Properties

Label 1240.2.a.m.1.3
Level $1240$
Weight $2$
Character 1240.1
Self dual yes
Analytic conductor $9.901$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1240,2,Mod(1,1240)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1240.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1240, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1240 = 2^{3} \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1240.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-1,0,6,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.90144985064\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 19x^{4} + 15x^{3} + 98x^{2} - 44x - 108 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.45950\) of defining polynomial
Character \(\chi\) \(=\) 1240.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.45950 q^{3} +1.00000 q^{5} -3.90059 q^{7} -0.869870 q^{9} +5.72206 q^{11} +4.22537 q^{13} -1.45950 q^{15} -5.18156 q^{17} -4.37318 q^{19} +5.69290 q^{21} -5.60498 q^{23} +1.00000 q^{25} +5.64806 q^{27} +6.34544 q^{29} +1.00000 q^{31} -8.35133 q^{33} -3.90059 q^{35} +10.6841 q^{37} -6.16691 q^{39} +9.97815 q^{41} +2.85678 q^{43} -0.869870 q^{45} -1.79231 q^{47} +8.21461 q^{49} +7.56247 q^{51} -4.34168 q^{53} +5.72206 q^{55} +6.38264 q^{57} -1.47485 q^{59} +9.11935 q^{61} +3.39301 q^{63} +4.22537 q^{65} -4.96583 q^{67} +8.18044 q^{69} +2.54582 q^{71} +15.5855 q^{73} -1.45950 q^{75} -22.3194 q^{77} +5.02728 q^{79} -5.63372 q^{81} +14.5221 q^{83} -5.18156 q^{85} -9.26115 q^{87} +15.0626 q^{89} -16.4814 q^{91} -1.45950 q^{93} -4.37318 q^{95} -8.30449 q^{97} -4.97745 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{3} + 6 q^{5} - 2 q^{7} + 21 q^{9} + 8 q^{11} + 4 q^{13} - q^{15} + 3 q^{17} - 5 q^{19} + 8 q^{21} - 12 q^{23} + 6 q^{25} - 7 q^{27} - 4 q^{29} + 6 q^{31} + 14 q^{33} - 2 q^{35} + 3 q^{37} + 10 q^{39}+ \cdots - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.45950 −0.842641 −0.421320 0.906912i \(-0.638433\pi\)
−0.421320 + 0.906912i \(0.638433\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −3.90059 −1.47428 −0.737142 0.675737i \(-0.763825\pi\)
−0.737142 + 0.675737i \(0.763825\pi\)
\(8\) 0 0
\(9\) −0.869870 −0.289957
\(10\) 0 0
\(11\) 5.72206 1.72527 0.862633 0.505830i \(-0.168814\pi\)
0.862633 + 0.505830i \(0.168814\pi\)
\(12\) 0 0
\(13\) 4.22537 1.17191 0.585953 0.810345i \(-0.300720\pi\)
0.585953 + 0.810345i \(0.300720\pi\)
\(14\) 0 0
\(15\) −1.45950 −0.376840
\(16\) 0 0
\(17\) −5.18156 −1.25671 −0.628356 0.777926i \(-0.716272\pi\)
−0.628356 + 0.777926i \(0.716272\pi\)
\(18\) 0 0
\(19\) −4.37318 −1.00328 −0.501638 0.865078i \(-0.667269\pi\)
−0.501638 + 0.865078i \(0.667269\pi\)
\(20\) 0 0
\(21\) 5.69290 1.24229
\(22\) 0 0
\(23\) −5.60498 −1.16872 −0.584359 0.811495i \(-0.698654\pi\)
−0.584359 + 0.811495i \(0.698654\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 5.64806 1.08697
\(28\) 0 0
\(29\) 6.34544 1.17832 0.589159 0.808017i \(-0.299459\pi\)
0.589159 + 0.808017i \(0.299459\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605
\(32\) 0 0
\(33\) −8.35133 −1.45378
\(34\) 0 0
\(35\) −3.90059 −0.659320
\(36\) 0 0
\(37\) 10.6841 1.75646 0.878231 0.478237i \(-0.158724\pi\)
0.878231 + 0.478237i \(0.158724\pi\)
\(38\) 0 0
\(39\) −6.16691 −0.987496
\(40\) 0 0
\(41\) 9.97815 1.55833 0.779163 0.626822i \(-0.215645\pi\)
0.779163 + 0.626822i \(0.215645\pi\)
\(42\) 0 0
\(43\) 2.85678 0.435655 0.217827 0.975987i \(-0.430103\pi\)
0.217827 + 0.975987i \(0.430103\pi\)
\(44\) 0 0
\(45\) −0.869870 −0.129673
\(46\) 0 0
\(47\) −1.79231 −0.261435 −0.130717 0.991420i \(-0.541728\pi\)
−0.130717 + 0.991420i \(0.541728\pi\)
\(48\) 0 0
\(49\) 8.21461 1.17352
\(50\) 0 0
\(51\) 7.56247 1.05896
\(52\) 0 0
\(53\) −4.34168 −0.596376 −0.298188 0.954507i \(-0.596382\pi\)
−0.298188 + 0.954507i \(0.596382\pi\)
\(54\) 0 0
\(55\) 5.72206 0.771563
\(56\) 0 0
\(57\) 6.38264 0.845401
\(58\) 0 0
\(59\) −1.47485 −0.192009 −0.0960043 0.995381i \(-0.530606\pi\)
−0.0960043 + 0.995381i \(0.530606\pi\)
\(60\) 0 0
\(61\) 9.11935 1.16761 0.583806 0.811893i \(-0.301563\pi\)
0.583806 + 0.811893i \(0.301563\pi\)
\(62\) 0 0
\(63\) 3.39301 0.427479
\(64\) 0 0
\(65\) 4.22537 0.524093
\(66\) 0 0
