Properties

Label 6200.2.a.w.1.4
Level $6200$
Weight $2$
Character 6200.1
Self dual yes
Analytic conductor $49.507$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6200,2,Mod(1,6200)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6200.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6200, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6200 = 2^{3} \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6200.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,1,0,0,0,2,0,21,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.5072492532\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 19x^{4} + 15x^{3} + 98x^{2} - 44x - 108 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1240)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.45950\) of defining polynomial
Character \(\chi\) \(=\) 6200.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.45950 q^{3} +3.90059 q^{7} -0.869870 q^{9} +5.72206 q^{11} -4.22537 q^{13} +5.18156 q^{17} -4.37318 q^{19} +5.69290 q^{21} +5.60498 q^{23} -5.64806 q^{27} +6.34544 q^{29} +1.00000 q^{31} +8.35133 q^{33} -10.6841 q^{37} -6.16691 q^{39} +9.97815 q^{41} -2.85678 q^{43} +1.79231 q^{47} +8.21461 q^{49} +7.56247 q^{51} +4.34168 q^{53} -6.38264 q^{57} -1.47485 q^{59} +9.11935 q^{61} -3.39301 q^{63} +4.96583 q^{67} +8.18044 q^{69} +2.54582 q^{71} -15.5855 q^{73} +22.3194 q^{77} +5.02728 q^{79} -5.63372 q^{81} -14.5221 q^{83} +9.26115 q^{87} +15.0626 q^{89} -16.4814 q^{91} +1.45950 q^{93} +8.30449 q^{97} -4.97745 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{3} + 2 q^{7} + 21 q^{9} + 8 q^{11} - 4 q^{13} - 3 q^{17} - 5 q^{19} + 8 q^{21} + 12 q^{23} + 7 q^{27} - 4 q^{29} + 6 q^{31} - 14 q^{33} - 3 q^{37} + 10 q^{39} + 17 q^{41} + 17 q^{43} + 6 q^{47}+ \cdots - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.45950 0.842641 0.421320 0.906912i \(-0.361567\pi\)
0.421320 + 0.906912i \(0.361567\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 3.90059 1.47428 0.737142 0.675737i \(-0.236175\pi\)
0.737142 + 0.675737i \(0.236175\pi\)
\(8\) 0 0
\(9\) −0.869870 −0.289957
\(10\) 0 0
\(11\) 5.72206 1.72527 0.862633 0.505830i \(-0.168814\pi\)
0.862633 + 0.505830i \(0.168814\pi\)
\(12\) 0 0
\(13\) −4.22537 −1.17191 −0.585953 0.810345i \(-0.699280\pi\)
−0.585953 + 0.810345i \(0.699280\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.18156 1.25671 0.628356 0.777926i \(-0.283728\pi\)
0.628356 + 0.777926i \(0.283728\pi\)
\(18\) 0 0
\(19\) −4.37318 −1.00328 −0.501638 0.865078i \(-0.667269\pi\)
−0.501638 + 0.865078i \(0.667269\pi\)
\(20\) 0 0
\(21\) 5.69290 1.24229
\(22\) 0 0
\(23\) 5.60498 1.16872 0.584359 0.811495i \(-0.301346\pi\)
0.584359 + 0.811495i \(0.301346\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −5.64806 −1.08697
\(28\) 0 0
\(29\) 6.34544 1.17832 0.589159 0.808017i \(-0.299459\pi\)
0.589159 + 0.808017i \(0.299459\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605
\(32\) 0 0
\(33\) 8.35133 1.45378
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −10.6841 −1.75646 −0.878231 0.478237i \(-0.841276\pi\)
−0.878231 + 0.478237i \(0.841276\pi\)
\(38\) 0 0
\(39\) −6.16691 −0.987496
\(40\) 0 0
\(41\) 9.97815 1.55833 0.779163 0.626822i \(-0.215645\pi\)
0.779163 + 0.626822i \(0.215645\pi\)
\(42\) 0 0
\(43\) −2.85678 −0.435655 −0.217827 0.975987i \(-0.569897\pi\)
−0.217827 + 0.975987i \(0.569897\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.79231 0.261435 0.130717 0.991420i \(-0.458272\pi\)
0.130717 + 0.991420i \(0.458272\pi\)
\(48\) 0 0
\(49\) 8.21461 1.17352
\(50\) 0 0
\(51\) 7.56247 1.05896
\(52\) 0 0
\(53\) 4.34168 0.596376 0.298188 0.954507i \(-0.403618\pi\)
0.298188 + 0.954507i \(0.403618\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −6.38264 −0.845401
\(58\) 0 0
\(59\) −1.47485 −0.192009 −0.0960043 0.995381i \(-0.530606\pi\)
−0.0960043 + 0.995381i \(0.530606\pi\)
\(60\) 0 0
\(61\) 9.11935 1.16761 0.583806 0.811893i \(-0.301563\pi\)
0.583806 + 0.811893i \(0.301563\pi\)
\(62\) 0 0
\(63\) −3.39301 −0.427479
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 4.96583 0.606673 0.303337 0.952883i \(-0.401899\pi\)
