gp: [N,k,chi] = [110,4,Mod(31,110)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(110, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([0, 6]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("110.31");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [8,4]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 7 1,\beta_1,\ldots,\beta_{7} 1 , β 1 , … , β 7 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 8 − x 7 + 26 x 6 − 51 x 5 + 301 x 4 − 125 x 3 + 250 x 2 + 3125 x + 15625 x^{8} - x^{7} + 26x^{6} - 51x^{5} + 301x^{4} - 125x^{3} + 250x^{2} + 3125x + 15625 x 8 − x 7 + 2 6 x 6 − 5 1 x 5 + 3 0 1 x 4 − 1 2 5 x 3 + 2 5 0 x 2 + 3 1 2 5 x + 1 5 6 2 5
x^8 - x^7 + 26*x^6 - 51*x^5 + 301*x^4 - 125*x^3 + 250*x^2 + 3125*x + 15625
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
( 818163 ν 7 − 6311083 ν 6 + 40474033 ν 5 − 243871108 ν 4 + 737106733 ν 3 + ⋯ − 7908965625 ) / 42767069375 ( 818163 \nu^{7} - 6311083 \nu^{6} + 40474033 \nu^{5} - 243871108 \nu^{4} + 737106733 \nu^{3} + \cdots - 7908965625 ) / 42767069375 ( 8 1 8 1 6 3 ν 7 − 6 3 1 1 0 8 3 ν 6 + 4 0 4 7 4 0 3 3 ν 5 − 2 4 3 8 7 1 1 0 8 ν 4 + 7 3 7 1 0 6 7 3 3 ν 3 + ⋯ − 7 9 0 8 9 6 5 6 2 5 ) / 4 2 7 6 7 0 6 9 3 7 5
(818163*v^7 - 6311083*v^6 + 40474033*v^5 - 243871108*v^4 + 737106733*v^3 - 5864603170*v^2 + 3447765875*v - 7908965625) / 42767069375
β 3 \beta_{3} β 3 = = =
( − 1765046 ν 7 − 5788314 ν 6 − 46020836 ν 5 + 150326111 ν 4 + ⋯ + 26734970000 ) / 42767069375 ( - 1765046 \nu^{7} - 5788314 \nu^{6} - 46020836 \nu^{5} + 150326111 \nu^{4} + \cdots + 26734970000 ) / 42767069375 ( − 1 7 6 5 0 4 6 ν 7 − 5 7 8 8 3 1 4 ν 6 − 4 6 0 2 0 8 3 6 ν 5 + 1 5 0 3 2 6 1 1 1 ν 4 + ⋯ + 2 6 7 3 4 9 7 0 0 0 0 ) / 4 2 7 6 7 0 6 9 3 7 5
(-1765046*v^7 - 5788314*v^6 - 46020836*v^5 + 150326111*v^4 - 347203611*v^3 + 2885621765*v^2 - 5309924500*v + 26734970000) / 42767069375
β 4 \beta_{4} β 4 = = =
( − 440023 ν 7 + 4939127 ν 6 − 12667902 ν 5 + 123620452 ν 4 − 266223677 ν 3 + ⋯ + 501539125 ) / 8553413875 ( - 440023 \nu^{7} + 4939127 \nu^{6} - 12667902 \nu^{5} + 123620452 \nu^{4} - 266223677 \nu^{3} + \cdots + 501539125 ) / 8553413875 ( − 4 4 0 0 2 3 ν 7 + 4 9 3 9 1 2 7 ν 6 − 1 2 6 6 7 9 0 2 ν 5 + 1 2 3 6 2 0 4 5 2 ν 4 − 2 6 6 2 2 3 6 7 7 ν 3 + ⋯ + 5 0 1 5 3 9 1 2 5 ) / 8 5 5 3 4 1 3 8 7 5