\(67\) −4.96583 −0.606673 −0.303337 0.952883i \(-0.598101\pi\)
−0.303337 + 0.952883i \(0.598101\pi\)
\(68\) 0 0
\(69\) 8.18044 0.984810
\(70\) 0 0
\(71\) 2.54582 0.302133 0.151066 0.988524i \(-0.451729\pi\)
0.151066 + 0.988524i \(0.451729\pi\)
\(72\) 0 0
\(73\) 15.5855 1.82414 0.912070 0.410035i \(-0.134483\pi\)
0.912070 + 0.410035i \(0.134483\pi\)
\(74\) 0 0
\(75\) −1.45950 −0.168528
\(76\) 0 0
\(77\) −22.3194 −2.54353
\(78\) 0 0
\(79\) 5.02728 0.565613 0.282806 0.959177i \(-0.408735\pi\)
0.282806 + 0.959177i \(0.408735\pi\)
\(80\) 0 0
\(81\) −5.63372 −0.625968
\(82\) 0 0
\(83\) 14.5221 1.59401 0.797005 0.603972i \(-0.206416\pi\)
0.797005 + 0.603972i \(0.206416\pi\)
\(84\) 0 0
\(85\) −5.18156 −0.562019
\(86\) 0 0
\(87\) −9.26115 −0.992899
\(88\) 0 0
\(89\) 15.0626 1.59664 0.798318 0.602236i \(-0.205724\pi\)
0.798318 + 0.602236i \(0.205724\pi\)
\(90\) 0 0
\(91\) −16.4814 −1.72772
\(92\) 0 0
\(93\) −1.45950 −0.151343
\(94\) 0 0
\(95\) −4.37318 −0.448679
\(96\) 0 0
\(97\) −8.30449 −0.843193 −0.421597 0.906784i \(-0.638530\pi\)
−0.421597 + 0.906784i \(0.638530\pi\)
\(98\) 0 0
\(99\) −4.97745 −0.500253
\(100\) 0 0
\(101\) −7.25537 −0.721936 −0.360968 0.932578i \(-0.617554\pi\)
−0.360968 + 0.932578i \(0.617554\pi\)
\(102\) 0 0
\(103\) 7.21461 0.710876 0.355438 0.934700i \(-0.384332\pi\)
0.355438 + 0.934700i \(0.384332\pi\)
\(104\) 0 0
\(105\) 5.69290 0.555570
\(106\) 0 0
\(107\) 12.3263 1.19163 0.595815 0.803122i \(-0.296829\pi\)
0.595815 + 0.803122i \(0.296829\pi\)
\(108\) 0 0
\(109\) −9.36656 −0.897154 −0.448577 0.893744i \(-0.648069\pi\)
−0.448577 + 0.893744i \(0.648069\pi\)
\(110\) 0 0
\(111\) −15.5935 −1.48007
\(112\) 0 0
\(113\) −20.7144 −1.94865 −0.974326 0.225143i \(-0.927715\pi\)
−0.974326 + 0.225143i \(0.927715\pi\)
\(114\) 0 0
\(115\) −5.60498 −0.522667
\(116\) 0 0
\(117\) −3.67552 −0.339802
\(118\) 0 0
\(119\) 20.2111 1.85275
\(120\) 0 0
\(121\) 21.7420 1.97655
\(122\) 0 0
\(123\) −14.5631 −1.31311
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 1.46914 0.130365 0.0651826 0.997873i \(-0.479237\pi\)
0.0651826 + 0.997873i \(0.479237\pi\)
\(128\) 0 0
\(129\) −4.16946 −0.367101
\(130\) 0 0
\(131\) 14.7363 1.28752 0.643758 0.765229i \(-0.277374\pi\)
0.643758 + 0.765229i \(0.277374\pi\)
\(132\) 0 0
\(133\) 17.0580 1.47911
\(134\) 0 0
\(135\) 5.64806 0.486108
\(136\) 0 0
\(137\) −7.28984 −0.622813 −0.311407 0.950277i \(-0.600800\pi\)
−0.311407 + 0.950277i \(0.600800\pi\)
\(138\) 0 0
\(139\) 13.6784 1.16018 0.580092 0.814551i \(-0.303017\pi\)
0.580092 + 0.814551i \(0.303017\pi\)
\(140\) 0 0
\(141\) 2.61587 0.220296
\(142\) 0 0
\(143\) 24.1778 2.02185
\(144\) 0 0
\(145\) 6.34544 0.526960
\(146\) 0 0
\(147\) −11.9892 −0.988852
\(148\) 0 0
\(149\) −3.73511 −0.305992 −0.152996 0.988227i \(-0.548892\pi\)
−0.152996 + 0.988227i \(0.548892\pi\)
\(150\) 0 0
\(151\) −6.40390 −0.521142 −0.260571 0.965455i \(-0.583911\pi\)
−0.260571 + 0.965455i \(0.583911\pi\)
\(152\) 0 0
\(153\) 4.50728 0.364392
\(154\) 0 0
\(155\) 1.00000 0.0803219
\(156\) 0 0
\(157\) −0.699513 −0.0558272 −0.0279136 0.999610i \(-0.508886\pi\)
−0.0279136 + 0.999610i \(0.508886\pi\)
\(158\) 0 0
\(159\) 6.33667 0.502531
\(160\) 0 0
\(161\) 21.8627 1.72302
\(162\) 0 0
\(163\) 6.87530 0.538515 0.269257 0.963068i \(-0.413222\pi\)
0.269257 + 0.963068i \(0.413222\pi\)
\(164\) 0 0
\(165\) −8.35133 −0.650150
\(166\) 0 0
\(167\) −12.7877 −0.989542 −0.494771 0.869023i \(-0.664748\pi\)
−0.494771 + 0.869023i \(0.664748\pi\)
\(168\) 0 0
\(169\) 4.85375 0.373365
\(170\) 0 0
\(171\) 3.80410 0.290906
\(172\) 0 0
\(173\) 7.10167 0.539930 0.269965 0.962870i \(-0.412988\pi\)
0.269965 + 0.962870i \(0.412988\pi\)
\(174\) 0 0
\(175\) −3.90059 −0.294857
\(176\) 0 0
\(177\) 2.15253 0.161794
\(178\) 0 0
\(179\) −16.5390 −1.23619 −0.618093 0.786105i \(-0.712094\pi\)
−0.618093 + 0.786105i \(0.712094\pi\)
\(180\) 0 0
\(181\) −1.83035 −0.136049 −0.0680243 0.997684i \(-0.521670\pi\)
−0.0680243 + 0.997684i \(0.521670\pi\)
\(182\) 0 0
\(183\) −13.3097 −0.983878
\(184\) 0 0
\(185\) 10.6841 0.785514
\(186\) 0 0
\(187\) −29.6492 −2.16816
\(188\) 0 0
\(189\) −22.0308 −1.60250
\(190\) 0 0
\(191\) −9.98279 −0.722329 −0.361165 0.932502i \(-0.617621\pi\)
−0.361165 + 0.932502i \(0.617621\pi\)