0.303337 + 0.952883i \(0.401899\pi\)
\(68\) 0 0
\(69\) 8.18044 0.984810
\(70\) 0 0
\(71\) 2.54582 0.302133 0.151066 0.988524i \(-0.451729\pi\)
0.151066 + 0.988524i \(0.451729\pi\)
\(72\) 0 0
\(73\) −15.5855 −1.82414 −0.912070 0.410035i \(-0.865517\pi\)
−0.912070 + 0.410035i \(0.865517\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 22.3194 2.54353
\(78\) 0 0
\(79\) 5.02728 0.565613 0.282806 0.959177i \(-0.408735\pi\)
0.282806 + 0.959177i \(0.408735\pi\)
\(80\) 0 0
\(81\) −5.63372 −0.625968
\(82\) 0 0
\(83\) −14.5221 −1.59401 −0.797005 0.603972i \(-0.793584\pi\)
−0.797005 + 0.603972i \(0.793584\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 9.26115 0.992899
\(88\) 0 0
\(89\) 15.0626 1.59664 0.798318 0.602236i \(-0.205724\pi\)
0.798318 + 0.602236i \(0.205724\pi\)
\(90\) 0 0
\(91\) −16.4814 −1.72772
\(92\) 0 0
\(93\) 1.45950 0.151343
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 8.30449 0.843193 0.421597 0.906784i \(-0.361470\pi\)
0.421597 + 0.906784i \(0.361470\pi\)
\(98\) 0 0
\(99\) −4.97745 −0.500253
\(100\) 0 0
\(101\) −7.25537 −0.721936 −0.360968 0.932578i \(-0.617554\pi\)
−0.360968 + 0.932578i \(0.617554\pi\)
\(102\) 0 0
\(103\) −7.21461 −0.710876 −0.355438 0.934700i \(-0.615668\pi\)
−0.355438 + 0.934700i \(0.615668\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −12.3263 −1.19163 −0.595815 0.803122i \(-0.703171\pi\)
−0.595815 + 0.803122i \(0.703171\pi\)
\(108\) 0 0
\(109\) −9.36656 −0.897154 −0.448577 0.893744i \(-0.648069\pi\)
−0.448577 + 0.893744i \(0.648069\pi\)
\(110\) 0 0
\(111\) −15.5935 −1.48007
\(112\) 0 0
\(113\) 20.7144 1.94865 0.974326 0.225143i \(-0.0722850\pi\)
0.974326 + 0.225143i \(0.0722850\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 3.67552 0.339802
\(118\) 0 0
\(119\) 20.2111 1.85275
\(120\) 0 0
\(121\) 21.7420 1.97655
\(122\) 0 0
\(123\) 14.5631 1.31311
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −1.46914 −0.130365 −0.0651826 0.997873i \(-0.520763\pi\)
−0.0651826 + 0.997873i \(0.520763\pi\)
\(128\) 0 0
\(129\) −4.16946 −0.367101
\(130\) 0 0
\(131\) 14.7363 1.28752 0.643758 0.765229i \(-0.277374\pi\)
0.643758 + 0.765229i \(0.277374\pi\)
\(132\) 0 0
\(133\) −17.0580 −1.47911
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 7.28984 0.622813 0.311407 0.950277i \(-0.399200\pi\)
0.311407 + 0.950277i \(0.399200\pi\)
\(138\) 0 0
\(139\) 13.6784 1.16018 0.580092 0.814551i \(-0.303017\pi\)
0.580092 + 0.814551i \(0.303017\pi\)
\(140\) 0 0
\(141\) 2.61587 0.220296
\(142\) 0 0
\(143\) −24.1778 −2.02185
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 11.9892 0.988852
\(148\) 0 0
\(149\) −3.73511 −0.305992 −0.152996 0.988227i \(-0.548892\pi\)
−0.152996 + 0.988227i \(0.548892\pi\)
\(150\) 0 0
\(151\) −6.40390 −0.521142 −0.260571 0.965455i \(-0.583911\pi\)
−0.260571 + 0.965455i \(0.583911\pi\)
\(152\) 0 0
\(153\) −4.50728 −0.364392
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0.699513 0.0558272 0.0279136 0.999610i \(-0.491114\pi\)
0.0279136 + 0.999610i \(0.491114\pi\)
\(158\) 0 0
\(159\) 6.33667 0.502531
\(160\) 0 0
\(161\) 21.8627 1.72302
\(162\) 0 0
\(163\) −6.87530 −0.538515 −0.269257 0.963068i \(-0.586778\pi\)
−0.269257 + 0.963068i \(0.586778\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 12.7877 0.989542 0.494771 0.869023i \(-0.335252\pi\)
0.494771 + 0.869023i \(0.335252\pi\)
\(168\) 0 0
\(169\) 4.85375 0.373365
\(170\) 0 0
\(171\) 3.80410 0.290906
\(172\) 0 0
\(173\) −7.10167 −0.539930 −0.269965 0.962870i \(-0.587012\pi\)
−0.269965 + 0.962870i \(0.587012\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −2.15253 −0.161794
\(178\) 0 0
\(179\) −16.5390 −1.23619 −0.618093 0.786105i \(-0.712094\pi\)
−0.618093 + 0.786105i \(0.712094\pi\)
\(180\) 0 0
\(181\) −1.83035 −0.136049 −0.0680243 0.997684i \(-0.521670\pi\)
−0.0680243 + 0.997684i \(0.521670\pi\)
\(182\) 0 0
\(183\) 13.3097 0.983878
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 29.6492 2.16816
\(188\) 0 0
\(189\) −22.0308 −1.60250
\(190\) 0 0
\(191\) −9.98279 −0.722329 −0.361165 0.932502i \(-0.617621\pi\)
−0.361165 + 0.932502i \(0.617621\pi\)
