Newspace parameters
Level: | \( N \) | \(=\) | \( 1218 = 2 \cdot 3 \cdot 7 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1218.m (of order \(4\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(9.72577896619\) |
Analytic rank: | \(0\) |
Dimension: | \(40\) |
Relative dimension: | \(20\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
307.1 | −0.707107 | + | 0.707107i | −0.707107 | − | 0.707107i | − | 1.00000i | 3.66176 | 1.00000 | −1.87946 | + | 1.86216i | 0.707107 | + | 0.707107i | 1.00000i | −2.58925 | + | 2.58925i | |||||||
307.2 | −0.707107 | + | 0.707107i | −0.707107 | − | 0.707107i | − | 1.00000i | 2.31151 | 1.00000 | 2.48366 | + | 0.911828i | 0.707107 | + | 0.707107i | 1.00000i | −1.63448 | + | 1.63448i | |||||||
307.3 | −0.707107 | + | 0.707107i | −0.707107 | − | 0.707107i | − | 1.00000i | 0.964064 | 1.00000 | −1.12003 | − | 2.39698i | 0.707107 | + | 0.707107i | 1.00000i | −0.681696 | + | 0.681696i | |||||||
307.4 | −0.707107 | + | 0.707107i | −0.707107 | − | 0.707107i | − | 1.00000i | −0.447637 | 1.00000 | 2.17349 | − | 1.50862i | 0.707107 | + | 0.707107i | 1.00000i | 0.316527 | − | 0.316527i | |||||||
307.5 | −0.707107 | + | 0.707107i | −0.707107 | − | 0.707107i | − | 1.00000i | 1.12959 | 1.00000 | −2.63276 | − | 0.261871i | 0.707107 | + | 0.707107i | 1.00000i | −0.798741 | + | 0.798741i | |||||||
307.6 | −0.707107 | + | 0.707107i | −0.707107 | − | 0.707107i | − | 1.00000i | −1.44011 | 1.00000 | 2.28150 | − | 1.33969i | 0.707107 | + | 0.707107i | 1.00000i | 1.01831 | − | 1.01831i | |||||||
307.7 | −0.707107 | + | 0.707107i | −0.707107 | − | 0.707107i | − | 1.00000i | 2.17708 | 1.00000 | −0.0332084 | + | 2.64554i | 0.707107 | + | 0.707107i | 1.00000i | −1.53943 | + | 1.53943i | |||||||
307.8 | −0.707107 | + | 0.707107i | −0.707107 | − | 0.707107i | − | 1.00000i | −2.29304 | 1.00000 | −2.56094 | − | 0.664510i | 0.707107 | + | 0.707107i | 1.00000i | 1.62142 | − | 1.62142i | |||||||
307.9 | −0.707107 | + | 0.707107i | −0.707107 | − | 0.707107i | − | 1.00000i | −1.75408 | 1.00000 | −1.92667 | + | 1.81327i | 0.707107 | + | 0.707107i | 1.00000i | 1.24032 | − | 1.24032i | |||||||
307.10 | −0.707107 | + | 0.707107i | −0.707107 | − | 0.707107i | − | 1.00000i | −2.89493 | 1.00000 | 1.80021 | + | 1.93888i | 0.707107 | + | 0.707107i | 1.00000i | 2.04702 | − | 2.04702i | |||||||
307.11 | 0.707107 | − | 0.707107i | 0.707107 | + | 0.707107i | − | 1.00000i | 3.88041 | 1.00000 | −0.687128 | + | 2.55497i | −0.707107 | − | 0.707107i | 1.00000i | 2.74387 | − | 2.74387i | |||||||
307.12 | 0.707107 | − | 0.707107i | 0.707107 | + | 0.707107i | − | 1.00000i | 3.35007 | 1.00000 | 2.47992 | + | 0.921964i | −0.707107 | − | 0.707107i | 1.00000i | 2.36886 | − | 2.36886i | |||||||
307.13 | 0.707107 | − | 0.707107i | 0.707107 | + | 0.707107i | − | 1.00000i | −1.77140 | 1.00000 | −1.44420 | + | 2.21682i | −0.707107 | − | 0.707107i | 1.00000i | −1.25257 | + | 1.25257i | |||||||
307.14 | 0.707107 | − | 0.707107i | 0.707107 | + | 0.707107i | − | 1.00000i | 1.19809 | 1.00000 | 2.55829 | − | 0.674664i | −0.707107 | − | 0.707107i | 1.00000i | 0.847181 | − | 0.847181i | |||||||
307.15 | 0.707107 | − | 0.707107i | 0.707107 | + | 0.707107i | − | 1.00000i | −0.948587 | 1.00000 | −2.30612 | − | 1.29684i | −0.707107 | − | 0.707107i | 1.00000i | −0.670752 | + | 0.670752i | |||||||
307.16 | 0.707107 | − | 0.707107i | 0.707107 | + | 0.707107i | − | 1.00000i | 0.0557326 | 1.00000 | −0.842198 | + | 2.50813i | −0.707107 | − | 0.707107i | 1.00000i | 0.0394089 | − | 0.0394089i | |||||||
307.17 | 0.707107 | − | 0.707107i | 0.707107 | + | 0.707107i | − | 1.00000i | −2.82382 | 1.00000 | 1.44991 | − | 2.21309i | −0.707107 | − | 0.707107i | 1.00000i | −1.99674 | + | 1.99674i | |||||||
307.18 | 0.707107 | − | 0.707107i | 0.707107 | + | 0.707107i | − | 1.00000i | 2.30923 | 1.00000 | 0.637885 | − | 2.56770i | −0.707107 | − | 0.707107i | 1.00000i | 1.63287 | − | 1.63287i | |||||||
307.19 | 0.707107 | − | 0.707107i | 0.707107 | + | 0.707107i | − | 1.00000i | −3.17981 | 1.00000 | −2.64392 | + | 0.0985113i | −0.707107 | − | 0.707107i | 1.00000i | −2.24847 | + | 2.24847i | |||||||
307.20 | 0.707107 | − | 0.707107i | 0.707107 | + | 0.707107i | − | 1.00000i | −3.48413 | 1.00000 | 2.21178 | + | 1.45191i | −0.707107 | − | 0.707107i | 1.00000i | −2.46365 | + | 2.46365i | |||||||
See all 40 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
203.g | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1218.2.m.b | yes | 40 |
7.b | odd | 2 | 1 | 1218.2.m.a | ✓ | 40 | |
29.c | odd | 4 | 1 | 1218.2.m.a | ✓ | 40 | |
203.g | even | 4 | 1 | inner | 1218.2.m.b | yes | 40 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1218.2.m.a | ✓ | 40 | 7.b | odd | 2 | 1 | |
1218.2.m.a | ✓ | 40 | 29.c | odd | 4 | 1 | |
1218.2.m.b | yes | 40 | 1.a | even | 1 | 1 | trivial |
1218.2.m.b | yes | 40 | 203.g | even | 4 | 1 | inner |