\(192\) 0 0
\(193\) −2.19882 −0.158274 −0.0791372 0.996864i \(-0.525217\pi\)
−0.0791372 + 0.996864i \(0.525217\pi\)
\(194\) 0 0
\(195\) −6.16691 −0.441622
\(196\) 0 0
\(197\) 23.2365 1.65553 0.827766 0.561073i \(-0.189611\pi\)
0.827766 + 0.561073i \(0.189611\pi\)
\(198\) 0 0
\(199\) 0.145087 0.0102850 0.00514249 0.999987i \(-0.498363\pi\)
0.00514249 + 0.999987i \(0.498363\pi\)
\(200\) 0 0
\(201\) 7.24762 0.511208
\(202\) 0 0
\(203\) −24.7510 −1.73718
\(204\) 0 0
\(205\) 9.97815 0.696904
\(206\) 0 0
\(207\) 4.87560 0.338878
\(208\) 0 0
\(209\) −25.0236 −1.73092
\(210\) 0 0
\(211\) −2.40681 −0.165692 −0.0828459 0.996562i \(-0.526401\pi\)
−0.0828459 + 0.996562i \(0.526401\pi\)
\(212\) 0 0
\(213\) −3.71561 −0.254589
\(214\) 0 0
\(215\) 2.85678 0.194831
\(216\) 0 0
\(217\) −3.90059 −0.264789
\(218\) 0 0
\(219\) −22.7469 −1.53709
\(220\) 0 0
\(221\) −21.8940 −1.47275
\(222\) 0 0
\(223\) −7.25304 −0.485699 −0.242850 0.970064i \(-0.578082\pi\)
−0.242850 + 0.970064i \(0.578082\pi\)
\(224\) 0 0
\(225\) −0.869870 −0.0579913
\(226\) 0 0
\(227\) −8.77167 −0.582196 −0.291098 0.956693i \(-0.594021\pi\)
−0.291098 + 0.956693i \(0.594021\pi\)
\(228\) 0 0
\(229\) −21.7896 −1.43990 −0.719948 0.694029i \(-0.755834\pi\)
−0.719948 + 0.694029i \(0.755834\pi\)
\(230\) 0 0
\(231\) 32.5751 2.14329
\(232\) 0 0
\(233\) −17.4062 −1.14032 −0.570158 0.821535i \(-0.693118\pi\)
−0.570158 + 0.821535i \(0.693118\pi\)
\(234\) 0 0
\(235\) −1.79231 −0.116917
\(236\) 0 0
\(237\) −7.33729 −0.476608
\(238\) 0 0
\(239\) 13.1971 0.853649 0.426825 0.904334i \(-0.359632\pi\)
0.426825 + 0.904334i \(0.359632\pi\)
\(240\) 0 0
\(241\) −18.9221 −1.21888 −0.609441 0.792831i \(-0.708606\pi\)
−0.609441 + 0.792831i \(0.708606\pi\)
\(242\) 0 0
\(243\) −8.72180 −0.559503
\(244\) 0 0
\(245\) 8.21461 0.524812
\(246\) 0 0
\(247\) −18.4783 −1.17575
\(248\) 0 0
\(249\) −21.1950 −1.34318
\(250\) 0 0
\(251\) 25.5439 1.61232 0.806159 0.591700i \(-0.201543\pi\)
0.806159 + 0.591700i \(0.201543\pi\)
\(252\) 0 0
\(253\) −32.0720 −2.01635
\(254\) 0 0
\(255\) 7.56247 0.473580
\(256\) 0 0
\(257\) 10.6013 0.661289 0.330644 0.943755i \(-0.392734\pi\)
0.330644 + 0.943755i \(0.392734\pi\)
\(258\) 0 0
\(259\) −41.6745 −2.58953
\(260\) 0 0
\(261\) −5.51971 −0.341661
\(262\) 0 0
\(263\) 17.5225 1.08048 0.540241 0.841510i \(-0.318333\pi\)
0.540241 + 0.841510i \(0.318333\pi\)
\(264\) 0 0
\(265\) −4.34168 −0.266708
\(266\) 0 0
\(267\) −21.9839 −1.34539
\(268\) 0 0
\(269\) 21.2207 1.29385 0.646926 0.762553i \(-0.276054\pi\)
0.646926 + 0.762553i \(0.276054\pi\)
\(270\) 0 0
\(271\) −31.4518 −1.91056 −0.955281 0.295698i \(-0.904448\pi\)
−0.955281 + 0.295698i \(0.904448\pi\)
\(272\) 0 0
\(273\) 24.0546 1.45585
\(274\) 0 0
\(275\) 5.72206 0.345053
\(276\) 0 0
\(277\) −25.4144 −1.52700 −0.763500 0.645808i \(-0.776521\pi\)
−0.763500 + 0.645808i \(0.776521\pi\)
\(278\) 0 0
\(279\) −0.869870 −0.0520778
\(280\) 0 0
\(281\) 2.86761 0.171067 0.0855337 0.996335i \(-0.472740\pi\)
0.0855337 + 0.996335i \(0.472740\pi\)
\(282\) 0 0
\(283\) 15.1591 0.901117 0.450559 0.892747i \(-0.351225\pi\)
0.450559 + 0.892747i \(0.351225\pi\)
\(284\) 0 0
\(285\) 6.38264 0.378075
\(286\) 0 0
\(287\) −38.9207 −2.29742
\(288\) 0 0
\(289\) 9.84855 0.579327
\(290\) 0 0
\(291\) 12.1204 0.710509
\(292\) 0 0
\(293\) −18.4608 −1.07849 −0.539245 0.842149i \(-0.681290\pi\)
−0.539245 + 0.842149i \(0.681290\pi\)
\(294\) 0 0
\(295\) −1.47485 −0.0858688
\(296\) 0 0
\(297\) 32.3186 1.87531
\(298\) 0 0
\(299\) −23.6831 −1.36963
\(300\) 0 0
\(301\) −11.1431 −0.642279
\(302\) 0 0
\(303\) 10.5892 0.608333
\(304\) 0 0
\(305\) 9.11935 0.522172
\(306\) 0 0
\(307\) 3.51482 0.200601 0.100301 0.994957i \(-0.468020\pi\)
0.100301 + 0.994957i \(0.468020\pi\)
\(308\) 0 0
\(309\) −10.5297 −0.599013
\(310\) 0 0
\(311\) 24.2858 1.37712 0.688562 0.725177i \(-0.258242\pi\)
0.688562 + 0.725177i \(0.258242\pi\)
\(312\) 0 0
\(313\) −0.340150 −0.0192264 −0.00961322 0.999954i \(-0.503060\pi\)
−0.00961322 + 0.999954i \(0.503060\pi\)
\(314\) 0 0
\(315\) 3.39301 0.191174
\(316\) 0 0
\(317\) 31.6084 1.77531 0.887653 0.460513i \(-0.152335\pi\)
0.887653 + 0.460513i \(0.152335\pi\)
\(318\) 0 0
\(319\) 36.3090 2.03291
\(320\) 0 0