\(192\) 0 0
\(193\) 2.19882 0.158274 0.0791372 0.996864i \(-0.474783\pi\)
0.0791372 + 0.996864i \(0.474783\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −23.2365 −1.65553 −0.827766 0.561073i \(-0.810389\pi\)
−0.827766 + 0.561073i \(0.810389\pi\)
\(198\) 0 0
\(199\) 0.145087 0.0102850 0.00514249 0.999987i \(-0.498363\pi\)
0.00514249 + 0.999987i \(0.498363\pi\)
\(200\) 0 0
\(201\) 7.24762 0.511208
\(202\) 0 0
\(203\) 24.7510 1.73718
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −4.87560 −0.338878
\(208\) 0 0
\(209\) −25.0236 −1.73092
\(210\) 0 0
\(211\) −2.40681 −0.165692 −0.0828459 0.996562i \(-0.526401\pi\)
−0.0828459 + 0.996562i \(0.526401\pi\)
\(212\) 0 0
\(213\) 3.71561 0.254589
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 3.90059 0.264789
\(218\) 0 0
\(219\) −22.7469 −1.53709
\(220\) 0 0
\(221\) −21.8940 −1.47275
\(222\) 0 0
\(223\) 7.25304 0.485699 0.242850 0.970064i \(-0.421918\pi\)
0.242850 + 0.970064i \(0.421918\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 8.77167 0.582196 0.291098 0.956693i \(-0.405979\pi\)
0.291098 + 0.956693i \(0.405979\pi\)
\(228\) 0 0
\(229\) −21.7896 −1.43990 −0.719948 0.694029i \(-0.755834\pi\)
−0.719948 + 0.694029i \(0.755834\pi\)
\(230\) 0 0
\(231\) 32.5751 2.14329
\(232\) 0 0
\(233\) 17.4062 1.14032 0.570158 0.821535i \(-0.306882\pi\)
0.570158 + 0.821535i \(0.306882\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 7.33729 0.476608
\(238\) 0 0
\(239\) 13.1971 0.853649 0.426825 0.904334i \(-0.359632\pi\)
0.426825 + 0.904334i \(0.359632\pi\)
\(240\) 0 0
\(241\) −18.9221 −1.21888 −0.609441 0.792831i \(-0.708606\pi\)
−0.609441 + 0.792831i \(0.708606\pi\)
\(242\) 0 0
\(243\) 8.72180 0.559503
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 18.4783 1.17575
\(248\) 0 0
\(249\) −21.1950 −1.34318
\(250\) 0 0
\(251\) 25.5439 1.61232 0.806159 0.591700i \(-0.201543\pi\)
0.806159 + 0.591700i \(0.201543\pi\)
\(252\) 0 0
\(253\) 32.0720 2.01635
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −10.6013 −0.661289 −0.330644 0.943755i \(-0.607266\pi\)
−0.330644 + 0.943755i \(0.607266\pi\)
\(258\) 0 0
\(259\) −41.6745 −2.58953
\(260\) 0 0
\(261\) −5.51971 −0.341661
\(262\) 0 0
\(263\) −17.5225 −1.08048 −0.540241 0.841510i \(-0.681667\pi\)
−0.540241 + 0.841510i \(0.681667\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 21.9839 1.34539
\(268\) 0 0
\(269\) 21.2207 1.29385 0.646926 0.762553i \(-0.276054\pi\)
0.646926 + 0.762553i \(0.276054\pi\)
\(270\) 0 0
\(271\) −31.4518 −1.91056 −0.955281 0.295698i \(-0.904448\pi\)
−0.955281 + 0.295698i \(0.904448\pi\)
\(272\) 0 0
\(273\) −24.0546 −1.45585
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 25.4144 1.52700 0.763500 0.645808i \(-0.223479\pi\)
0.763500 + 0.645808i \(0.223479\pi\)
\(278\) 0 0
\(279\) −0.869870 −0.0520778
\(280\) 0 0
\(281\) 2.86761 0.171067 0.0855337 0.996335i \(-0.472740\pi\)
0.0855337 + 0.996335i \(0.472740\pi\)
\(282\) 0 0
\(283\) −15.1591 −0.901117 −0.450559 0.892747i \(-0.648775\pi\)
−0.450559 + 0.892747i \(0.648775\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 38.9207 2.29742
\(288\) 0 0
\(289\) 9.84855 0.579327
\(290\) 0 0
\(291\) 12.1204 0.710509
\(292\) 0 0
\(293\) 18.4608 1.07849 0.539245 0.842149i \(-0.318710\pi\)
0.539245 + 0.842149i \(0.318710\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −32.3186 −1.87531
\(298\) 0 0
\(299\) −23.6831 −1.36963
\(300\) 0 0
\(301\) −11.1431 −0.642279
\(302\) 0 0
\(303\) −10.5892 −0.608333
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −3.51482 −0.200601 −0.100301 0.994957i \(-0.531980\pi\)
−0.100301 + 0.994957i \(0.531980\pi\)
\(308\) 0 0
\(309\) −10.5297 −0.599013
\(310\) 0 0
\(311\) 24.2858 1.37712 0.688562 0.725177i \(-0.258242\pi\)
0.688562 + 0.725177i \(0.258242\pi\)
\(312\) 0 0
\(313\) 0.340150 0.0192264 0.00961322 0.999954i \(-0.496940\pi\)
0.00961322 + 0.999954i \(0.496940\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −31.6084 −1.77531 −0.887653 0.460513i \(-0.847665\pi\)
−0.887653 + 0.460513i \(0.847665\pi\)
\(318\) 0 0
\(319\) 36.3090 2.03291
\(320\) 0 0
\(321\) −17.9902 −1.00412