(-440023*v^7 + 4939127*v^6 - 12667902*v^5 + 123620452*v^4 - 266223677*v^3 + 1036208254*v^2 + 283354925*v + 501539125) / 8553413875
β 5 \beta_{5} β 5 = = =
( − 1538607 ν 7 + 8779486 ν 6 − 53096861 ν 5 + 221788386 ν 4 − 1418690236 ν 3 + ⋯ − 2055220250 ) / 8553413875 ( - 1538607 \nu^{7} + 8779486 \nu^{6} - 53096861 \nu^{5} + 221788386 \nu^{4} - 1418690236 \nu^{3} + \cdots - 2055220250 ) / 8553413875 ( − 1 5 3 8 6 0 7 ν 7 + 8 7 7 9 4 8 6 ν 6 − 5 3 0 9 6 8 6 1 ν 5 + 2 2 1 7 8 8 3 8 6 ν 4 − 1 4 1 8 6 9 0 2 3 6 ν 3 + ⋯ − 2 0 5 5 2 2 0 2 5 0 ) / 8 5 5 3 4 1 3 8 7 5
(-1538607*v^7 + 8779486*v^6 - 53096861*v^5 + 221788386*v^4 - 1418690236*v^3 + 1684853279*v^2 - 1809790075*v - 2055220250) / 8553413875
β 6 \beta_{6} β 6 = = =
( − 22705 ν 7 + 41009 ν 6 − 833834 ν 5 + 1460809 ν 4 − 11790909 ν 3 + ⋯ − 135384125 ) / 56645125 ( - 22705 \nu^{7} + 41009 \nu^{6} - 833834 \nu^{5} + 1460809 \nu^{4} - 11790909 \nu^{3} + \cdots - 135384125 ) / 56645125 ( − 2 2 7 0 5 ν 7 + 4 1 0 0 9 ν 6 − 8 3 3 8 3 4 ν 5 + 1 4 6 0 8 0 9 ν 4 − 1 1 7 9 0 9 0 9 ν 3 + ⋯ − 1 3 5 3 8 4 1 2 5 ) / 5 6 6 4 5 1 2 5
(-22705*v^7 + 41009*v^6 - 833834*v^5 + 1460809*v^4 - 11790909*v^3 + 10705829*v^2 + 3377550*v - 135384125) / 56645125
β 7 \beta_{7} β 7 = = =
( − 4499104 ν 7 + 1227304 ν 6 − 101179279 ν 5 + 133776754 ν 4 + ⋯ − 6875359375 ) / 8553413875 ( - 4499104 \nu^{7} + 1227304 \nu^{6} - 101179279 \nu^{5} + 133776754 \nu^{4} + \cdots - 6875359375 ) / 8553413875 ( − 4 4 9 9 1 0 4 ν 7 + 1 2 2 7 3 0 4 ν 6 − 1 0 1 1 7 9 2 7 9 ν 5 + 1 3 3 7 7 6 7 5 4 ν 4 + ⋯ − 6 8 7 5 3 5 9 3 7 5 ) / 8 5 5 3 4 1 3 8 7 5
(-4499104*v^7 + 1227304*v^6 - 101179279*v^5 + 133776754*v^4 - 981205379*v^3 - 393360675*v^2 - 1876611000*v - 6875359375) / 8553413875
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
β 7 − β 6 − 4 β 4 − 5 β 3 − 15 β 2 + β 1 − 1 \beta_{7} - \beta_{6} - 4\beta_{4} - 5\beta_{3} - 15\beta_{2} + \beta _1 - 1 β 7 − β 6 − 4 β 4 − 5 β 3 − 1 5 β 2 + β 1 − 1
b7 - b6 - 4*b4 - 5*b3 - 15*b2 + b1 - 1
ν 3 \nu^{3} ν 3 = = =
5 β 6 − 16 β 5 + 21 β 4 − 5 β 3 − 5 β 1 + 10 5\beta_{6} - 16\beta_{5} + 21\beta_{4} - 5\beta_{3} - 5\beta _1 + 10 5 β 6 − 1 6 β 5 + 2 1 β 4 − 5 β 3 − 5 β 1 + 1 0
5*b6 - 16*b5 + 21*b4 - 5*b3 - 5*b1 + 10
ν 4 \nu^{4} ν 4 = = =
− 31 β 7 + 10 β 6 + 125 β 4 + 265 β 3 + 265 β 2 − 125 -31\beta_{7} + 10\beta_{6} + 125\beta_{4} + 265\beta_{3} + 265\beta_{2} - 125 − 3 1 β 7 + 1 0 β 6 + 1 2 5 β 4 + 2 6 5 β 3 + 2 6 5 β 2 − 1 2 5
