| L(s) = 1 | + (1.73 − i)2-s + (1.98 + 4.80i)3-s + (1.99 − 3.46i)4-s + 12.8·5-s + (8.23 + 6.34i)6-s + (7.27 − 17.0i)7-s − 7.99i·8-s + (−19.1 + 19.0i)9-s + (22.2 − 12.8i)10-s + 20.7i·11-s + (20.6 + 2.74i)12-s + (6.74 − 3.89i)13-s + (−4.43 − 36.7i)14-s + (25.4 + 61.7i)15-s + (−8 − 13.8i)16-s + (6.76 + 11.7i)17-s + ⋯ |
| L(s) = 1 | + (0.612 − 0.353i)2-s + (0.381 + 0.924i)3-s + (0.249 − 0.433i)4-s + 1.15·5-s + (0.560 + 0.431i)6-s + (0.392 − 0.919i)7-s − 0.353i·8-s + (−0.709 + 0.704i)9-s + (0.704 − 0.406i)10-s + 0.569i·11-s + (0.495 + 0.0660i)12-s + (0.143 − 0.0830i)13-s + (−0.0846 − 0.702i)14-s + (0.438 + 1.06i)15-s + (−0.125 − 0.216i)16-s + (0.0965 + 0.167i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 126 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0771i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 126 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.997 - 0.0771i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(3.01647 + 0.116511i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.01647 + 0.116511i\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-1.73 + i)T \) |
| 3 | \( 1 + (-1.98 - 4.80i)T \) |
| 7 | \( 1 + (-7.27 + 17.0i)T \) |
| good | 5 | \( 1 - 12.8T + 125T^{2} \) |
| 11 | \( 1 - 20.7iT - 1.33e3T^{2} \) |
| 13 | \( 1 + (-6.74 + 3.89i)T + (1.09e3 - 1.90e3i)T^{2} \) |
| 17 | \( 1 + (-6.76 - 11.7i)T + (-2.45e3 + 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-68.1 - 39.3i)T + (3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + 23.7iT - 1.21e4T^{2} \) |
| 29 | \( 1 + (-32.2 - 18.6i)T + (1.21e4 + 2.11e4i)T^{2} \) |
| 31 | \( 1 + (230. + 132. i)T + (1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + (208. - 361. i)T + (-2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 + (230. + 399. i)T + (-3.44e4 + 5.96e4i)T^{2} \) |
| 43 | \( 1 + (-115. + 199. i)T + (-3.97e4 - 6.88e4i)T^{2} \) |
| 47 | \( 1 + (-127. - 221. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-165. + 95.7i)T + (7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (18.1 - 31.4i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (722. - 416. i)T + (1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-109. + 190. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 + 394. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + (837. - 483. i)T + (1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (357. + 618. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + (-544. + 942. i)T + (-2.85e5 - 4.95e5i)T^{2} \) |
| 89 | \( 1 + (29.6 - 51.3i)T + (-3.52e5 - 6.10e5i)T^{2} \) |
| 97 | \( 1 + (177. + 102. i)T + (4.56e5 + 7.90e5i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.27027930729248904976708048682, −11.83318926339050242505581712782, −10.51669216229052753851973387299, −10.12238952083476364121343298203, −9.012888541476179599289837912065, −7.42784354685422756562579799400, −5.81150697905845236793496367813, −4.77194298658503584490387853999, −3.51704571872492252204090307349, −1.86093818895071971925256329635,
1.78306917981520093163503980623, 3.06490740256454250987674837089, 5.34335795310833790704472167410, 6.05973985582929302988943656615, 7.27349528023405646312881446130, 8.554364425994159789750470179677, 9.403249756569738281818256501865, 11.16236572420860550276922071603, 12.16515809187909941351888213173, 13.08920590640335566459218714510