\(322\) 0 0
\(323\) −22.6599 −1.26083
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −13.6705 −0.755978
\(328\) 0 0
\(329\) 6.99106 0.385430
\(330\) 0 0
\(331\) 6.67495 0.366888 0.183444 0.983030i \(-0.441275\pi\)
0.183444 + 0.983030i \(0.441275\pi\)
\(332\) 0 0
\(333\) 9.29381 0.509298
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 1.93160 0.105221 0.0526104 0.998615i \(-0.483246\pi\)
0.0526104 + 0.998615i \(0.483246\pi\)
\(338\) 0 0
\(339\) 30.2327 1.64201
\(340\) 0 0
\(341\) 5.72206 0.309867
\(342\) 0 0
\(343\) 4.73769 0.255811
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 23.2279 1.24694 0.623470 0.781847i \(-0.285722\pi\)
0.623470 + 0.781847i \(0.285722\pi\)
\(348\) 0 0
\(349\) −11.8449 −0.634040 −0.317020 0.948419i \(-0.602682\pi\)
−0.317020 + 0.948419i \(0.602682\pi\)
\(350\) 0 0
\(351\) 23.8651 1.27383
\(352\) 0 0
\(353\) −11.2350 −0.597977 −0.298989 0.954257i \(-0.596649\pi\)
−0.298989 + 0.954257i \(0.596649\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 29.4981 1.56120
\(358\) 0 0
\(359\) −16.1672 −0.853272 −0.426636 0.904423i \(-0.640302\pi\)
−0.426636 + 0.904423i \(0.640302\pi\)
\(360\) 0 0
\(361\) 0.124679 0.00656204
\(362\) 0 0
\(363\) 31.7324 1.66552
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 26.4315 1.37971 0.689857 0.723946i \(-0.257673\pi\)
0.689857 + 0.723946i \(0.257673\pi\)
\(368\) 0 0
\(369\) −8.67970 −0.451847
\(370\) 0 0
\(371\) 16.9351 0.879228
\(372\) 0 0
\(373\) 20.8629 1.08024 0.540121 0.841587i \(-0.318379\pi\)
0.540121 + 0.841587i \(0.318379\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −26.8118 −1.38088
\(378\) 0 0
\(379\) 29.0204 1.49068 0.745340 0.666685i \(-0.232287\pi\)
0.745340 + 0.666685i \(0.232287\pi\)
\(380\) 0 0
\(381\) −2.14421 −0.109851
\(382\) 0 0
\(383\) 13.0342 0.666018 0.333009 0.942924i \(-0.391936\pi\)
0.333009 + 0.942924i \(0.391936\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2.48503 0.126321
\(388\) 0 0
\(389\) 8.62491 0.437300 0.218650 0.975803i \(-0.429835\pi\)
0.218650 + 0.975803i \(0.429835\pi\)
\(390\) 0 0
\(391\) 29.0425 1.46874
\(392\) 0 0
\(393\) 21.5076 1.08491
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 10.0354 0.503660 0.251830 0.967771i \(-0.418968\pi\)
0.251830 + 0.967771i \(0.418968\pi\)
\(398\) 0 0
\(399\) −24.8961 −1.24636
\(400\) 0 0
\(401\) 13.3605 0.667190 0.333595 0.942716i \(-0.391738\pi\)
0.333595 + 0.942716i \(0.391738\pi\)
\(402\) 0 0
\(403\) −4.22537 −0.210481
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −61.1353 −3.03037
\(408\) 0 0
\(409\) −11.7984 −0.583391 −0.291696 0.956511i \(-0.594219\pi\)
−0.291696 + 0.956511i \(0.594219\pi\)
\(410\) 0 0
\(411\) 10.6395 0.524808
\(412\) 0 0
\(413\) −5.75277 −0.283075
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 19.9635 0.977618
\(418\) 0 0
\(419\) 15.8581 0.774718 0.387359 0.921929i \(-0.373387\pi\)
0.387359 + 0.921929i \(0.373387\pi\)
\(420\) 0 0
\(421\) 1.98848 0.0969124 0.0484562 0.998825i \(-0.484570\pi\)
0.0484562 + 0.998825i \(0.484570\pi\)
\(422\) 0 0
\(423\) −1.55907 −0.0758048
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 35.5708 1.72139
\(428\) 0 0
\(429\) −35.2875 −1.70369
\(430\) 0 0
\(431\) −9.97418 −0.480439 −0.240220 0.970719i \(-0.577219\pi\)
−0.240220 + 0.970719i \(0.577219\pi\)
\(432\) 0 0
\(433\) 0.0603717 0.00290128 0.00145064 0.999999i \(-0.499538\pi\)
0.00145064 + 0.999999i \(0.499538\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −24.5116 −1.17255
\(438\) 0 0
\(439\) 2.08184 0.0993608 0.0496804 0.998765i \(-0.484180\pi\)
0.0496804 + 0.998765i \(0.484180\pi\)
\(440\) 0 0
\(441\) −7.14564 −0.340269
\(442\) 0 0
\(443\) −35.2416 −1.67438 −0.837190 0.546912i \(-0.815803\pi\)
−0.837190 + 0.546912i \(0.815803\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −5.45137 −0.257841
\(448\) 0 0
\(449\) 2.35938 0.111346 0.0556731 0.998449i \(-0.482270\pi\)
0.0556731 + 0.998449i \(0.482270\pi\)
\(450\) 0 0
\(451\) 57.0956 2.68853
\(452\) 0 0
\(453\) −9.34647 −0.439135
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −34.3574 −1.60717 −0.803585 0.595189i \(-0.797077\pi\)