-31*b7 + 10*b6 + 125*b4 + 265*b3 + 265*b2 - 125
ν 5 \nu^{5} ν 5 = = =
140 β 7 − 296 β 6 + 296 β 5 − 255 β 4 − 255 β 2 + 140 β 1 − 556 140\beta_{7} - 296\beta_{6} + 296\beta_{5} - 255\beta_{4} - 255\beta_{2} + 140\beta _1 - 556 1 4 0 β 7 − 2 9 6 β 6 + 2 9 6 β 5 − 2 5 5 β 4 − 2 5 5 β 2 + 1 4 0 β 1 − 5 5 6
140*b7 - 296*b6 + 296*b5 - 255*b4 - 255*b2 + 140*b1 - 556
ν 6 \nu^{6} ν 6 = = =
395 β 7 − 395 β 5 + 395 β 4 − 5140 β 3 − 2880 β 2 − 416 β 1 + 2880 395\beta_{7} - 395\beta_{5} + 395\beta_{4} - 5140\beta_{3} - 2880\beta_{2} - 416\beta _1 + 2880 3 9 5 β 7 − 3 9 5 β 5 + 3 9 5 β 4 − 5 1 4 0 β 3 − 2 8 8 0 β 2 − 4 1 6 β 1 + 2 8 8 0
395*b7 - 395*b5 + 395*b4 - 5140*b3 - 2880*b2 - 416*b1 + 2880
ν 7 \nu^{7} ν 7 = = =
− 5951 β 7 + 5951 β 6 − 3275 β 5 + 5329 β 4 + 8005 β 3 + 14140 β 2 + ⋯ + 5951 - 5951 \beta_{7} + 5951 \beta_{6} - 3275 \beta_{5} + 5329 \beta_{4} + 8005 \beta_{3} + 14140 \beta_{2} + \cdots + 5951 − 5 9 5 1 β 7 + 5 9 5 1 β 6 − 3 2 7 5 β 5 + 5 3 2 9 β 4 + 8 0 0 5 β 3 + 1 4 1 4 0 β 2 + ⋯ + 5 9 5 1
-5951*b7 + 5951*b6 - 3275*b5 + 5329*b4 + 8005*b3 + 14140*b2 - 2676*b1 + 5951
Character values
We give the values of χ \chi χ on generators for ( Z / 110 Z ) × \left(\mathbb{Z}/110\mathbb{Z}\right)^\times ( Z / 1 1 0 Z ) × .
n n n
67 67 6 7
101 101 1 0 1
χ ( n ) \chi(n) χ ( n )
1 1 1
− β 3 -\beta_{3} − β 3
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 3 8 + 7 T 3 7 + 72 T 3 6 + 105 T 3 5 − 179 T 3 4 − 705 T 3 3 + 3038 T 3 2 − 1189 T 3 + 841 T_{3}^{8} + 7T_{3}^{7} + 72T_{3}^{6} + 105T_{3}^{5} - 179T_{3}^{4} - 705T_{3}^{3} + 3038T_{3}^{2} - 1189T_{3} + 841 T 3 8 + 7 T 3 7 + 7 2 T 3 6 + 1 0 5 T 3 5 − 1 7 9 T 3 4 − 7 0 5 T 3 3 + 3 0 3 8 T 3 2 − 1 1 8 9 T 3 + 8 4 1
T3^8 + 7*T3^7 + 72*T3^6 + 105*T3^5 - 179*T3^4 - 705*T3^3 + 3038*T3^2 - 1189*T3 + 841
acting on S 4 n e w ( 110 , [ χ ] ) S_{4}^{\mathrm{new}}(110, [\chi]) S 4 n e w ( 1 1 0 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T 4 − 2 T 3 + 4 T 2 + ⋯ + 16 ) 2 (T^{4} - 2 T^{3} + 4 T^{2} + \cdots + 16)^{2} ( T 4 − 2 T 3 + 4 T 2 + ⋯ + 1 6 ) 2
(T^4 - 2*T^3 + 4*T^2 - 8*T + 16)^2
3 3 3
T 8 + 7 T 7 + ⋯ + 841 T^{8} + 7 T^{7} + \cdots + 841 T 8 + 7 T 7 + ⋯ + 8 4 1
T^8 + 7*T^7 + 72*T^6 + 105*T^5 - 179*T^4 - 705*T^3 + 3038*T^2 - 1189*T + 841
5 5 5
( T 4 + 5 T 3 + ⋯ + 625 ) 2 (T^{4} + 5 T^{3} + \cdots + 625)^{2} ( T 4 + 5 T 3 + ⋯ + 6 2 5 ) 2