\(321\) −17.9902 −1.00412
\(322\) 0 0
\(323\) 22.6599 1.26083
\(324\) 0 0
\(325\) 4.22537 0.234381
\(326\) 0 0
\(327\) 13.6705 0.755978
\(328\) 0 0
\(329\) 6.99106 0.385430
\(330\) 0 0
\(331\) 6.67495 0.366888 0.183444 0.983030i \(-0.441275\pi\)
0.183444 + 0.983030i \(0.441275\pi\)
\(332\) 0 0
\(333\) −9.29381 −0.509298
\(334\) 0 0
\(335\) −4.96583 −0.271313
\(336\) 0 0
\(337\) −1.93160 −0.105221 −0.0526104 0.998615i \(-0.516754\pi\)
−0.0526104 + 0.998615i \(0.516754\pi\)
\(338\) 0 0
\(339\) 30.2327 1.64201
\(340\) 0 0
\(341\) 5.72206 0.309867
\(342\) 0 0
\(343\) −4.73769 −0.255811
\(344\) 0 0
\(345\) 8.18044 0.440420
\(346\) 0 0
\(347\) −23.2279 −1.24694 −0.623470 0.781847i \(-0.714278\pi\)
−0.623470 + 0.781847i \(0.714278\pi\)
\(348\) 0 0
\(349\) −11.8449 −0.634040 −0.317020 0.948419i \(-0.602682\pi\)
−0.317020 + 0.948419i \(0.602682\pi\)
\(350\) 0 0
\(351\) 23.8651 1.27383
\(352\) 0 0
\(353\) 11.2350 0.597977 0.298989 0.954257i \(-0.403351\pi\)
0.298989 + 0.954257i \(0.403351\pi\)
\(354\) 0 0
\(355\) 2.54582 0.135118
\(356\) 0 0
\(357\) −29.4981 −1.56120
\(358\) 0 0
\(359\) −16.1672 −0.853272 −0.426636 0.904423i \(-0.640302\pi\)
−0.426636 + 0.904423i \(0.640302\pi\)
\(360\) 0 0
\(361\) 0.124679 0.00656204
\(362\) 0 0
\(363\) −31.7324 −1.66552
\(364\) 0 0
\(365\) 15.5855 0.815780
\(366\) 0 0
\(367\) −26.4315 −1.37971 −0.689857 0.723946i \(-0.742327\pi\)
−0.689857 + 0.723946i \(0.742327\pi\)
\(368\) 0 0
\(369\) −8.67970 −0.451847
\(370\) 0 0
\(371\) 16.9351 0.879228
\(372\) 0 0
\(373\) −20.8629 −1.08024 −0.540121 0.841587i \(-0.681621\pi\)
−0.540121 + 0.841587i \(0.681621\pi\)
\(374\) 0 0
\(375\) −1.45950 −0.0753681
\(376\) 0 0
\(377\) 26.8118 1.38088
\(378\) 0 0
\(379\) 29.0204 1.49068 0.745340 0.666685i \(-0.232287\pi\)
0.745340 + 0.666685i \(0.232287\pi\)
\(380\) 0 0
\(381\) −2.14421 −0.109851
\(382\) 0 0
\(383\) −13.0342 −0.666018 −0.333009 0.942924i \(-0.608064\pi\)
−0.333009 + 0.942924i \(0.608064\pi\)
\(384\) 0 0
\(385\) −22.3194 −1.13750
\(386\) 0 0
\(387\) −2.48503 −0.126321
\(388\) 0 0
\(389\) 8.62491 0.437300 0.218650 0.975803i \(-0.429835\pi\)
0.218650 + 0.975803i \(0.429835\pi\)
\(390\) 0 0
\(391\) 29.0425 1.46874
\(392\) 0 0
\(393\) −21.5076 −1.08491
\(394\) 0 0
\(395\) 5.02728 0.252950
\(396\) 0 0
\(397\) −10.0354 −0.503660 −0.251830 0.967771i \(-0.581032\pi\)
−0.251830 + 0.967771i \(0.581032\pi\)
\(398\) 0 0
\(399\) −24.8961 −1.24636
\(400\) 0 0
\(401\) 13.3605 0.667190 0.333595 0.942716i \(-0.391738\pi\)
0.333595 + 0.942716i \(0.391738\pi\)
\(402\) 0 0
\(403\) 4.22537 0.210481
\(404\) 0 0
\(405\) −5.63372 −0.279942
\(406\) 0 0
\(407\) 61.1353 3.03037
\(408\) 0 0
\(409\) −11.7984 −0.583391 −0.291696 0.956511i \(-0.594219\pi\)
−0.291696 + 0.956511i \(0.594219\pi\)
\(410\) 0 0
\(411\) 10.6395 0.524808
\(412\) 0 0
\(413\) 5.75277 0.283075
\(414\) 0 0
\(415\) 14.5221 0.712863
\(416\) 0 0
\(417\) −19.9635 −0.977618
\(418\) 0 0
\(419\) 15.8581 0.774718 0.387359 0.921929i \(-0.373387\pi\)
0.387359 + 0.921929i \(0.373387\pi\)
\(420\) 0 0
\(421\) 1.98848 0.0969124 0.0484562 0.998825i \(-0.484570\pi\)
0.0484562 + 0.998825i \(0.484570\pi\)
\(422\) 0 0
\(423\) 1.55907 0.0758048
\(424\) 0 0
\(425\) −5.18156 −0.251343
\(426\) 0 0
\(427\) −35.5708 −1.72139
\(428\) 0 0
\(429\) −35.2875 −1.70369
\(430\) 0 0
\(431\) −9.97418 −0.480439 −0.240220 0.970719i \(-0.577219\pi\)
−0.240220 + 0.970719i \(0.577219\pi\)
\(432\) 0 0
\(433\) −0.0603717 −0.00290128 −0.00145064 0.999999i \(-0.500462\pi\)
−0.00145064 + 0.999999i \(0.500462\pi\)
\(434\) 0 0
\(435\) −9.26115 −0.444038
\(436\) 0 0
\(437\) 24.5116 1.17255
\(438\) 0 0
\(439\) 2.08184 0.0993608 0.0496804 0.998765i \(-0.484180\pi\)
0.0496804 + 0.998765i \(0.484180\pi\)
\(440\) 0 0
\(441\) −7.14564 −0.340269
\(442\) 0 0
\(443\) 35.2416 1.67438 0.837190 0.546912i \(-0.184197\pi\)
0.837190 + 0.546912i \(0.184197\pi\)
\(444\) 0 0
\(445\) 15.0626 0.714037
\(446\) 0 0
\(447\) 5.45137 0.257841
\(448\) 0 0
\(449\) 2.35938 0.111346 0.0556731 0.998449i \(-0.482270\pi\)
0.0556731 + 0.998449i \(0.482270\pi\)
\(450\) 0 0
\(451\) 57.0956 2.68853
\(452\) 0 0
\(453\) 9.34647 0.439135
\(454\) 0 0
\(455\) −16.4814 −0.772662
\(456\) 0 0
