528536 + 0.848911i \(0.677259\pi\)
\(662\) 6984.65 + 4032.59i 0.410070 + 0.236754i
\(663\) −5799.04 + 13863.9i −0.339692 + 0.812111i
\(664\) −5966.05 3444.50i −0.348686 0.201314i
\(665\) −15698.2 + 13142.1i −0.915412 + 0.766358i
\(666\) 1522.98 + 5845.77i 0.0886103 + 0.340118i
\(667\) −13695.9 + 23722.0i −0.795065 + 1.37709i
\(668\) −3246.84 −0.188060
\(669\) −7922.58 + 18940.7i −0.457854 + 1.09460i
\(670\) 7456.19i 0.429937i
\(671\) 3101.92 + 5372.68i 0.178462 + 0.309106i
\(672\) −2260.84 2090.90i −0.129783 0.120027i
\(673\) −9252.40 + 16025.6i −0.529946 + 0.917894i 0.469444 + 0.882962i \(0.344455\pi\)
−0.999390 + 0.0349312i \(0.988879\pi\)
\(674\) −16546.4 9553.08i −0.945614 0.545951i
\(675\) 5174.03 + 12868.3i 0.295035 + 0.733781i
\(676\) 2572.77 + 4456.17i 0.146380 + 0.253537i
\(677\) −10769.3 18652.9i −0.611369 1.05892i −0.991010 0.133788i \(-0.957286\pi\)
0.379641 0.925134i \(-0.376048\pi\)
\(678\) 9743.05 + 4075.35i 0.551887 + 0.230845i
\(679\) 16721.4 13998.7i 0.945080 0.791196i
\(680\) −9934.73 + 5735.82i −0.560264 + 0.323468i
\(681\) −58.6007 457.370i −0.00329748 0.0257363i
\(682\) 13911.7i 0.781093i
\(683\) 29362.5 16952.4i 1.64498 0.949732i 0.665961 0.745986i \(-0.268022\pi\)
0.979024 0.203746i \(-0.0653117\pi\)
\(684\) 5681.32 5603.04i 0.317589 0.313213i
\(685\) 42045.1i 2.34520i
\(686\) 6389.76 10981.1i 0.355630 0.611169i
\(687\) −4024.91 + 515.693i −0.223522 + 0.0286389i
\(688\) −1058.19 −0.0586380
\(689\) −4031.47 + 6982.71i −0.222912 + 0.386096i
\(690\) 25259.7 19243.6i 1.39365 1.06173i
\(691\) 26062.6 15047.3i 1.43483 0.828400i 0.437347 0.899293i \(-0.355918\pi\)
0.997484 + 0.0708925i \(0.0225847\pi\)
\(692\) 1869.63 0.102706
\(693\) −23770.4 2273.04i −1.30298 0.124597i
\(694\) 18955.6 1.03681
\(695\) 21074.6 12167.4i 1.15022 0.664081i
\(696\) 5143.66 + 2151.51i 0.280129 + 0.117173i
\(697\) 12087.8 20936.7i 0.656899 1.13778i
\(698\) −11876.0 −0.644004
\(699\) −9700.27 + 23190.7i −0.524890 + 1.25487i
\(700\) 4701.16 + 5615.52i 0.253839 + 0.303209i
\(701\) 8290.89i 0.446708i 0.974737 + 0.223354i \(0.0717007\pi\)
−0.974737 + 0.223354i \(0.928299\pi\)
\(702\) −8382.87 1192.49i −0.450700 0.0641136i
\(703\) −7157.93 + 4132.63i −0.384020 + 0.221714i
\(704\) 3056.20i 0.163615i
\(705\) −29476.5 + 22456.1i −1.57468 + 1.19964i
\(706\) −6344.20 + 3662.83i −0.338197 + 0.195258i
\(707\) 3052.41 8356.99i 0.162373 0.444550i
\(708\) −13430.9 + 10232.1i −0.712946 + 0.543144i
\(709\) −1049.79 1818.29i −0.0556076 0.0963152i 0.836882 0.547384i \(-0.184376\pi\)
−0.892489 + 0.451069i \(0.851043\pi\)
\(710\) −8274.08 14331.1i −0.437353 0.757518i
\(711\) −22210.8 22521.1i −1.17155 1.18791i
\(712\) 360.285 + 208.011i 0.0189638 + 0.0109488i