(T^4 + 5*T^3 + 25*T^2 + 125*T + 625)^2
7 7 7
T 8 + 15 T 7 + ⋯ + 15625 T^{8} + 15 T^{7} + \cdots + 15625 T 8 + 1 5 T 7 + ⋯ + 1 5 6 2 5
T^8 + 15*T^7 + 135*T^6 + 825*T^5 + 30900*T^4 - 152375*T^3 + 281875*T^2 + 34375*T + 15625
11 11 1 1
T 8 + ⋯ + 3138428376721 T^{8} + \cdots + 3138428376721 T 8 + ⋯ + 3 1 3 8 4 2 8 3 7 6 7 2 1
T^8 - 23*T^7 - 902*T^6 - 14641*T^5 + 3733455*T^4 - 19487171*T^3 - 1597948022*T^2 - 54232796893*T + 3138428376721
13 13 1 3
T 8 + ⋯ + 20645945775961 T^{8} + \cdots + 20645945775961 T 8 + ⋯ + 2 0 6 4 5 9 4 5 7 7 5 9 6 1
T^8 + 32*T^7 + 2413*T^6 + 113044*T^5 + 10971805*T^4 - 407768196*T^3 + 16612299473*T^2 - 229315539508*T + 20645945775961
17 17 1 7
T 8 + ⋯ + 7677825850321 T^{8} + \cdots + 7677825850321 T 8 + ⋯ + 7 6 7 7 8 2 5 8 5 0 3 2 1
T^8 - 81*T^7 + 7998*T^6 - 175935*T^5 + 1569081*T^4 + 114522875*T^3 + 15118121602*T^2 + 406591939193*T + 7677825850321
19 19 1 9
T 8 + ⋯ + 556487581020121 T^{8} + \cdots + 556487581020121 T 8 + ⋯ + 5 5 6 4 8 7 5 8 1 0 2 0 1 2 1
T^8 - 157*T^7 + 16957*T^6 - 1141585*T^5 + 178969806*T^4 - 183093645*T^3 + 436027230273*T^2 + 23739926970084*T + 556487581020121
23 23 2 3
( T 4 + 259 T 3 + ⋯ − 3351821 ) 2 (T^{4} + 259 T^{3} + \cdots - 3351821)^{2} ( T 4 + 2 5 9 T 3 + ⋯ − 3 3 5 1 8 2 1 ) 2
(T^4 + 259*T^3 + 9438*T^2 - 228272*T - 3351821)^2
29 29 2 9
T 8 + ⋯ + 60 ⋯ 25 T^{8} + \cdots + 60\!\cdots\!25 T 8 + ⋯ + 6 0 ⋯ 2 5
T^8 + 73*T^7 + 26839*T^6 + 4864267*T^5 + 574747116*T^4 - 27540794265*T^3 + 1531279495335*T^2 - 74254887415350*T + 6050342099763025
31 31 3 1
T 8 + ⋯ + 15211411832761 T^{8} + \cdots + 15211411832761 T 8 + ⋯ + 1 5 2 1 1 4 1 1 8 3 2 7 6 1
T^8 - 460*T^7 + 87089*T^6 - 3503300*T^5 + 566523781*T^4 - 31679817980*T^3 + 776745580949*T^2 + 1635579904160*T + 15211411832761
37 37 3 7
T 8 + ⋯ + 31 ⋯ 21 T^{8} + \cdots + 31\!\cdots\!21 T 8 + ⋯ + 3 1 ⋯ 2 1
T^8 + 68241*T^6 - 2886125*T^5 + 1751348996*T^4 - 17502134705*T^3 - 4537456411279*T^2 + 467917408880405*T + 314888885925451321
41 41 4 1
T 8 + ⋯ + 54 ⋯ 81 T^{8} + \cdots + 54\!\cdots\!81 T 8 + ⋯ + 5 4 ⋯ 8 1
T^8 + 564*T^7 + 189973*T^6 + 3655325*T^5 + 10759705426*T^4 - 3718233727875*T^3 + 2044304508716757*T^2 - 307412852530022847*T + 54620000328719871081
43 43 4 3
( T 4 + 147 T 3 + ⋯ + 959787745 ) 2 (T^{4} + 147 T^{3} + \cdots + 959787745)^{2} ( T 4 + 1 4 7 T 3 + ⋯ + 9 5 9 7 8 7 7 4 5 ) 2