\(457\) 34.3574 1.60717 0.803585 0.595189i \(-0.202923\pi\)
0.803585 + 0.595189i \(0.202923\pi\)
\(458\) 0 0
\(459\) −29.2658 −1.36601
\(460\) 0 0
\(461\) −0.425939 −0.0198380 −0.00991898 0.999951i \(-0.503157\pi\)
−0.00991898 + 0.999951i \(0.503157\pi\)
\(462\) 0 0
\(463\) 16.0543 0.746105 0.373052 0.927810i \(-0.378311\pi\)
0.373052 + 0.927810i \(0.378311\pi\)
\(464\) 0 0
\(465\) −1.45950 −0.0676825
\(466\) 0 0
\(467\) 39.0818 1.80849 0.904246 0.427012i \(-0.140434\pi\)
0.904246 + 0.427012i \(0.140434\pi\)
\(468\) 0 0
\(469\) 19.3697 0.894409
\(470\) 0 0
\(471\) 1.02094 0.0470423
\(472\) 0 0
\(473\) 16.3467 0.751621
\(474\) 0 0
\(475\) −4.37318 −0.200655
\(476\) 0 0
\(477\) 3.77670 0.172923
\(478\) 0 0
\(479\) −5.83333 −0.266532 −0.133266 0.991080i \(-0.542546\pi\)
−0.133266 + 0.991080i \(0.542546\pi\)
\(480\) 0 0
\(481\) 45.1444 2.05841
\(482\) 0 0
\(483\) −31.9086 −1.45189
\(484\) 0 0
\(485\) −8.30449 −0.377087
\(486\) 0 0
\(487\) −25.8420 −1.17101 −0.585507 0.810667i \(-0.699105\pi\)
−0.585507 + 0.810667i \(0.699105\pi\)
\(488\) 0 0
\(489\) −10.0345 −0.453775
\(490\) 0 0
\(491\) 6.03834 0.272506 0.136253 0.990674i \(-0.456494\pi\)
0.136253 + 0.990674i \(0.456494\pi\)
\(492\) 0 0
\(493\) −32.8793 −1.48081
\(494\) 0 0
\(495\) −4.97745 −0.223720
\(496\) 0 0
\(497\) −9.93019 −0.445430
\(498\) 0 0
\(499\) −31.9441 −1.43002 −0.715008 0.699117i \(-0.753577\pi\)
−0.715008 + 0.699117i \(0.753577\pi\)
\(500\) 0 0
\(501\) 18.6636 0.833828
\(502\) 0 0
\(503\) −4.01232 −0.178901 −0.0894503 0.995991i \(-0.528511\pi\)
−0.0894503 + 0.995991i \(0.528511\pi\)
\(504\) 0 0
\(505\) −7.25537 −0.322860
\(506\) 0 0
\(507\) −7.08403 −0.314613
\(508\) 0 0
\(509\) 1.57091 0.0696295 0.0348148 0.999394i \(-0.488916\pi\)
0.0348148 + 0.999394i \(0.488916\pi\)
\(510\) 0 0
\(511\) −60.7925 −2.68930
\(512\) 0 0
\(513\) −24.7000 −1.09053
\(514\) 0 0
\(515\) 7.21461 0.317914
\(516\) 0 0
\(517\) −10.2557 −0.451045
\(518\) 0 0
\(519\) −10.3649 −0.454967
\(520\) 0 0
\(521\) −30.6664 −1.34352 −0.671760 0.740769i \(-0.734461\pi\)
−0.671760 + 0.740769i \(0.734461\pi\)
\(522\) 0 0
\(523\) 11.8373 0.517609 0.258805 0.965930i \(-0.416671\pi\)
0.258805 + 0.965930i \(0.416671\pi\)
\(524\) 0 0
\(525\) 5.69290 0.248458
\(526\) 0 0
\(527\) −5.18156 −0.225712
\(528\) 0 0
\(529\) 8.41575 0.365902
\(530\) 0 0
\(531\) 1.28292 0.0556742
\(532\) 0 0
\(533\) 42.1614 1.82621
\(534\) 0 0
\(535\) 12.3263 0.532913
\(536\) 0 0
\(537\) 24.1387 1.04166
\(538\) 0 0
\(539\) 47.0045 2.02463
\(540\) 0 0
\(541\) −5.22523 −0.224650 −0.112325 0.993672i \(-0.535830\pi\)
−0.112325 + 0.993672i \(0.535830\pi\)
\(542\) 0 0
\(543\) 2.67138 0.114640
\(544\) 0 0
\(545\) −9.36656 −0.401219
\(546\) 0 0
\(547\) −29.1387 −1.24588 −0.622941 0.782269i \(-0.714062\pi\)
−0.622941 + 0.782269i \(0.714062\pi\)
\(548\) 0 0
\(549\) −7.93265 −0.338557
\(550\) 0 0
\(551\) −27.7497 −1.18218
\(552\) 0 0
\(553\) −19.6093 −0.833874
\(554\) 0 0
\(555\) −15.5935 −0.661906
\(556\) 0 0
\(557\) −28.1486 −1.19269 −0.596347 0.802726i \(-0.703382\pi\)
−0.596347 + 0.802726i \(0.703382\pi\)
\(558\) 0 0
\(559\) 12.0710 0.510547
\(560\) 0 0
\(561\) 43.2729 1.82698
\(562\) 0 0
\(563\) −18.1614 −0.765411 −0.382706 0.923870i \(-0.625008\pi\)
−0.382706 + 0.923870i \(0.625008\pi\)
\(564\) 0 0
\(565\) −20.7144 −0.871463
\(566\) 0 0
\(567\) 21.9748 0.922856
\(568\) 0 0
\(569\) 16.7909 0.703910 0.351955 0.936017i \(-0.385517\pi\)
0.351955 + 0.936017i \(0.385517\pi\)
\(570\) 0 0
\(571\) 47.3293 1.98067 0.990335 0.138695i \(-0.0442909\pi\)
0.990335 + 0.138695i \(0.0442909\pi\)
\(572\) 0 0
\(573\) 14.5698 0.608664
\(574\) 0 0
\(575\) −5.60498 −0.233744
\(576\) 0 0
\(577\) 34.9426 1.45468 0.727339 0.686278i \(-0.240757\pi\)
0.727339 + 0.686278i \(0.240757\pi\)
\(578\) 0 0
\(579\) 3.20917 0.133368
\(580\) 0 0
\(581\) −56.6449 −2.35003
\(582\) 0 0
\(583\) −24.8434 −1.02891
\(584\) 0 0
\(585\) −3.67552 −0.151964
\(586\) 0 0
\(587\) 32.2345 1.33046 0.665231 0.746638i \(-0.268333\pi\)
0.665231 + 0.746638i \(0.268333\pi\)
\(588\) 0 0
\(589\) −4.37318 −0.180194
\(590\) 0 0
\(591\) −33.9136 −1.39502
\(592\) 0 0
\(593\) −14.2700 −0.585997 −0.292999 0.956113i \(-0.594653\pi\)
−0.292999 + 0.956113i \(0.594653\pi\)
\(594\) 0 0