−0.803585 + 0.595189i \(0.797077\pi\)
\(458\) 0 0
\(459\) −29.2658 −1.36601
\(460\) 0 0
\(461\) −0.425939 −0.0198380 −0.00991898 0.999951i \(-0.503157\pi\)
−0.00991898 + 0.999951i \(0.503157\pi\)
\(462\) 0 0
\(463\) −16.0543 −0.746105 −0.373052 0.927810i \(-0.621689\pi\)
−0.373052 + 0.927810i \(0.621689\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −39.0818 −1.80849 −0.904246 0.427012i \(-0.859566\pi\)
−0.904246 + 0.427012i \(0.859566\pi\)
\(468\) 0 0
\(469\) 19.3697 0.894409
\(470\) 0 0
\(471\) 1.02094 0.0470423
\(472\) 0 0
\(473\) −16.3467 −0.751621
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −3.77670 −0.172923
\(478\) 0 0
\(479\) −5.83333 −0.266532 −0.133266 0.991080i \(-0.542546\pi\)
−0.133266 + 0.991080i \(0.542546\pi\)
\(480\) 0 0
\(481\) 45.1444 2.05841
\(482\) 0 0
\(483\) 31.9086 1.45189
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 25.8420 1.17101 0.585507 0.810667i \(-0.300895\pi\)
0.585507 + 0.810667i \(0.300895\pi\)
\(488\) 0 0
\(489\) −10.0345 −0.453775
\(490\) 0 0
\(491\) 6.03834 0.272506 0.136253 0.990674i \(-0.456494\pi\)
0.136253 + 0.990674i \(0.456494\pi\)
\(492\) 0 0
\(493\) 32.8793 1.48081
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 9.93019 0.445430
\(498\) 0 0
\(499\) −31.9441 −1.43002 −0.715008 0.699117i \(-0.753577\pi\)
−0.715008 + 0.699117i \(0.753577\pi\)
\(500\) 0 0
\(501\) 18.6636 0.833828
\(502\) 0 0
\(503\) 4.01232 0.178901 0.0894503 0.995991i \(-0.471489\pi\)
0.0894503 + 0.995991i \(0.471489\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 7.08403 0.314613
\(508\) 0 0
\(509\) 1.57091 0.0696295 0.0348148 0.999394i \(-0.488916\pi\)
0.0348148 + 0.999394i \(0.488916\pi\)
\(510\) 0 0
\(511\) −60.7925 −2.68930
\(512\) 0 0
\(513\) 24.7000 1.09053
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 10.2557 0.451045
\(518\) 0 0
\(519\) −10.3649 −0.454967
\(520\) 0 0
\(521\) −30.6664 −1.34352 −0.671760 0.740769i \(-0.734461\pi\)
−0.671760 + 0.740769i \(0.734461\pi\)
\(522\) 0 0
\(523\) −11.8373 −0.517609 −0.258805 0.965930i \(-0.583329\pi\)
−0.258805 + 0.965930i \(0.583329\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5.18156 0.225712
\(528\) 0 0
\(529\) 8.41575 0.365902
\(530\) 0 0
\(531\) 1.28292 0.0556742
\(532\) 0 0
\(533\) −42.1614 −1.82621
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −24.1387 −1.04166
\(538\) 0 0
\(539\) 47.0045 2.02463
\(540\) 0 0
\(541\) −5.22523 −0.224650 −0.112325 0.993672i \(-0.535830\pi\)
−0.112325 + 0.993672i \(0.535830\pi\)
\(542\) 0 0
\(543\) −2.67138 −0.114640
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 29.1387 1.24588 0.622941 0.782269i \(-0.285938\pi\)
0.622941 + 0.782269i \(0.285938\pi\)
\(548\) 0 0
\(549\) −7.93265 −0.338557
\(550\) 0 0
\(551\) −27.7497 −1.18218
\(552\) 0 0
\(553\) 19.6093 0.833874
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 28.1486 1.19269 0.596347 0.802726i \(-0.296618\pi\)
0.596347 + 0.802726i \(0.296618\pi\)
\(558\) 0 0
\(559\) 12.0710 0.510547
\(560\) 0 0
\(561\) 43.2729 1.82698
\(562\) 0 0
\(563\) 18.1614 0.765411 0.382706 0.923870i \(-0.374992\pi\)
0.382706 + 0.923870i \(0.374992\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −21.9748 −0.922856
\(568\) 0 0
\(569\) 16.7909 0.703910 0.351955 0.936017i \(-0.385517\pi\)
0.351955 + 0.936017i \(0.385517\pi\)
\(570\) 0 0
\(571\) 47.3293 1.98067 0.990335 0.138695i \(-0.0442909\pi\)
0.990335 + 0.138695i \(0.0442909\pi\)
\(572\) 0 0
\(573\) −14.5698 −0.608664
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −34.9426 −1.45468 −0.727339 0.686278i \(-0.759243\pi\)
−0.727339 + 0.686278i \(0.759243\pi\)
\(578\) 0 0
\(579\) 3.20917 0.133368
\(580\) 0 0
\(581\) −56.6449 −2.35003
\(582\) 0 0
\(583\) 24.8434 1.02891
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −32.2345 −1.33046 −0.665231 0.746638i \(-0.731667\pi\)
−0.665231 + 0.746638i \(0.731667\pi\)
\(588\) 0 0
\(589\) −4.37318 −0.180194
\(590\) 0 0
\(591\) −33.9136 −1.39502
\(592\) 0 0
\(593\) 14.2700 0.585997 0.292999 0.956113i \(-0.405347\pi\)
0.292999 + 0.956113i \(0.405347\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0.211755 0.00866654