\(713\) −14874.0 + 25762.5i −0.781255 + 1.35317i
\(714\) 13542.5 + 12524.5i 0.709825 + 0.656467i
\(715\) −10780.2 18671.8i −0.563855 0.976626i
\(716\) 7165.09i 0.373983i
\(717\) 15949.0 + 20935.1i 0.830719 + 1.09042i
\(718\) −18155.5 −0.943674
\(719\) −6906.63 + 11962.6i −0.358239 + 0.620488i −0.987667 0.156571i \(-0.949956\pi\)
0.629428 + 0.777059i \(0.283289\pi\)
\(720\) −4538.61 4602.02i −0.234922 0.238204i
\(721\) −16981.6 6202.57i −0.877154 0.320382i
\(722\) −2425.22 1400.20i −0.125010 0.0721746i
\(723\) −16762.1 + 2147.65i −0.862225 + 0.110473i
\(724\) 442.485 + 255.469i 0.0227139 + 0.0131138i
\(725\) −11483.1 6629.77i −0.588237 0.339619i
\(726\) 5978.88 + 7848.04i 0.305643 + 0.401196i
\(727\) −21951.8 12673.9i −1.11987 0.646557i −0.178502 0.983940i \(-0.557125\pi\)
−0.941368 + 0.337382i \(0.890458\pi\)
\(728\) −4403.95 + 771.398i −0.224205 + 0.0392719i
\(729\) −14204.6 + 13625.3i −0.721668 + 0.692239i
\(730\) 3341.72 5788.02i 0.169428 0.293458i
\(731\) 6338.55 0.320711
\(732\) 2678.34 343.163i 0.135238 0.0173274i
\(733\) 30308.0i 1.52722i 0.645679 + 0.763609i \(0.276574\pi\)
−0.645679 + 0.763609i \(0.723426\pi\)
\(734\) −9421.19 16318.0i −0.473764 0.820583i
\(735\) 14456.5 22407.7i 0.725490 1.12452i
\(736\) −3267.61 + 5659.66i −0.163649 + 0.283448i
\(737\) 10304.6 + 5949.38i 0.515028 + 0.297352i
\(738\) 13132.5 + 3616.68i 0.655035 + 0.180395i
\(739\) 11980.1 + 20750.1i 0.596337 + 1.03289i 0.993357 + 0.115076i \(0.0367113\pi\)
−0.397019 + 0.917810i \(0.629955\pi\)
\(740\) 3347.54 + 5798.10i 0.166294 + 0.288030i
\(741\) −1472.30 11491.1i −0.0729912 0.569685i
\(742\) 6353.07 + 7588.72i 0.314324 + 0.375459i
\(743\) 23695.0 13680.3i 1.16997 0.675480i 0.216294 0.976328i \(-0.430603\pi\)
0.953672 + 0.300848i \(0.0972698\pi\)
\(744\) 5586.09 + 2336.57i 0.275263 + 0.115138i
\(745\) 10524.3i 0.517557i
\(746\) −6429.89 + 3712.30i −0.315570 + 0.182194i
\(747\) −6173.29 + 22415.9i −0.302368 + 1.09793i
\(748\) 18306.7i 0.894864i
\(749\) 11061.3 9260.20i 0.539613 0.451750i
\(750\) −2463.18 3233.24i −0.119924 0.157415i
\(751\) −13573.5 −0.659527 −0.329764 0.944064i \(-0.606969\pi\)
−0.329764 + 0.944064i \(0.606969\pi\)
\(752\) 3813.10 6604.48i 0.184906 0.320267i
\(753\) −1258.15 9819.69i −0.0608893 0.475232i
\(754\) 7010.36 4047.43i 0.338597 0.195489i
\(755\) −25025.2 −1.20631
\(756\) −4905.12 + 9162.97i −0.235976 + 0.440812i
\(757\) −3317.64 −0.159289 −0.0796445 0.996823i \(-0.525379\pi\)
−0.0796445 + 0.996823i \(0.525379\pi\)
\(758\) 5040.21 2909.96i 0.241515 0.139439i
\(759\) 6440.10 + 50264.1i 0.307985 + 2.40378i
\(760\) 4421.77 7658.73i 0.211045 0.365541i
\(761\) −27419.4 −1.30611 −0.653057 0.757309i \(-0.726514\pi\)
