Properties

Label 2-1210-1.1-c3-0-92
Degree $2$
Conductor $1210$
Sign $-1$
Analytic cond. $71.3923$
Root an. cond. $8.44939$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 1.93·3-s + 4·4-s + 5·5-s − 3.87·6-s + 2.87·7-s + 8·8-s − 23.2·9-s + 10·10-s − 7.75·12-s + 31.3·13-s + 5.74·14-s − 9.69·15-s + 16·16-s − 80.0·17-s − 46.4·18-s − 28.2·19-s + 20·20-s − 5.57·21-s − 11.0·23-s − 15.5·24-s + 25·25-s + 62.7·26-s + 97.4·27-s + 11.4·28-s − 149.·29-s − 19.3·30-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.373·3-s + 0.5·4-s + 0.447·5-s − 0.263·6-s + 0.155·7-s + 0.353·8-s − 0.860·9-s + 0.316·10-s − 0.186·12-s + 0.669·13-s + 0.109·14-s − 0.166·15-s + 0.250·16-s − 1.14·17-s − 0.608·18-s − 0.341·19-s + 0.223·20-s − 0.0578·21-s − 0.100·23-s − 0.131·24-s + 0.200·25-s + 0.473·26-s + 0.694·27-s + 0.0775·28-s − 0.955·29-s − 0.118·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1210 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1210 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1210\)    =    \(2 \cdot 5 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(71.3923\)
Root analytic conductor: \(8.44939\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1210,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2T \)
5 \( 1 - 5T \)
11 \( 1 \)
good3 \( 1 + 1.93T + 27T^{2} \)
7 \( 1 - 2.87T + 343T^{2} \)
13 \( 1 - 31.3T + 2.19e3T^{2} \)
17 \( 1 + 80.0T + 4.91e3T^{2} \)
19 \( 1 + 28.2T + 6.85e3T^{2} \)
23 \( 1 + 11.0T + 1.21e4T^{2} \)
29 \( 1 + 149.T + 2.43e4T^{2} \)
31 \( 1 + 4.22T + 2.97e4T^{2} \)
37 \( 1 + 118.T + 5.06e4T^{2} \)
41 \( 1 - 220.T + 6.89e4T^{2} \)
43 \( 1 + 305.T + 7.95e4T^{2} \)
47 \( 1 + 488.T + 1.03e5T^{2} \)
53 \( 1 - 437.T + 1.48e5T^{2} \)
59 \( 1 - 419.T + 2.05e5T^{2} \)
61 \( 1 + 239.T + 2.26e5T^{2} \)
67 \( 1 + 382.T + 3.00e5T^{2} \)
71 \( 1 + 410.T + 3.57e5T^{2} \)
73 \( 1 - 450.T + 3.89e5T^{2} \)
79 \( 1 - 485.T + 4.93e5T^{2} \)
83 \( 1 + 1.20e3T + 5.71e5T^{2} \)
89 \( 1 + 1.53e3T + 7.04e5T^{2} \)
97 \( 1 - 1.02e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.857808935615697711226689994817, −8.215717706336029434234318129740, −6.98103646688610669922122225649, −6.27341894685483511023529723730, −5.58360150775876041563482971655, −4.76451579749283701591750186336, −3.73303192700166607835239316065, −2.65403126152802991074339498866, −1.61073936490929327909545325067, 0, 1.61073936490929327909545325067, 2.65403126152802991074339498866, 3.73303192700166607835239316065, 4.76451579749283701591750186336, 5.58360150775876041563482971655, 6.27341894685483511023529723730, 6.98103646688610669922122225649, 8.215717706336029434234318129740, 8.857808935615697711226689994817

Graph of the $Z$-function along the critical line