\(595\) 20.2111 0.828576
\(596\) 0 0
\(597\) −0.211755 −0.00866654
\(598\) 0 0
\(599\) −0.142475 −0.00582136 −0.00291068 0.999996i \(-0.500926\pi\)
−0.00291068 + 0.999996i \(0.500926\pi\)
\(600\) 0 0
\(601\) 42.9575 1.75227 0.876136 0.482063i \(-0.160112\pi\)
0.876136 + 0.482063i \(0.160112\pi\)
\(602\) 0 0
\(603\) 4.31963 0.175909
\(604\) 0 0
\(605\) 21.7420 0.883938
\(606\) 0 0
\(607\) 42.8115 1.73767 0.868834 0.495104i \(-0.164870\pi\)
0.868834 + 0.495104i \(0.164870\pi\)
\(608\) 0 0
\(609\) 36.1239 1.46382
\(610\) 0 0
\(611\) −7.57316 −0.306377
\(612\) 0 0
\(613\) −5.70516 −0.230429 −0.115215 0.993341i \(-0.536756\pi\)
−0.115215 + 0.993341i \(0.536756\pi\)
\(614\) 0 0
\(615\) −14.5631 −0.587240
\(616\) 0 0
\(617\) 33.0057 1.32876 0.664380 0.747395i \(-0.268696\pi\)
0.664380 + 0.747395i \(0.268696\pi\)
\(618\) 0 0
\(619\) 42.7016 1.71632 0.858161 0.513381i \(-0.171607\pi\)
0.858161 + 0.513381i \(0.171607\pi\)
\(620\) 0 0
\(621\) −31.6572 −1.27036
\(622\) 0 0
\(623\) −58.7532 −2.35390
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 36.5218 1.45854
\(628\) 0 0
\(629\) −55.3605 −2.20737
\(630\) 0 0
\(631\) −47.9692 −1.90962 −0.954812 0.297210i \(-0.903944\pi\)
−0.954812 + 0.297210i \(0.903944\pi\)
\(632\) 0 0
\(633\) 3.51273 0.139619
\(634\) 0 0
\(635\) 1.46914 0.0583011
\(636\) 0 0
\(637\) 34.7098 1.37525
\(638\) 0 0
\(639\) −2.21453 −0.0876054
\(640\) 0 0
\(641\) 43.1333 1.70366 0.851831 0.523817i \(-0.175492\pi\)
0.851831 + 0.523817i \(0.175492\pi\)
\(642\) 0 0
\(643\) 28.8306 1.13697 0.568483 0.822695i \(-0.307530\pi\)
0.568483 + 0.822695i \(0.307530\pi\)
\(644\) 0 0
\(645\) −4.16946 −0.164172
\(646\) 0 0
\(647\) 9.42108 0.370381 0.185190 0.982703i \(-0.440710\pi\)
0.185190 + 0.982703i \(0.440710\pi\)
\(648\) 0 0
\(649\) −8.43916 −0.331266
\(650\) 0 0
\(651\) 5.69290 0.223122
\(652\) 0 0
\(653\) −7.67141 −0.300205 −0.150103 0.988670i \(-0.547960\pi\)
−0.150103 + 0.988670i \(0.547960\pi\)
\(654\) 0 0
\(655\) 14.7363 0.575795
\(656\) 0 0
\(657\) −13.5573 −0.528921
\(658\) 0 0
\(659\) 2.25020 0.0876554 0.0438277 0.999039i \(-0.486045\pi\)
0.0438277 + 0.999039i \(0.486045\pi\)
\(660\) 0 0
\(661\) −38.9574 −1.51527 −0.757633 0.652681i \(-0.773644\pi\)
−0.757633 + 0.652681i \(0.773644\pi\)
\(662\) 0 0
\(663\) 31.9542 1.24100
\(664\) 0 0
\(665\) 17.0580 0.661480
\(666\) 0 0
\(667\) −35.5660 −1.37712
\(668\) 0 0
\(669\) 10.5858 0.409270
\(670\) 0 0
\(671\) 52.1815 2.01444
\(672\) 0 0
\(673\) −29.7727 −1.14765 −0.573827 0.818976i \(-0.694542\pi\)
−0.573827 + 0.818976i \(0.694542\pi\)
\(674\) 0 0
\(675\) 5.64806 0.217394
\(676\) 0 0
\(677\) −29.5784 −1.13679 −0.568394 0.822756i \(-0.692435\pi\)
−0.568394 + 0.822756i \(0.692435\pi\)
\(678\) 0 0
\(679\) 32.3924 1.24311
\(680\) 0 0
\(681\) 12.8022 0.490582
\(682\) 0 0
\(683\) 23.4165 0.896007 0.448003 0.894032i \(-0.352135\pi\)
0.448003 + 0.894032i \(0.352135\pi\)
\(684\) 0 0
\(685\) −7.28984 −0.278531
\(686\) 0 0
\(687\) 31.8018 1.21331
\(688\) 0 0
\(689\) −18.3452 −0.698897
\(690\) 0 0
\(691\) −5.07647 −0.193118 −0.0965589 0.995327i \(-0.530784\pi\)
−0.0965589 + 0.995327i \(0.530784\pi\)
\(692\) 0 0
\(693\) 19.4150 0.737515
\(694\) 0 0
\(695\) 13.6784 0.518850
\(696\) 0 0
\(697\) −51.7024 −1.95837
\(698\) 0 0
\(699\) 25.4042 0.960876
\(700\) 0 0
\(701\) −23.7506 −0.897048 −0.448524 0.893771i \(-0.648050\pi\)
−0.448524 + 0.893771i \(0.648050\pi\)
\(702\) 0 0
\(703\) −46.7236 −1.76222
\(704\) 0 0
\(705\) 2.61587 0.0985192
\(706\) 0 0
\(707\) 28.3002 1.06434
\(708\) 0 0
\(709\) 9.37961 0.352258 0.176129 0.984367i \(-0.443642\pi\)
0.176129 + 0.984367i \(0.443642\pi\)
\(710\) 0 0
\(711\) −4.37308 −0.164003
\(712\) 0 0
\(713\) −5.60498 −0.209908
\(714\) 0 0
\(715\) 24.1778 0.904200
\(716\) 0 0
\(717\) −19.2611 −0.719319
\(718\) 0 0
\(719\) −11.9138 −0.444309 −0.222155 0.975011i \(-0.571309\pi\)
−0.222155 + 0.975011i \(0.571309\pi\)
\(720\) 0 0
\(721\) −28.1412 −1.04803
\(722\) 0 0
\(723\) 27.6168 1.02708
\(724\) 0 0
\(725\) 6.34544 0.235664
\(726\) 0 0
\(727\) 24.3586 0.903409 0.451704 0.892168i \(-0.350816\pi\)
0.451704 + 0.892168i \(0.350816\pi\)
\(728\) 0 0
\(729\) 29.6306 1.09743
\(730\) 0 0
\(731\) −14.8026 −0.547493
\(732\) 0 0