−0.653057 + 0.757309i \(0.726514\pi\)
\(762\) −844.961 1109.12i −0.0401702 0.0527285i
\(763\) −10977.2 + 1922.77i −0.520840 + 0.0912306i
\(764\) 7092.91i 0.335880i
\(765\) 27186.3 + 27566.1i 1.28487 + 1.30282i
\(766\) 915.751 528.709i 0.0431951 0.0249387i
\(767\) 24514.0i 1.15404i
\(768\) 1227.19 + 513.311i 0.0576592 + 0.0241179i
\(769\) 5499.59 3175.19i 0.257894 0.148895i −0.365480 0.930819i \(-0.619095\pi\)
0.623373 + 0.781924i \(0.285762\pi\)
\(770\) −26067.8 + 4566.05i −1.22002 + 0.213700i
\(771\) 655.230 + 5113.98i 0.0306064 + 0.238879i
\(772\) −5759.90 9976.44i −0.268528 0.465103i
\(773\) −13699.5 23728.3i −0.637437 1.10407i −0.985993 0.166785i \(-0.946661\pi\)
0.348557 0.937288i \(-0.386672\pi\)
\(774\) 900.388 + 3456.01i 0.0418136 + 0.160496i
\(775\) −12470.8 7200.03i −0.578019 0.333720i
\(776\) −4710.00 + 8157.95i −0.217885 + 0.377388i
\(777\) 7309.55 7903.67i 0.337488 0.364920i
\(778\) −4550.81 7882.24i −0.209710 0.363229i
\(779\) 18637.1i 0.857180i
\(780\) −9308.10 + 1192.60i −0.427286 + 0.0547463i
\(781\) 26407.9 1.20992
\(782\) 19573.0 33901.4i 0.895050 1.55027i
\(783\) 2650.15 18629.8i 0.120956 0.850285i
\(784\) −965.210 + 5402.45i −0.0439691 + 0.246103i
\(785\) −28.5232 16.4679i −0.00129686 0.000748744i
\(786\) 16063.7 + 21085.7i 0.728976 + 0.956874i
\(787\) −2447.78 1413.23i −0.110869 0.0640104i 0.443540 0.896255i \(-0.353722\pi\)
−0.554409 + 0.832244i \(0.687056\pi\)
\(788\) −5549.33 3203.91i −0.250871 0.144841i
\(789\) 198.053 25.3757i 0.00893648 0.00114499i
\(790\) −30359.7 17528.2i −1.36728 0.789397i
\(791\) −3247.25 18538.7i −0.145966 0.833326i
\(792\) 9981.49 2600.45i 0.447824 0.116671i
\(793\) 1960.18 3395.13i 0.0877782 0.152036i
\(794\) 7484.15 0.334512
\(795\) 12588.4 + 16523.9i 0.561592 + 0.737161i
\(796\) 16487.6i 0.734154i
\(797\) 542.632 + 939.866i 0.0241167 + 0.0417713i 0.877832 0.478969i \(-0.158989\pi\)
−0.853715 + 0.520740i \(0.825656\pi\)
\(798\) −13868.9 3141.66i −0.615229 0.139365i
\(799\) −22840.5 + 39560.9i −1.01131 + 1.75165i
\(800\) −2739.66 1581.75i −0.121077 0.0699040i
\(801\) 372.800 1353.68i 0.0164447 0.0597126i
\(802\) −9776.12 16932.7i −0.430432 0.745530i
\(803\) 5332.78 + 9236.65i 0.234359 + 0.405921i
\(804\) 4119.65 3138.47i 0.180707 0.137668i
\(805\) −53155.8 19415.3i −2.32732 0.850060i
\(806\) 7613.35 4395.57i 0.332716 0.192093i
\(807\) −11379.6 + 8669.36i −0.496384 + 0.378161i
\(808\) 3843.14i 0.167328i
\(809\) 7238.65 4179.24i 0.314583 0.181624i −0.334393 0.942434i \(-0.608531\pi\)
0.648975 + 0.760809i \(0.275198\pi\)
\(810\) −11168.3 + 18738.8i −0.484462 + 0.812855i
\(811\) 13120.7i 0.568103i −0.958809 0.284052i \(-0.908321\pi\)
0.958809 0.284052i \(-0.0916787\pi\)
\(812\) −1714.32 9787.16i −0.0740899 0.422983i