\(598\) 0 0
\(599\) −0.142475 −0.00582136 −0.00291068 0.999996i \(-0.500926\pi\)
−0.00291068 + 0.999996i \(0.500926\pi\)
\(600\) 0 0
\(601\) 42.9575 1.75227 0.876136 0.482063i \(-0.160112\pi\)
0.876136 + 0.482063i \(0.160112\pi\)
\(602\) 0 0
\(603\) −4.31963 −0.175909
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −42.8115 −1.73767 −0.868834 0.495104i \(-0.835130\pi\)
−0.868834 + 0.495104i \(0.835130\pi\)
\(608\) 0 0
\(609\) 36.1239 1.46382
\(610\) 0 0
\(611\) −7.57316 −0.306377
\(612\) 0 0
\(613\) 5.70516 0.230429 0.115215 0.993341i \(-0.463244\pi\)
0.115215 + 0.993341i \(0.463244\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −33.0057 −1.32876 −0.664380 0.747395i \(-0.731304\pi\)
−0.664380 + 0.747395i \(0.731304\pi\)
\(618\) 0 0
\(619\) 42.7016 1.71632 0.858161 0.513381i \(-0.171607\pi\)
0.858161 + 0.513381i \(0.171607\pi\)
\(620\) 0 0
\(621\) −31.6572 −1.27036
\(622\) 0 0
\(623\) 58.7532 2.35390
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −36.5218 −1.45854
\(628\) 0 0
\(629\) −55.3605 −2.20737
\(630\) 0 0
\(631\) −47.9692 −1.90962 −0.954812 0.297210i \(-0.903944\pi\)
−0.954812 + 0.297210i \(0.903944\pi\)
\(632\) 0 0
\(633\) −3.51273 −0.139619
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −34.7098 −1.37525
\(638\) 0 0
\(639\) −2.21453 −0.0876054
\(640\) 0 0
\(641\) 43.1333 1.70366 0.851831 0.523817i \(-0.175492\pi\)
0.851831 + 0.523817i \(0.175492\pi\)
\(642\) 0 0
\(643\) −28.8306 −1.13697 −0.568483 0.822695i \(-0.692470\pi\)
−0.568483 + 0.822695i \(0.692470\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −9.42108 −0.370381 −0.185190 0.982703i \(-0.559290\pi\)
−0.185190 + 0.982703i \(0.559290\pi\)
\(648\) 0 0
\(649\) −8.43916 −0.331266
\(650\) 0 0
\(651\) 5.69290 0.223122
\(652\) 0 0
\(653\) 7.67141 0.300205 0.150103 0.988670i \(-0.452040\pi\)
0.150103 + 0.988670i \(0.452040\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 13.5573 0.528921
\(658\) 0 0
\(659\) 2.25020 0.0876554 0.0438277 0.999039i \(-0.486045\pi\)
0.0438277 + 0.999039i \(0.486045\pi\)
\(660\) 0 0
\(661\) −38.9574 −1.51527 −0.757633 0.652681i \(-0.773644\pi\)
−0.757633 + 0.652681i \(0.773644\pi\)
\(662\) 0 0
\(663\) −31.9542 −1.24100
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 35.5660 1.37712
\(668\) 0 0
\(669\) 10.5858 0.409270
\(670\) 0 0
\(671\) 52.1815 2.01444
\(672\) 0 0
\(673\) 29.7727 1.14765 0.573827 0.818976i \(-0.305458\pi\)
0.573827 + 0.818976i \(0.305458\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 29.5784 1.13679 0.568394 0.822756i \(-0.307565\pi\)
0.568394 + 0.822756i \(0.307565\pi\)
\(678\) 0 0
\(679\) 32.3924 1.24311
\(680\) 0 0
\(681\) 12.8022 0.490582
\(682\) 0 0
\(683\) −23.4165 −0.896007 −0.448003 0.894032i \(-0.647865\pi\)
−0.448003 + 0.894032i \(0.647865\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −31.8018 −1.21331
\(688\) 0 0
\(689\) −18.3452 −0.698897
\(690\) 0 0
\(691\) −5.07647 −0.193118 −0.0965589 0.995327i \(-0.530784\pi\)
−0.0965589 + 0.995327i \(0.530784\pi\)
\(692\) 0 0
\(693\) −19.4150 −0.737515
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 51.7024 1.95837
\(698\) 0 0
\(699\) 25.4042 0.960876
\(700\) 0 0
\(701\) −23.7506 −0.897048 −0.448524 0.893771i \(-0.648050\pi\)
−0.448524 + 0.893771i \(0.648050\pi\)
\(702\) 0 0
\(703\) 46.7236 1.76222
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −28.3002 −1.06434
\(708\) 0 0
\(709\) 9.37961 0.352258 0.176129 0.984367i \(-0.443642\pi\)
0.176129 + 0.984367i \(0.443642\pi\)
\(710\) 0 0
\(711\) −4.37308 −0.164003
\(712\) 0 0
\(713\) 5.60498 0.209908
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 19.2611 0.719319
\(718\) 0 0
\(719\) −11.9138 −0.444309 −0.222155 0.975011i \(-0.571309\pi\)
−0.222155 + 0.975011i \(0.571309\pi\)
\(720\) 0 0
\(721\) −28.1412 −1.04803
\(722\) 0 0
\(723\) −27.6168 −1.02708
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −24.3586 −0.903409 −0.451704 0.892168i \(-0.649184\pi\)
−0.451704 + 0.892168i \(0.649184\pi\)
\(728\) 0 0
\(729\) 29.6306 1.09743
\(730\) 0 0
\(731\) −14.8026 −0.547493
\(732\) 0 0
\(733\) −6.66097 −0.246028 −0.123014 0.992405i \(-0.539256\pi\)