\(733\) 6.66097 0.246028 0.123014 0.992405i \(-0.460744\pi\)
0.123014 + 0.992405i \(0.460744\pi\)
\(734\) 0 0
\(735\) −11.9892 −0.442228
\(736\) 0 0
\(737\) −28.4148 −1.04667
\(738\) 0 0
\(739\) −12.0485 −0.443210 −0.221605 0.975137i \(-0.571129\pi\)
−0.221605 + 0.975137i \(0.571129\pi\)
\(740\) 0 0
\(741\) 26.9690 0.990731
\(742\) 0 0
\(743\) 27.5768 1.01170 0.505848 0.862623i \(-0.331180\pi\)
0.505848 + 0.862623i \(0.331180\pi\)
\(744\) 0 0
\(745\) −3.73511 −0.136844
\(746\) 0 0
\(747\) −12.6324 −0.462194
\(748\) 0 0
\(749\) −48.0799 −1.75680
\(750\) 0 0
\(751\) −22.2453 −0.811744 −0.405872 0.913930i \(-0.633032\pi\)
−0.405872 + 0.913930i \(0.633032\pi\)
\(752\) 0 0
\(753\) −37.2812 −1.35860
\(754\) 0 0
\(755\) −6.40390 −0.233062
\(756\) 0 0
\(757\) 8.51287 0.309406 0.154703 0.987961i \(-0.450558\pi\)
0.154703 + 0.987961i \(0.450558\pi\)
\(758\) 0 0
\(759\) 46.8090 1.69906
\(760\) 0 0
\(761\) −24.5737 −0.890797 −0.445398 0.895333i \(-0.646938\pi\)
−0.445398 + 0.895333i \(0.646938\pi\)
\(762\) 0 0
\(763\) 36.5351 1.32266
\(764\) 0 0
\(765\) 4.50728 0.162961
\(766\) 0 0
\(767\) −6.23177 −0.225016
\(768\) 0 0
\(769\) 7.88670 0.284402 0.142201 0.989838i \(-0.454582\pi\)
0.142201 + 0.989838i \(0.454582\pi\)
\(770\) 0 0
\(771\) −15.4725 −0.557229
\(772\) 0 0
\(773\) 51.1007 1.83796 0.918982 0.394300i \(-0.129013\pi\)
0.918982 + 0.394300i \(0.129013\pi\)
\(774\) 0 0
\(775\) 1.00000 0.0359211
\(776\) 0 0
\(777\) 60.8237 2.18204
\(778\) 0 0
\(779\) −43.6362 −1.56343
\(780\) 0 0
\(781\) 14.5673 0.521260
\(782\) 0 0
\(783\) 35.8394 1.28080
\(784\) 0 0
\(785\) −0.699513 −0.0249667
\(786\) 0 0
\(787\) 4.28458 0.152729 0.0763644 0.997080i \(-0.475669\pi\)
0.0763644 + 0.997080i \(0.475669\pi\)
\(788\) 0 0
\(789\) −25.5740 −0.910458
\(790\) 0 0
\(791\) 80.7986 2.87287
\(792\) 0 0
\(793\) 38.5326 1.36833
\(794\) 0 0
\(795\) 6.33667 0.224739
\(796\) 0 0
\(797\) 13.4291 0.475682 0.237841 0.971304i \(-0.423560\pi\)
0.237841 + 0.971304i \(0.423560\pi\)
\(798\) 0 0
\(799\) 9.28695 0.328549
\(800\) 0 0
\(801\) −13.1025 −0.462955
\(802\) 0 0
\(803\) 89.1810 3.14713
\(804\) 0 0
\(805\) 21.8627 0.770560
\(806\) 0 0
\(807\) −30.9716 −1.09025
\(808\) 0 0
\(809\) −41.4364 −1.45683 −0.728413 0.685139i \(-0.759742\pi\)
−0.728413 + 0.685139i \(0.759742\pi\)
\(810\) 0 0
\(811\) 4.71186 0.165456 0.0827278 0.996572i \(-0.473637\pi\)
0.0827278 + 0.996572i \(0.473637\pi\)
\(812\) 0 0
\(813\) 45.9038 1.60992
\(814\) 0 0
\(815\) 6.87530 0.240831
\(816\) 0 0
\(817\) −12.4932 −0.437082
\(818\) 0 0
\(819\) 14.3367 0.500965
\(820\) 0 0
\(821\) −48.3963 −1.68904 −0.844521 0.535522i \(-0.820115\pi\)
−0.844521 + 0.535522i \(0.820115\pi\)
\(822\) 0 0
\(823\) 0.436669 0.0152213 0.00761066 0.999971i \(-0.497577\pi\)
0.00761066 + 0.999971i \(0.497577\pi\)
\(824\) 0 0
\(825\) −8.35133 −0.290756
\(826\) 0 0
\(827\) −37.3107 −1.29742 −0.648710 0.761036i \(-0.724691\pi\)
−0.648710 + 0.761036i \(0.724691\pi\)
\(828\) 0 0
\(829\) −19.3190 −0.670977 −0.335488 0.942044i \(-0.608901\pi\)
−0.335488 + 0.942044i \(0.608901\pi\)
\(830\) 0 0
\(831\) 37.0922 1.28671
\(832\) 0 0
\(833\) −42.5645 −1.47477
\(834\) 0 0
\(835\) −12.7877 −0.442537
\(836\) 0 0
\(837\) 5.64806 0.195226
\(838\) 0 0
\(839\) 6.35098 0.219260 0.109630 0.993972i \(-0.465033\pi\)
0.109630 + 0.993972i \(0.465033\pi\)
\(840\) 0 0
\(841\) 11.2646 0.388435
\(842\) 0 0
\(843\) −4.18527 −0.144148
\(844\) 0 0
\(845\) 4.85375 0.166974
\(846\) 0 0
\(847\) −84.8066 −2.91399
\(848\) 0 0
\(849\) −22.1247 −0.759318
\(850\) 0 0
\(851\) −59.8844 −2.05281
\(852\) 0 0
\(853\) 1.34733 0.0461317 0.0230658 0.999734i \(-0.492657\pi\)
0.0230658 + 0.999734i \(0.492657\pi\)
\(854\) 0 0
\(855\) 3.80410 0.130097
\(856\) 0 0
\(857\) −27.4626 −0.938103 −0.469051 0.883171i \(-0.655404\pi\)
−0.469051 + 0.883171i \(0.655404\pi\)
\(858\) 0 0
\(859\) 26.8907 0.917500 0.458750 0.888565i \(-0.348297\pi\)
0.458750 + 0.888565i \(0.348297\pi\)
\(860\) 0 0
\(861\) 56.8046 1.93590
\(862\) 0 0
\(863\) −7.71135 −0.262497 −0.131249 0.991349i \(-0.541899\pi\)
−0.131249 + 0.991349i \(0.541899\pi\)
\(864\) 0 0
\(865\) 7.10167 0.241464
\(866\) 0 0
\(867\) −14.3739 −0.488164
\(868\) 0 0
\(869\) 28.7664 0.975833
\(870\) 0 0