\(813\) 10801.0 25822.3i 0.465939 1.11393i
\(814\) −10684.1 −0.460048
\(815\) −22255.5 + 38547.6i −0.956534 + 1.65676i
\(816\) −7350.86 3074.74i −0.315357 0.131909i
\(817\) −4231.76 + 2443.21i −0.181212 + 0.104623i
\(818\) 15312.4 0.654507
\(819\) 6266.60 + 13726.9i 0.267366 + 0.585659i
\(820\) 15096.5 0.642919
\(821\) −27641.4 + 15958.8i −1.17502 + 0.678399i −0.954857 0.297064i \(-0.903992\pi\)
−0.220163 + 0.975463i \(0.570659\pi\)
\(822\) −23230.5 + 17697.7i −0.985713 + 0.750946i
\(823\) −8.63952 + 14.9641i −0.000365923 + 0.000633798i −0.866208 0.499683i \(-0.833450\pi\)
0.865842 + 0.500317i \(0.166783\pi\)
\(824\) 7809.35 0.330160
\(825\) −24331.3 + 3117.45i −1.02679 + 0.131559i
\(826\) 28263.7 + 10323.4i 1.19058 + 0.434863i
\(827\) 9661.64i 0.406249i −0.979153 0.203125i \(-0.934890\pi\)
0.979153 0.203125i \(-0.0651097\pi\)
\(828\) 21264.7 + 5856.26i 0.892510 + 0.245796i
\(829\) −29889.0 + 17256.4i −1.25222 + 0.722968i −0.971550 0.236837i \(-0.923889\pi\)
−0.280668 + 0.959805i \(0.590556\pi\)
\(830\) 25768.2i 1.07762i
\(831\) 598.321 + 4669.80i 0.0249765 + 0.194938i
\(832\) 1672.55 965.645i 0.0696936 0.0402376i
\(833\) 5781.62 32360.8i 0.240482 1.34602i
\(834\) 15593.4 + 6522.46i 0.647428 + 0.270808i
\(835\) 6072.37 + 10517.7i 0.251668 + 0.435903i
\(836\) 7056.35 + 12222.0i 0.291925 + 0.505628i
\(837\) 2878.10 20232.2i 0.118855 0.835516i
\(838\) −18653.8 10769.8i −0.768956 0.443957i
\(839\) 22011.2 38124.6i 0.905735 1.56878i 0.0858083 0.996312i \(-0.472653\pi\)
0.819927 0.572468i \(-0.194014\pi\)
\(840\) −2544.82 + 11234.1i −0.104529 + 0.461446i
\(841\) −3199.65 5541.96i −0.131192 0.227232i
\(842\) 29462.2i 1.20586i
\(843\) 6219.69 14869.6i 0.254113 0.607515i
\(844\) 17875.0 0.729008
\(845\) 9623.39 16668.2i 0.391781 0.678584i
\(846\) −24814.6 6833.89i −1.00844 0.277724i
\(847\) 6032.23 16515.2i 0.244710 0.669977i
\(848\) −3702.34 2137.55i −0.149928 0.0865609i
\(849\) −14861.0 + 35528.5i −0.600738 + 1.43620i
\(850\) 16410.6 + 9474.68i 0.662212 + 0.382328i
\(851\) −19785.6 11423.2i −0.796992 0.460143i
\(852\) 4435.40 10603.8i 0.178350 0.426386i
\(853\) 7766.62 + 4484.06i 0.311752 + 0.179990i 0.647710 0.761887i \(-0.275727\pi\)
−0.335958 + 0.941877i \(0.609060\pi\)
\(854\) −3088.99 3689.79i −0.123774 0.147848i
\(855\) −28775.6 7924.76i −1.15100 0.316984i
\(856\) −3115.68 + 5396.51i −0.124406 + 0.215478i
\(857\) 12517.6 0.498943 0.249472 0.968382i \(-0.419743\pi\)
0.249472 + 0.968382i \(0.419743\pi\)
\(858\) 5778.83 13815.6i 0.229937 0.549716i
\(859\) 2099.71i 0.0834007i 0.999130 + 0.0417003i \(0.0132775\pi\)
−0.999130 + 0.0417003i \(0.986723\pi\)
\(860\) 1979.06 + 3427.84i 0.0784715 + 0.135917i
