L(s) = 1 | + (−0.707 + 0.707i)2-s + (−0.707 − 0.707i)3-s − 1.00i·4-s − 1.75·5-s + 1.00·6-s + (−1.92 + 1.81i)7-s + (0.707 + 0.707i)8-s + 1.00i·9-s + (1.24 − 1.24i)10-s + (−0.974 + 0.974i)11-s + (−0.707 + 0.707i)12-s − 2.81·13-s + (0.0801 − 2.64i)14-s + (1.24 + 1.24i)15-s − 1.00·16-s + (−0.797 − 0.797i)17-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.499i)2-s + (−0.408 − 0.408i)3-s − 0.500i·4-s − 0.784·5-s + 0.408·6-s + (−0.728 + 0.685i)7-s + (0.250 + 0.250i)8-s + 0.333i·9-s + (0.392 − 0.392i)10-s + (−0.293 + 0.293i)11-s + (−0.204 + 0.204i)12-s − 0.779·13-s + (0.0214 − 0.706i)14-s + (0.320 + 0.320i)15-s − 0.250·16-s + (−0.193 − 0.193i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1218 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.764 + 0.644i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1218 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.764 + 0.644i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.4978850398\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4978850398\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 - 0.707i)T \) |
| 3 | \( 1 + (0.707 + 0.707i)T \) |
| 7 | \( 1 + (1.92 - 1.81i)T \) |
| 29 | \( 1 + (-1.61 - 5.13i)T \) |
good | 5 | \( 1 + 1.75T + 5T^{2} \) |
| 11 | \( 1 + (0.974 - 0.974i)T - 11iT^{2} \) |
| 13 | \( 1 + 2.81T + 13T^{2} \) |
| 17 | \( 1 + (0.797 + 0.797i)T + 17iT^{2} \) |
| 19 | \( 1 + (-1.41 - 1.41i)T + 19iT^{2} \) |
| 23 | \( 1 - 8.03T + 23T^{2} \) |
| 31 | \( 1 + (7.15 + 7.15i)T + 31iT^{2} \) |
| 37 | \( 1 + (0.0852 + 0.0852i)T + 37iT^{2} \) |
| 41 | \( 1 + (-2.43 + 2.43i)T - 41iT^{2} \) |
| 43 | \( 1 + (-6.66 + 6.66i)T - 43iT^{2} \) |
| 47 | \( 1 + (7.23 - 7.23i)T - 47iT^{2} \) |
| 53 | \( 1 - 11.0T + 53T^{2} \) |
| 59 | \( 1 - 2.61iT - 59T^{2} \) |
| 61 | \( 1 + (5.33 + 5.33i)T + 61iT^{2} \) |
| 67 | \( 1 + 6.79iT - 67T^{2} \) |
| 71 | \( 1 + 14.6iT - 71T^{2} \) |
| 73 | \( 1 + (-8.50 + 8.50i)T - 73iT^{2} \) |
| 79 | \( 1 + (0.362 - 0.362i)T - 79iT^{2} \) |
| 83 | \( 1 + 14.4iT - 83T^{2} \) |
| 89 | \( 1 + (-6.61 - 6.61i)T + 89iT^{2} \) |
| 97 | \( 1 + (-6.73 + 6.73i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.369107016458713936485645374375, −8.942053469815871476534725249769, −7.67017804453779359764148149133, −7.38288611720971891992589550146, −6.44756743734360923440804219543, −5.54115959685633108852183930512, −4.76315973935888549972427450169, −3.37109689875114378224550814428, −2.15026157642791126616554454636, −0.38081180538769276559729558145,
0.826694590610477950223034525684, 2.73637462398184920137093751910, 3.62115601306951769311967394636, 4.46020271846883352385927357181, 5.48109330041608880857334841403, 6.82224265225808192211864503335, 7.31317430283267885923406299028, 8.283642213665629853504032483222, 9.216923983924384563316682052749, 9.867736472643845642391703697232