Properties

Label 1210.4.a.ba
Level $1210$
Weight $4$
Character orbit 1210.a
Self dual yes
Analytic conductor $71.392$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1210,4,Mod(1,1210)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1210, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1210.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1210 = 2 \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1210.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,8,-6,16,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.3923111069\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.52525.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 24x^{2} + 25x + 125 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 110)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{2} + ( - 2 \beta_{2} - \beta_1 - 2) q^{3} + 4 q^{4} + 5 q^{5} + ( - 4 \beta_{2} - 2 \beta_1 - 4) q^{6} + ( - \beta_{3} + \beta_{2} + 2 \beta_1 - 7) q^{7} + 8 q^{8} + (4 \beta_{3} + 9 \beta_{2} + 5 \beta_1 - 4) q^{9}+ \cdots + (30 \beta_{3} - 80 \beta_{2} + \cdots - 486) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{2} - 6 q^{3} + 16 q^{4} + 20 q^{5} - 12 q^{6} - 25 q^{7} + 32 q^{8} - 28 q^{9} + 40 q^{10} - 24 q^{12} - 59 q^{13} - 50 q^{14} - 30 q^{15} + 64 q^{16} - 23 q^{17} - 56 q^{18} + 134 q^{19} + 80 q^{20}+ \cdots - 1914 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 24x^{2} + 25x + 125 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} - \nu - 15 ) / 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} - \nu^{2} - 15\nu ) / 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 5\beta_{2} + \beta _1 + 15 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 5\beta_{3} + 5\beta_{2} + 16\beta _1 + 15 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
4.78254
3.17579
−3.78254
−2.17579
2.00000 −8.01861 4.00000 5.00000 −16.0372 0.227345 8.00000 37.2981 10.0000
1.2 2.00000 −1.93972 4.00000 5.00000 −3.87944 2.87207 8.00000 −23.2375 10.0000
1.3 2.00000 0.546474 4.00000 5.00000 1.09295 −11.6093 8.00000 −26.7014 10.0000
1.4 2.00000 3.41185 4.00000 5.00000 6.82371 −16.4901 8.00000 −15.3593 10.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1210.4.a.ba 4
11.b odd 2 1 1210.4.a.y 4
11.d odd 10 2 110.4.g.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
110.4.g.a 8 11.d odd 10 2
1210.4.a.y 4 11.b odd 2 1
1210.4.a.ba 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1210))\):

\( T_{3}^{4} + 6T_{3}^{3} - 22T_{3}^{2} - 43T_{3} + 29 \) Copy content Toggle raw display
\( T_{7}^{4} + 25T_{7}^{3} + 105T_{7}^{2} - 575T_{7} + 125 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 2)^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 6 T^{3} + \cdots + 29 \) Copy content Toggle raw display
$5$ \( (T - 5)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 25 T^{3} + \cdots + 125 \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} + 59 T^{3} + \cdots + 4543781 \) Copy content Toggle raw display
$17$ \( T^{4} + 23 T^{3} + \cdots + 2770889 \) Copy content Toggle raw display
$19$ \( T^{4} - 134 T^{3} + \cdots + 23589989 \) Copy content Toggle raw display
$23$ \( T^{4} + 259 T^{3} + \cdots - 3351821 \) Copy content Toggle raw display
$29$ \( T^{4} + 236 T^{3} + \cdots + 77783945 \) Copy content Toggle raw display
$31$ \( T^{4} + 405 T^{3} + \cdots + 3900181 \) Copy content Toggle raw display
$37$ \( T^{4} + 55 T^{3} + \cdots + 561149611 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 7390534509 \) Copy content Toggle raw display
$43$ \( T^{4} - 147 T^{3} + \cdots + 959787745 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 5588412559 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 7826405995 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots - 4300744001 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 39139679205 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots - 58505616781 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 101540482255 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 47681297019 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots - 54476878595 \) Copy content Toggle raw display
$83$ \( T^{4} + 1373 T^{3} + \cdots + 209588391 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 24048117271 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 1324233523521 \) Copy content Toggle raw display
show more
show less