\(861\) −7193.05 23184.8i −0.284714 0.917695i
\(862\) −14462.7 + 25050.2i −0.571465 + 0.989806i
\(863\) 29531.0 + 17049.8i 1.16483 + 0.672515i 0.952457 0.304674i \(-0.0985475\pi\)
0.212373 + 0.977189i \(0.431881\pi\)
\(864\) 632.278 4444.73i 0.0248964 0.175015i
\(865\) −3496.65 6056.37i −0.137445 0.238061i
\(866\) 8295.44 + 14368.1i 0.325509 + 0.563798i
\(867\) 20480.3 + 8566.58i 0.802248 + 0.335567i
\(868\) −1861.78 10629.0i −0.0728029 0.415636i
\(869\) 48448.6 27971.8i 1.89126 1.09192i
\(870\) −2650.40 20685.9i −0.103284 0.806114i
\(871\) 7519.12i 0.292509i
\(872\) 4168.95 2406.95i 0.161902 0.0934742i
\(873\) 30651.3 + 8441.33i 1.18831 + 0.327257i
\(874\) 30177.8i 1.16794i
\(875\) −2485.16 + 6803.95i −0.0960156 + 0.262875i
\(876\) 4604.56 589.962i 0.177596 0.0227545i
\(877\) 17751.1 0.683480 0.341740 0.939795i \(-0.388984\pi\)
0.341740 + 0.939795i \(0.388984\pi\)
\(878\) −1777.79 + 3079.22i −0.0683342 + 0.118358i
\(879\) 9023.05 6874.04i 0.346234 0.263772i
\(880\) 9900.10 5715.83i 0.379241 0.218955i
\(881\) −11412.1 −0.436418 −0.218209 0.975902i \(-0.570021\pi\)
−0.218209 + 0.975902i \(0.570021\pi\)
\(882\) 18465.6 1444.48i 0.704953 0.0551451i
\(883\) 35247.9 1.34336 0.671680 0.740842i \(-0.265573\pi\)
0.671680 + 0.740842i \(0.265573\pi\)
\(884\) −10018.6 + 5784.23i −0.381178 + 0.220073i
\(885\) 58264.5 + 24371.0i 2.21304 + 0.925676i
\(886\) −2206.97 + 3822.59i −0.0836848 + 0.144946i
\(887\) 38654.0 1.46322 0.731609 0.681724i \(-0.238770\pi\)
0.731609 + 0.681724i \(0.238770\pi\)
\(888\) −1794.48 + 4290.11i −0.0678139 + 0.162125i
\(889\) −852.500 + 2334.00i −0.0321619 + 0.0880540i
\(890\) 1556.12i 0.0586081i
\(891\) −16986.1 30386.7i −0.638670 1.14253i
\(892\) −13687.3 + 7902.34i −0.513771 + 0.296626i
\(893\) 35215.7i 1.31965i
\(894\) 5814.81 4429.90i 0.217535 0.165725i
\(895\) −23210.3 + 13400.4i −0.866853 + 0.500478i
\(896\) −409.007 2335.04i −0.0152500 0.0870628i
\(897\) 25472.8 19406.0i 0.948176 0.722349i
\(898\) 6480.36 + 11224.3i 0.240815 + 0.417105i
\(899\) 9768.53 + 16919.6i 0.362401 + 0.627698i
\(900\) −2834.83 + 10293.6i −0.104994 + 0.381243i
\(901\) 22177.1 + 12803.9i 0.820006 + 0.473431i
\(902\) −12045.7 + 20863.7i −0.444653 + 0.770162i
\(903\) 4321.40 4672.64i 0.159255 0.172199i
\(904\) 4064.94 + 7040.69i 0.149555 + 0.259038i
\(905\) 1911.15i 0.0701977i
\(906\) −10533.7 13826.8i −0.386267 0.507024i
\(907\) −3134.05 −0.114735 −0.0573674 0.998353i \(-0.518271\pi\)
−0.0573674 + 0.998353i \(0.518271\pi\)
\(908\) 177.481 307.406i 0.00648668 0.0112353i
\(909\) 12551.6 3270.04i 0.457988 0.119318i
\(910\) 10735.3 + 12823.2i 0.391067 + 0.467128i
\(911\) 36403.3 + 21017.5i 1.32393 + 0.764369i 0.984352 0.176211i \(-0.0563841\pi\)
