L(s) = 1 | + (0.707 + 0.707i)2-s + (0.707 − 0.707i)3-s + 1.00i·4-s + 3.88·5-s + 1.00·6-s + (−0.687 − 2.55i)7-s + (−0.707 + 0.707i)8-s − 1.00i·9-s + (2.74 + 2.74i)10-s + (−2.40 − 2.40i)11-s + (0.707 + 0.707i)12-s + 1.76·13-s + (1.32 − 2.29i)14-s + (2.74 − 2.74i)15-s − 1.00·16-s + (−2.16 + 2.16i)17-s + ⋯ |
L(s) = 1 | + (0.499 + 0.499i)2-s + (0.408 − 0.408i)3-s + 0.500i·4-s + 1.73·5-s + 0.408·6-s + (−0.259 − 0.965i)7-s + (−0.250 + 0.250i)8-s − 0.333i·9-s + (0.867 + 0.867i)10-s + (−0.724 − 0.724i)11-s + (0.204 + 0.204i)12-s + 0.490·13-s + (0.352 − 0.612i)14-s + (0.708 − 0.708i)15-s − 0.250·16-s + (−0.525 + 0.525i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1218 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.987 + 0.159i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1218 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.987 + 0.159i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.169054931\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.169054931\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 - 0.707i)T \) |
| 3 | \( 1 + (-0.707 + 0.707i)T \) |
| 7 | \( 1 + (0.687 + 2.55i)T \) |
| 29 | \( 1 + (-3.09 + 4.40i)T \) |
good | 5 | \( 1 - 3.88T + 5T^{2} \) |
| 11 | \( 1 + (2.40 + 2.40i)T + 11iT^{2} \) |
| 13 | \( 1 - 1.76T + 13T^{2} \) |
| 17 | \( 1 + (2.16 - 2.16i)T - 17iT^{2} \) |
| 19 | \( 1 + (-1.23 + 1.23i)T - 19iT^{2} \) |
| 23 | \( 1 - 7.16T + 23T^{2} \) |
| 31 | \( 1 + (0.785 - 0.785i)T - 31iT^{2} \) |
| 37 | \( 1 + (6.21 - 6.21i)T - 37iT^{2} \) |
| 41 | \( 1 + (-0.510 - 0.510i)T + 41iT^{2} \) |
| 43 | \( 1 + (1.06 + 1.06i)T + 43iT^{2} \) |
| 47 | \( 1 + (1.53 + 1.53i)T + 47iT^{2} \) |
| 53 | \( 1 + 4.74T + 53T^{2} \) |
| 59 | \( 1 - 9.85iT - 59T^{2} \) |
| 61 | \( 1 + (3.88 - 3.88i)T - 61iT^{2} \) |
| 67 | \( 1 + 1.35iT - 67T^{2} \) |
| 71 | \( 1 + 11.6iT - 71T^{2} \) |
| 73 | \( 1 + (-11.0 - 11.0i)T + 73iT^{2} \) |
| 79 | \( 1 + (-7.92 - 7.92i)T + 79iT^{2} \) |
| 83 | \( 1 + 4.45iT - 83T^{2} \) |
| 89 | \( 1 + (5.59 - 5.59i)T - 89iT^{2} \) |
| 97 | \( 1 + (-5.97 - 5.97i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.615740195103437770589820324740, −8.819732805387612379047030885829, −8.056262654099276168709302548267, −6.91949084590405286612235522571, −6.46446144747258869770485817451, −5.61795915195899621376712643860, −4.76003820311433980545708766939, −3.40620690409702887707785395648, −2.55700426495737915370894585624, −1.21990892834582853214620902110,
1.71078774601272322471732116611, 2.50483941172384654037353982757, 3.26367330725880274822280399209, 4.92472799414965446688471067591, 5.24244367180493637119858471264, 6.18900944972431864130894393246, 7.03197620993233271210897295998, 8.502736218066583233348046998544, 9.318164601274111715207290674610, 9.593094129957920267969818605654