\(871\) −20.9825 −0.710964
\(872\) 0 0
\(873\) 7.22383 0.244489
\(874\) 0 0
\(875\) −3.90059 −0.131864
\(876\) 0 0
\(877\) 19.2307 0.649375 0.324687 0.945821i \(-0.394741\pi\)
0.324687 + 0.945821i \(0.394741\pi\)
\(878\) 0 0
\(879\) 26.9434 0.908780
\(880\) 0 0
\(881\) 40.5857 1.36737 0.683683 0.729779i \(-0.260377\pi\)
0.683683 + 0.729779i \(0.260377\pi\)
\(882\) 0 0
\(883\) −46.2849 −1.55761 −0.778805 0.627266i \(-0.784174\pi\)
−0.778805 + 0.627266i \(0.784174\pi\)
\(884\) 0 0
\(885\) 2.15253 0.0723566
\(886\) 0 0
\(887\) 23.7294 0.796754 0.398377 0.917222i \(-0.369574\pi\)
0.398377 + 0.917222i \(0.369574\pi\)
\(888\) 0 0
\(889\) −5.73052 −0.192195
\(890\) 0 0
\(891\) −32.2365 −1.07996
\(892\) 0 0
\(893\) 7.83808 0.262291
\(894\) 0 0
\(895\) −16.5390 −0.552839
\(896\) 0 0
\(897\) 34.5654 1.15410
\(898\) 0 0
\(899\) 6.34544 0.211632
\(900\) 0 0
\(901\) 22.4967 0.749474
\(902\) 0 0
\(903\) 16.2634 0.541211
\(904\) 0 0
\(905\) −1.83035 −0.0608427
\(906\) 0 0
\(907\) −31.2559 −1.03784 −0.518918 0.854824i \(-0.673665\pi\)
−0.518918 + 0.854824i \(0.673665\pi\)
\(908\) 0 0
\(909\) 6.31122 0.209330
\(910\) 0 0
\(911\) −14.6943 −0.486843 −0.243422 0.969921i \(-0.578270\pi\)
−0.243422 + 0.969921i \(0.578270\pi\)
\(912\) 0 0
\(913\) 83.0965 2.75009
\(914\) 0 0
\(915\) −13.3097 −0.440004
\(916\) 0 0
\(917\) −57.4803 −1.89817
\(918\) 0 0
\(919\) −35.8610 −1.18294 −0.591472 0.806326i \(-0.701453\pi\)
−0.591472 + 0.806326i \(0.701453\pi\)
\(920\) 0 0
\(921\) −5.12987 −0.169035
\(922\) 0 0
\(923\) 10.7570 0.354071
\(924\) 0 0
\(925\) 10.6841 0.351292
\(926\) 0 0
\(927\) −6.27577 −0.206123
\(928\) 0 0
\(929\) −0.627663 −0.0205930 −0.0102965 0.999947i \(-0.503278\pi\)
−0.0102965 + 0.999947i \(0.503278\pi\)
\(930\) 0 0
\(931\) −35.9239 −1.17736
\(932\) 0 0
\(933\) −35.4451 −1.16042
\(934\) 0 0
\(935\) −29.6492 −0.969633
\(936\) 0 0
\(937\) 3.67455 0.120042 0.0600211 0.998197i \(-0.480883\pi\)
0.0600211 + 0.998197i \(0.480883\pi\)
\(938\) 0 0
\(939\) 0.496448 0.0162010
\(940\) 0 0
\(941\) 34.1389 1.11290 0.556448 0.830883i \(-0.312164\pi\)
0.556448 + 0.830883i \(0.312164\pi\)
\(942\) 0 0
\(943\) −55.9273 −1.82124
\(944\) 0 0
\(945\) −22.0308 −0.716661
\(946\) 0 0
\(947\) −33.6169 −1.09240 −0.546201 0.837654i \(-0.683927\pi\)
−0.546201 + 0.837654i \(0.683927\pi\)
\(948\) 0 0
\(949\) 65.8543 2.13772
\(950\) 0 0
\(951\) −46.1324 −1.49595
\(952\) 0 0
\(953\) 9.45880 0.306401 0.153200 0.988195i \(-0.451042\pi\)
0.153200 + 0.988195i \(0.451042\pi\)
\(954\) 0 0
\(955\) −9.98279 −0.323035
\(956\) 0 0
\(957\) −52.9929 −1.71302
\(958\) 0 0
\(959\) 28.4347 0.918204
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) −10.7223 −0.345521
\(964\) 0 0
\(965\) −2.19882 −0.0707825
\(966\) 0 0
\(967\) −5.27032 −0.169482 −0.0847411 0.996403i \(-0.527006\pi\)
−0.0847411 + 0.996403i \(0.527006\pi\)
\(968\) 0 0
\(969\) −33.0720 −1.06243
\(970\) 0 0
\(971\) 1.41652 0.0454582 0.0227291 0.999742i \(-0.492764\pi\)
0.0227291 + 0.999742i \(0.492764\pi\)
\(972\) 0 0
\(973\) −53.3537 −1.71044
\(974\) 0 0
\(975\) −6.16691 −0.197499
\(976\) 0 0
\(977\) 39.2413 1.25544 0.627721 0.778439i \(-0.283988\pi\)
0.627721 + 0.778439i \(0.283988\pi\)
\(978\) 0 0
\(979\) 86.1893 2.75462
\(980\) 0 0
\(981\) 8.14769 0.260136
\(982\) 0 0
\(983\) −22.5884 −0.720457 −0.360228 0.932864i \(-0.617301\pi\)
−0.360228 + 0.932864i \(0.617301\pi\)
\(984\) 0 0
\(985\) 23.2365 0.740377
\(986\) 0 0
\(987\) −10.2034 −0.324779
\(988\) 0 0
\(989\) −16.0122 −0.509158
\(990\) 0 0
\(991\) 23.3804 0.742702 0.371351 0.928493i \(-0.378895\pi\)
0.371351 + 0.928493i \(0.378895\pi\)
\(992\) 0 0
\(993\) −9.74206 −0.309155
\(994\) 0 0
\(995\) 0.145087 0.00459958
\(996\) 0 0
\(997\) 50.1014 1.58673 0.793363 0.608749i \(-0.208328\pi\)
0.793363 + 0.608749i \(0.208328\pi\)
\(998\) 0 0
\(999\) 60.3447 1.90922
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1240.2.a.m.1.3 6
4.3 odd 2 2480.2.a.ba.1.4 6
5.4 even 2 6200.2.a.w.1.4 6
8.3 odd 2 9920.2.a.co.1.3 6
8.5 even 2 9920.2.a.cp.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1240.2.a.m.1.3 6 1.1 even 1 trivial
2480.2.a.ba.1.4 6 4.3 odd 2
6200.2.a.w.1.4 6 5.4 even 2
9920.2.a.co.1.3 6 8.3 odd 2
9920.2.a.cp.1.4 6 8.5 even 2