0.339573 + 0.940580i \(0.389717\pi\)
\(912\) 6092.77 780.638i 0.221219 0.0283438i
\(913\) −35612.2 20560.7i −1.29090 0.745302i
\(914\) 32041.8 + 18499.3i 1.15957 + 0.669478i
\(915\) −6120.76 8034.27i −0.221143 0.290279i
\(916\) −2705.21 1561.85i −0.0975792 0.0563374i
\(917\) 16207.1 44372.3i 0.583647 1.59793i
\(918\) −3787.35 + 26624.0i −0.136167 + 0.957214i
\(919\) 11041.8 19125.0i 0.396339 0.686480i −0.596932 0.802292i \(-0.703614\pi\)
0.993271 + 0.115812i \(0.0369471\pi\)
\(920\) 24444.8 0.876002
\(921\) −13413.9 + 1718.67i −0.479918 + 0.0614896i
\(922\) 18713.7i 0.668443i
\(923\) −8343.92 14452.1i −0.297555 0.515381i
\(924\) −13495.3 12480.9i −0.480479 0.444361i
\(925\) 5529.61 9577.57i 0.196554 0.340442i
\(926\) 31294.7 + 18068.0i 1.11059 + 0.641200i
\(927\) −6644.81 25505.2i −0.235431 0.903668i
\(928\) 2146.01 + 3717.00i 0.0759119 + 0.131483i
\(929\) −2183.88 3782.59i −0.0771267 0.133587i 0.824882 0.565304i \(-0.191241\pi\)
−0.902009 + 0.431717i \(0.857908\pi\)
\(930\) −2878.37 22465.2i −0.101490 0.792112i
\(931\) 8613.60 + 23833.3i 0.303221 + 0.838997i
\(932\) −16758.5 + 9675.50i −0.588993 + 0.340055i
\(933\) −40304.8 16858.8i −1.41428 0.591568i
\(934\) 18696.2i 0.654986i
\(935\) −59301.8 + 34237.9i −2.07420 + 1.19754i
\(936\) −4576.91 4640.86i −0.159830 0.162063i
\(937\) 19193.7i 0.669192i −0.942362 0.334596i \(-0.891400\pi\)
0.942362 0.334596i \(-0.108600\pi\)
\(938\) −8669.29 3166.48i −0.301772 0.110223i
\(939\) −8824.89 11583.8i −0.306698 0.402580i
\(940\) −28525.6 −0.989791
\(941\) 5113.50 8856.84i 0.177147 0.306828i −0.763755 0.645506i \(-0.776647\pi\)
0.940902 + 0.338678i \(0.109980\pi\)
\(942\) −2.90731 22.6912i −0.000100558 0.000784838i
\(943\) −44613.9 + 25757.8i −1.54064 + 0.889492i
\(944\) −12997.7 −0.448134
\(945\) 38855.8 1247.55i 1.33755 0.0429447i
\(946\) −6316.46 −0.217089
\(947\) 8897.92 5137.22i 0.305326 0.176280i −0.339507 0.940603i \(-0.610260\pi\)
0.644833 + 0.764324i \(0.276927\pi\)
\(948\) −3094.50 24152.1i −0.106018 0.827451i
\(949\) 3369.92 5836.88i 0.115271 0.199655i
\(950\) −14608.2 −0.498896
\(951\) 17953.0 + 23565.6i 0.612161 + 0.803539i
\(952\) 2449.96 + 13986.9i 0.0834072 + 0.476176i
\(953\) 11903.0i 0.404593i 0.979324 + 0.202297i \(0.0648405\pi\)
−0.979324 + 0.202297i \(0.935160\pi\)
\(954\) −3830.95 + 13910.6i −0.130012 + 0.472087i
\(955\) 22976.4 13265.4i 0.778533 0.449486i
\(956\) 20259.8i 0.685405i
\(957\) 30703.2 + 12842.6i 1.03709 + 0.433797i
\(958\) −15053.6 + 8691.21i −0.507683 + 0.293111i
\(959\) 48885.7 + 17855.6i 1.64609 + 0.601238i
\(960\) −632.337 4935.30i −0.0212590 0.165923i
\(961\) −4286.73 7424.84i −0.143894 0.249231i
\(962\) 3375.79 + 5847.04i 0.113139 + 0.195963i
