Newspace parameters
| Level: | \( N \) | \(=\) | \( 126 = 2 \cdot 3^{2} \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 126.t (of order \(6\), degree \(2\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(7.43424066072\) |
| Analytic rank: | \(0\) |
| Dimension: | \(48\) |
| Relative dimension: | \(24\) over \(\Q(\zeta_{6})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 47.1 | −1.73205 | + | 1.00000i | −5.19296 | + | 0.182208i | 2.00000 | − | 3.46410i | 2.96004 | 8.81226 | − | 5.50855i | 8.40652 | + | 16.5024i | 8.00000i | 26.9336 | − | 1.89240i | −5.12693 | + | 2.96004i | ||||
| 47.2 | −1.73205 | + | 1.00000i | −4.77039 | + | 2.05995i | 2.00000 | − | 3.46410i | −18.1346 | 6.20260 | − | 8.33833i | 0.905853 | − | 18.4981i | 8.00000i | 18.5132 | − | 19.6535i | 31.4101 | − | 18.1346i | ||||
| 47.3 | −1.73205 | + | 1.00000i | −3.82633 | − | 3.51556i | 2.00000 | − | 3.46410i | −12.4256 | 10.1430 | + | 2.26280i | −14.5199 | + | 11.4967i | 8.00000i | 2.28162 | + | 26.9034i | 21.5217 | − | 12.4256i | ||||
| 47.4 | −1.73205 | + | 1.00000i | −3.18367 | − | 4.10661i | 2.00000 | − | 3.46410i | 6.95410 | 9.62089 | + | 3.92919i | 3.23606 | − | 18.2353i | 8.00000i | −6.72849 | + | 26.1482i | −12.0449 | + | 6.95410i | ||||
| 47.5 | −1.73205 | + | 1.00000i | −2.30946 | + | 4.65472i | 2.00000 | − | 3.46410i | 10.9611 | −0.654618 | − | 10.3717i | 16.8715 | − | 7.63883i | 8.00000i | −16.3328 | − | 21.4998i | −18.9851 | + | 10.9611i | ||||
| 47.6 | −1.73205 | + | 1.00000i | −1.51121 | + | 4.97154i | 2.00000 | − | 3.46410i | 2.72245 | −2.35405 | − | 10.1222i | −16.6479 | + | 8.11457i | 8.00000i | −22.4325 | − | 15.0261i | −4.71542 | + | 2.72245i | ||||
| 47.7 | −1.73205 | + | 1.00000i | 1.41694 | − | 4.99923i | 2.00000 | − | 3.46410i | 18.3227 | 2.54502 | + | 10.0759i | 9.14915 | + | 16.1026i | 8.00000i | −22.9846 | − | 14.1672i | −31.7359 | + | 18.3227i | ||||
| 47.8 | −1.73205 | + | 1.00000i | 2.80998 | + | 4.37081i | 2.00000 | − | 3.46410i | −7.16324 | −9.23784 | − | 4.76049i | 18.4589 | − | 1.50665i | 8.00000i | −11.2080 | + | 24.5638i | 12.4071 | − | 7.16324i | ||||
| 47.9 | −1.73205 | + | 1.00000i | 2.86325 | − | 4.33610i | 2.00000 | − | 3.46410i | −6.26999 | −0.623188 | + | 10.3736i | −17.7034 | − | 5.43965i | 8.00000i | −10.6036 | − | 24.8307i | 10.8599 | − | 6.26999i | ||||
| 47.10 | −1.73205 | + | 1.00000i | 4.56390 | − | 2.48412i | 2.00000 | − | 3.46410i | −16.3094 | −5.42078 | + | 8.86652i | 17.1488 | + | 6.99427i | 8.00000i | 14.6583 | − | 22.6745i | 28.2488 | − | 16.3094i | ||||
| 47.11 | −1.73205 | + | 1.00000i | 4.81579 | + | 1.95145i | 2.00000 | − | 3.46410i | 3.73919 | −10.2926 | + | 1.43579i | −9.62842 | + | 15.8207i | 8.00000i | 19.3837 | + | 18.7955i | −6.47647 | + | 3.73919i | ||||