−0.123014 + 0.992405i \(0.539256\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 28.4148 1.04667
\(738\) 0 0
\(739\) −12.0485 −0.443210 −0.221605 0.975137i \(-0.571129\pi\)
−0.221605 + 0.975137i \(0.571129\pi\)
\(740\) 0 0
\(741\) 26.9690 0.990731
\(742\) 0 0
\(743\) −27.5768 −1.01170 −0.505848 0.862623i \(-0.668820\pi\)
−0.505848 + 0.862623i \(0.668820\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 12.6324 0.462194
\(748\) 0 0
\(749\) −48.0799 −1.75680
\(750\) 0 0
\(751\) −22.2453 −0.811744 −0.405872 0.913930i \(-0.633032\pi\)
−0.405872 + 0.913930i \(0.633032\pi\)
\(752\) 0 0
\(753\) 37.2812 1.35860
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −8.51287 −0.309406 −0.154703 0.987961i \(-0.549442\pi\)
−0.154703 + 0.987961i \(0.549442\pi\)
\(758\) 0 0
\(759\) 46.8090 1.69906
\(760\) 0 0
\(761\) −24.5737 −0.890797 −0.445398 0.895333i \(-0.646938\pi\)
−0.445398 + 0.895333i \(0.646938\pi\)
\(762\) 0 0
\(763\) −36.5351 −1.32266
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 6.23177 0.225016
\(768\) 0 0
\(769\) 7.88670 0.284402 0.142201 0.989838i \(-0.454582\pi\)
0.142201 + 0.989838i \(0.454582\pi\)
\(770\) 0 0
\(771\) −15.4725 −0.557229
\(772\) 0 0
\(773\) −51.1007 −1.83796 −0.918982 0.394300i \(-0.870987\pi\)
−0.918982 + 0.394300i \(0.870987\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −60.8237 −2.18204
\(778\) 0 0
\(779\) −43.6362 −1.56343
\(780\) 0 0
\(781\) 14.5673 0.521260
\(782\) 0 0
\(783\) −35.8394 −1.28080
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −4.28458 −0.152729 −0.0763644 0.997080i \(-0.524331\pi\)
−0.0763644 + 0.997080i \(0.524331\pi\)
\(788\) 0 0
\(789\) −25.5740 −0.910458
\(790\) 0 0
\(791\) 80.7986 2.87287
\(792\) 0 0
\(793\) −38.5326 −1.36833
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −13.4291 −0.475682 −0.237841 0.971304i \(-0.576440\pi\)
−0.237841 + 0.971304i \(0.576440\pi\)
\(798\) 0 0
\(799\) 9.28695 0.328549
\(800\) 0 0
\(801\) −13.1025 −0.462955
\(802\) 0 0
\(803\) −89.1810 −3.14713
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 30.9716 1.09025
\(808\) 0 0
\(809\) −41.4364 −1.45683 −0.728413 0.685139i \(-0.759742\pi\)
−0.728413 + 0.685139i \(0.759742\pi\)
\(810\) 0 0
\(811\) 4.71186 0.165456 0.0827278 0.996572i \(-0.473637\pi\)
0.0827278 + 0.996572i \(0.473637\pi\)
\(812\) 0 0
\(813\) −45.9038 −1.60992
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 12.4932 0.437082
\(818\) 0 0
\(819\) 14.3367 0.500965
\(820\) 0 0
\(821\) −48.3963 −1.68904 −0.844521 0.535522i \(-0.820115\pi\)
−0.844521 + 0.535522i \(0.820115\pi\)
\(822\) 0 0
\(823\) −0.436669 −0.0152213 −0.00761066 0.999971i \(-0.502423\pi\)
−0.00761066 + 0.999971i \(0.502423\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 37.3107 1.29742 0.648710 0.761036i \(-0.275309\pi\)
0.648710 + 0.761036i \(0.275309\pi\)
\(828\) 0 0
\(829\) −19.3190 −0.670977 −0.335488 0.942044i \(-0.608901\pi\)
−0.335488 + 0.942044i \(0.608901\pi\)
\(830\) 0 0
\(831\) 37.0922 1.28671
\(832\) 0 0
\(833\) 42.5645 1.47477
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −5.64806 −0.195226
\(838\) 0 0
\(839\) 6.35098 0.219260 0.109630 0.993972i \(-0.465033\pi\)
0.109630 + 0.993972i \(0.465033\pi\)
\(840\) 0 0
\(841\) 11.2646 0.388435
\(842\) 0 0
\(843\) 4.18527 0.144148
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 84.8066 2.91399
\(848\) 0 0
\(849\) −22.1247 −0.759318
\(850\) 0 0
\(851\) −59.8844 −2.05281
\(852\) 0 0
\(853\) −1.34733 −0.0461317 −0.0230658 0.999734i \(-0.507343\pi\)
−0.0230658 + 0.999734i \(0.507343\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 27.4626 0.938103 0.469051 0.883171i \(-0.344596\pi\)
0.469051 + 0.883171i \(0.344596\pi\)
\(858\) 0 0
\(859\) 26.8907 0.917500 0.458750 0.888565i \(-0.348297\pi\)
0.458750 + 0.888565i \(0.348297\pi\)
\(860\) 0 0
\(861\) 56.8046 1.93590
\(862\) 0 0
\(863\) 7.71135 0.262497 0.131249 0.991349i \(-0.458101\pi\)
0.131249 + 0.991349i \(0.458101\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 14.3739 0.488164
\(868\) 0 0
\(869\) 28.7664 0.975833
\(870\) 0 0
\(871\) −20.9825 −0.710964