\(963\) 20276.0 + 5583.96i 0.678488 + 0.186854i
\(964\) −11266.1 6504.47i −0.376406 0.217318i
\(965\) −21544.8 + 37316.7i −0.718706 + 1.24484i
\(966\) −11647.2 37541.6i −0.387933 1.25040i
\(967\) −15431.1 26727.4i −0.513165 0.888827i −0.999883 0.0152685i \(-0.995140\pi\)
0.486719 0.873559i \(-0.338194\pi\)
\(968\) 7594.88i 0.252179i
\(969\) −36495.8 + 4676.04i −1.20992 + 0.155022i
\(970\) 35235.3 1.16633
\(971\) −12653.5 + 21916.5i −0.418198 + 0.724341i −0.995758 0.0920074i \(-0.970672\pi\)
0.577560 + 0.816348i \(0.304005\pi\)
\(972\) −15054.4 + 1716.92i −0.496780 + 0.0566565i
\(973\) −5197.11 29670.5i −0.171235 0.977589i
\(974\) −16581.0 9573.05i −0.545472 0.314928i
\(975\) 9393.84 + 12330.6i 0.308558 + 0.405021i
\(976\) 1800.15 + 1039.32i 0.0590384 + 0.0340858i
\(977\) −4863.70 2808.06i −0.159267 0.0919527i 0.418248 0.908333i \(-0.362644\pi\)
−0.577515 + 0.816380i \(0.695978\pi\)
\(978\) −30665.9 + 3929.08i −1.00264 + 0.128464i
\(979\) 2150.59 + 1241.64i 0.0702075 + 0.0405343i
\(980\) 19305.6 6977.23i 0.629281 0.227428i
\(981\) −11408.3 11567.7i −0.371294 0.376482i
\(982\) 2991.78 5181.92i 0.0972216 0.168393i
\(983\) 28269.6 0.917252 0.458626 0.888629i \(-0.348342\pi\)
0.458626 + 0.888629i \(0.348342\pi\)
\(984\) 6354.46 + 8341.04i 0.205867 + 0.270226i
\(985\) 23968.3i 0.775323i
\(986\) −12854.6 22264.9i −0.415188 0.719126i
\(987\) 13591.6 + 43808.8i 0.438324 + 1.41282i
\(988\) 4459.09 7723.37i 0.143586 0.248697i
\(989\) −11697.2 6753.39i −0.376087 0.217134i
\(990\) −27091.6 27470.1i −0.869724 0.881875i
\(991\) −2105.15 3646.23i −0.0674797 0.116878i 0.830312 0.557299i \(-0.188162\pi\)
−0.897791 + 0.440421i \(0.854829\pi\)
\(992\) 2330.60 + 4036.71i 0.0745933 + 0.129199i
\(993\) 16668.0 12698.2i 0.532672 0.405806i
\(994\) −20176.6 + 3534.14i −0.643825 + 0.112773i
\(995\) −53409.0 + 30835.7i −1.70169 + 0.982471i
\(996\) −14237.3 + 10846.4i −0.452937 + 0.345061i
\(997\) 26010.8i 0.826250i 0.910674 + 0.413125i \(0.135563\pi\)
−0.910674 + 0.413125i \(0.864437\pi\)
\(998\) 15939.3 9202.58i 0.505562 0.291886i
\(999\) 15538.3 + 2210.38i 0.492102 + 0.0700032i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.4.t.a.47.18 yes 48
3.2 odd 2 378.4.t.a.89.9 48
7.3 odd 6 126.4.l.a.101.21 yes 48
9.4 even 3 378.4.l.a.341.19 48
9.5 odd 6 126.4.l.a.5.9 48
21.17 even 6 378.4.l.a.143.19 48
63.31 odd 6 378.4.t.a.17.9 48
63.59 even 6 inner 126.4.t.a.59.18 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.4.l.a.5.9 48 9.5 odd 6
126.4.l.a.101.21 yes 48 7.3 odd 6
126.4.t.a.47.18 yes 48 1.1 even 1 trivial
126.4.t.a.59.18 yes 48 63.59 even 6 inner
378.4.l.a.143.19 48 21.17 even 6
378.4.l.a.341.19 48 9.4 even 3
378.4.t.a.17.9 48 63.31 odd 6
378.4.t.a.89.9 48 3.2 odd 2