| 47.12 | −1.73205 | + | 1.00000i | 5.19018 | − | 0.249057i | 2.00000 | − | 3.46410i | 14.6433 | −8.74060 | + | 5.62156i | 0.375449 | − | 18.5165i | 8.00000i | 26.8759 | − | 2.58530i | −25.3629 | + | 14.6433i | ||||
| 47.13 | 1.73205 | − | 1.00000i | −4.57477 | − | 2.46403i | 2.00000 | − | 3.46410i | 19.1314 | −10.3878 | + | 0.306944i | 4.28063 | + | 18.0188i | − | 8.00000i | 14.8571 | + | 22.5448i | 33.1365 | − | 19.1314i | |||
| 47.14 | 1.73205 | − | 1.00000i | −4.42087 | + | 2.73055i | 2.00000 | − | 3.46410i | 3.77473 | −4.92662 | + | 9.15033i | −12.9841 | − | 13.2066i | − | 8.00000i | 12.0882 | − | 24.1428i | 6.53802 | − | 3.77473i | |||
| 47.15 | 1.73205 | − | 1.00000i | −4.20058 | − | 3.05861i | 2.00000 | − | 3.46410i | −3.71189 | −10.3342 | − | 1.09708i | −15.6223 | − | 9.94703i | − | 8.00000i | 8.28983 | + | 25.6959i | −6.42918 | + | 3.71189i | |||
| 47.16 | 1.73205 | − | 1.00000i | −3.92150 | + | 3.40908i | 2.00000 | − | 3.46410i | 2.79370 | −3.38317 | + | 9.82620i | 2.52260 | + | 18.3477i | − | 8.00000i | 3.75640 | − | 26.7374i | 4.83883 | − | 2.79370i | |||
| 47.17 | 1.73205 | − | 1.00000i | −2.40296 | + | 4.60715i | 2.00000 | − | 3.46410i | −16.9865 | 0.445099 | + | 10.3828i | 16.2157 | − | 8.94719i | − | 8.00000i | −15.4516 | − | 22.1416i | −29.4214 | + | 16.9865i | |||
| 47.18 | 1.73205 | − | 1.00000i | −0.660361 | − | 5.15402i | 2.00000 | − | 3.46410i | −14.9619 | −6.29780 | − | 8.26666i | −6.35399 | + | 17.3962i | − | 8.00000i | −26.1278 | + | 6.80703i | −25.9148 | + | 14.9619i | |||
| 47.19 | 1.73205 | − | 1.00000i | 0.860451 | − | 5.12441i | 2.00000 | − | 3.46410i | 6.32106 | −3.63407 | − | 9.73620i | 16.5946 | − | 8.22317i | − | 8.00000i | −25.5192 | − | 8.81861i | 10.9484 | − | 6.32106i | |||
| 47.20 | 1.73205 | − | 1.00000i | 1.98049 | + | 4.80392i | 2.00000 | − | 3.46410i | 12.8603 | 8.23423 | + | 6.34015i | 7.27304 | − | 17.0324i | − | 8.00000i | −19.1553 | + | 19.0282i | 22.2747 | − | 12.8603i | |||
| See all 48 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 63.s | even | 6 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 126.4.t.a | yes | 48 |
| 3.b | odd | 2 | 1 | 378.4.t.a | 48 | ||
| 7.d | odd | 6 | 1 | 126.4.l.a | ✓ | 48 | |
| 9.c | even | 3 | 1 | 378.4.l.a | 48 | ||
| 9.d | odd | 6 | 1 | 126.4.l.a | ✓ | 48 | |
| 21.g | even | 6 | 1 | 378.4.l.a | 48 | ||
| 63.k | odd | 6 | 1 | 378.4.t.a | 48 | ||
| 63.s | even | 6 | 1 | inner | 126.4.t.a | yes | 48 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 126.4.l.a | ✓ | 48 | 7.d | odd | 6 | 1 | |
| 126.4.l.a | ✓ | 48 | 9.d | odd | 6 | 1 | |
| 126.4.t.a | yes | 48 | 1.a | even | 1 | 1 | trivial |
| 126.4.t.a | yes | 48 | 63.s | even | 6 | 1 | inner |
| 378.4.l.a | 48 | 9.c | even | 3 | 1 | ||
| 378.4.l.a | 48 | 21.g | even | 6 | 1 | ||
| 378.4.t.a | 48 | 3.b | odd | 2 | 1 | ||
| 378.4.t.a | 48 | 63.k | odd | 6 | 1 | ||
Hecke kernels
This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(126, [\chi])\).