\(872\) 0 0
\(873\) −7.22383 −0.244489
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −19.2307 −0.649375 −0.324687 0.945821i \(-0.605259\pi\)
−0.324687 + 0.945821i \(0.605259\pi\)
\(878\) 0 0
\(879\) 26.9434 0.908780
\(880\) 0 0
\(881\) 40.5857 1.36737 0.683683 0.729779i \(-0.260377\pi\)
0.683683 + 0.729779i \(0.260377\pi\)
\(882\) 0 0
\(883\) 46.2849 1.55761 0.778805 0.627266i \(-0.215826\pi\)
0.778805 + 0.627266i \(0.215826\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −23.7294 −0.796754 −0.398377 0.917222i \(-0.630426\pi\)
−0.398377 + 0.917222i \(0.630426\pi\)
\(888\) 0 0
\(889\) −5.73052 −0.192195
\(890\) 0 0
\(891\) −32.2365 −1.07996
\(892\) 0 0
\(893\) −7.83808 −0.262291
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −34.5654 −1.15410
\(898\) 0 0
\(899\) 6.34544 0.211632
\(900\) 0 0
\(901\) 22.4967 0.749474
\(902\) 0 0
\(903\) −16.2634 −0.541211
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 31.2559 1.03784 0.518918 0.854824i \(-0.326335\pi\)
0.518918 + 0.854824i \(0.326335\pi\)
\(908\) 0 0
\(909\) 6.31122 0.209330
\(910\) 0 0
\(911\) −14.6943 −0.486843 −0.243422 0.969921i \(-0.578270\pi\)
−0.243422 + 0.969921i \(0.578270\pi\)
\(912\) 0 0
\(913\) −83.0965 −2.75009
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 57.4803 1.89817
\(918\) 0 0
\(919\) −35.8610 −1.18294 −0.591472 0.806326i \(-0.701453\pi\)
−0.591472 + 0.806326i \(0.701453\pi\)
\(920\) 0 0
\(921\) −5.12987 −0.169035
\(922\) 0 0
\(923\) −10.7570 −0.354071
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 6.27577 0.206123
\(928\) 0 0
\(929\) −0.627663 −0.0205930 −0.0102965 0.999947i \(-0.503278\pi\)
−0.0102965 + 0.999947i \(0.503278\pi\)
\(930\) 0 0
\(931\) −35.9239 −1.17736
\(932\) 0 0
\(933\) 35.4451 1.16042
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −3.67455 −0.120042 −0.0600211 0.998197i \(-0.519117\pi\)
−0.0600211 + 0.998197i \(0.519117\pi\)
\(938\) 0 0
\(939\) 0.496448 0.0162010
\(940\) 0 0
\(941\) 34.1389 1.11290 0.556448 0.830883i \(-0.312164\pi\)
0.556448 + 0.830883i \(0.312164\pi\)
\(942\) 0 0
\(943\) 55.9273 1.82124
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 33.6169 1.09240 0.546201 0.837654i \(-0.316073\pi\)
0.546201 + 0.837654i \(0.316073\pi\)
\(948\) 0 0
\(949\) 65.8543 2.13772
\(950\) 0 0
\(951\) −46.1324 −1.49595
\(952\) 0 0
\(953\) −9.45880 −0.306401 −0.153200 0.988195i \(-0.548958\pi\)
−0.153200 + 0.988195i \(0.548958\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 52.9929 1.71302
\(958\) 0 0
\(959\) 28.4347 0.918204
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) 10.7223 0.345521
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 5.27032 0.169482 0.0847411 0.996403i \(-0.472994\pi\)
0.0847411 + 0.996403i \(0.472994\pi\)
\(968\) 0 0
\(969\) −33.0720 −1.06243
\(970\) 0 0
\(971\) 1.41652 0.0454582 0.0227291 0.999742i \(-0.492764\pi\)
0.0227291 + 0.999742i \(0.492764\pi\)
\(972\) 0 0
\(973\) 53.3537 1.71044
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −39.2413 −1.25544 −0.627721 0.778439i \(-0.716012\pi\)
−0.627721 + 0.778439i \(0.716012\pi\)
\(978\) 0 0
\(979\) 86.1893 2.75462
\(980\) 0 0
\(981\) 8.14769 0.260136
\(982\) 0 0
\(983\) 22.5884 0.720457 0.360228 0.932864i \(-0.382699\pi\)
0.360228 + 0.932864i \(0.382699\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 10.2034 0.324779
\(988\) 0 0
\(989\) −16.0122 −0.509158
\(990\) 0 0
\(991\) 23.3804 0.742702 0.371351 0.928493i \(-0.378895\pi\)
0.371351 + 0.928493i \(0.378895\pi\)
\(992\) 0 0
\(993\) 9.74206 0.309155
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −50.1014 −1.58673 −0.793363 0.608749i \(-0.791672\pi\)
−0.793363 + 0.608749i \(0.791672\pi\)
\(998\) 0 0
\(999\) 60.3447 1.90922
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6200.2.a.w.1.4 6
5.4 even 2 1240.2.a.m.1.3 6
20.19 odd 2 2480.2.a.ba.1.4 6
40.19 odd 2 9920.2.a.co.1.3 6
40.29 even 2 9920.2.a.cp.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1240.2.a.m.1.3 6 5.4 even 2
2480.2.a.ba.1.4 6 20.19 odd 2
6200.2.a.w.1.4 6 1.1 even 1 trivial
9920.2.a.co.1.3 6 40.19 odd 2
9920.2.a.cp.1.4 6 40.29 even 2