(T^4 + 147*T^3 - 174489*T^2 + 8021055*T + 959787745)^2
47 47 4 7
T 8 + ⋯ + 31 ⋯ 81 T^{8} + \cdots + 31\!\cdots\!81 T 8 + ⋯ + 3 1 ⋯ 8 1
T^8 - 1652*T^7 + 1467017*T^6 - 822604710*T^5 + 310718465291*T^4 - 73096328240610*T^3 + 9866302304395403*T^2 - 567776423441858566*T + 31230354929588928481
53 53 5 3
T 8 + ⋯ + 61 ⋯ 25 T^{8} + \cdots + 61\!\cdots\!25 T 8 + ⋯ + 6 1 ⋯ 2 5
T^8 - 679*T^7 + 408161*T^6 - 127274699*T^5 + 50150431966*T^4 - 5932046511035*T^3 + 3742238623485815*T^2 + 777526317106477325*T + 61252630798571940025
59 59 5 9
T 8 + ⋯ + 18 ⋯ 01 T^{8} + \cdots + 18\!\cdots\!01 T 8 + ⋯ + 1 8 ⋯ 0 1
T^8 + 143*T^7 + 151097*T^6 - 75341765*T^5 + 33426825106*T^4 + 44355230108215*T^3 + 22135753895231843*T^2 + 426010364748071039*T + 18496398962137488001
61 61 6 1
T 8 + ⋯ + 15 ⋯ 25 T^{8} + \cdots + 15\!\cdots\!25 T 8 + ⋯ + 1 5 ⋯ 2 5
T^8 - 826*T^7 + 331806*T^6 + 31144744*T^5 + 43505819596*T^4 - 7034960263380*T^3 + 30191318300706165*T^2 - 4262811270524739900*T + 1531914488270309432025
67 67 6 7
( T 4 + 689 T 3 + ⋯ − 58505616781 ) 2 (T^{4} + 689 T^{3} + \cdots - 58505616781)^{2} ( T 4 + 6 8 9 T 3 + ⋯ − 5 8 5 0 5 6 1 6 7 8 1 ) 2
(T^4 + 689*T^3 - 312732*T^2 - 317419282*T - 58505616781)^2
71 71 7 1
T 8 + ⋯ + 10 ⋯ 25 T^{8} + \cdots + 10\!\cdots\!25 T 8 + ⋯ + 1 0 ⋯ 2 5
T^8 + 8*T^7 + 230339*T^6 - 96530823*T^5 + 207670571116*T^4 + 205657009122535*T^3 + 138813095200697785*T^2 + 43700956706035699475*T + 10310469536577969885025
73 73 7 3
T 8 + ⋯ + 22 ⋯ 61 T^{8} + \cdots + 22\!\cdots\!61 T 8 + ⋯ + 2 2 ⋯ 6 1
T^8 - 2017*T^7 + 3136132*T^6 - 2860178995*T^5 + 1891458014071*T^4 - 837750690621735*T^3 + 238344197366424438*T^2 - 34563179436787867401*T + 2273506085414098286361
79 79 7 9
T 8 + ⋯ + 29 ⋯ 25 T^{8} + \cdots + 29\!\cdots\!25 T 8 + ⋯ + 2 9 ⋯ 2 5
T^8 + 1763*T^7 + 1947034*T^6 + 1595176537*T^5 + 1597875948831*T^4 + 697364676551945*T^3 + 311794072569916840*T^2 + 46515181663875399925*T + 2967730301454369174025
83 83 8 3
T 8 + ⋯ + 43 ⋯ 81 T^{8} + \cdots + 43\!\cdots\!81 T 8 + ⋯ + 4 3 ⋯ 8 1
T^8 - 581*T^7 + 1342237*T^6 + 228033157*T^5 + 18494681830*T^4 + 925327837503*T^3 + 44465436779787*T^2 + 1808578257321681*T + 43927293641968881
89 89 8 9
( T 4 + 1684 T 3 + ⋯ − 24048117271 ) 2 (T^{4} + 1684 T^{3} + \cdots - 24048117271)^{2} ( T 4 + 1 6 8 4 T 3 + ⋯ − 2 4 0 4 8 1 1 7 2 7 1 ) 2
(T^4 + 1684*T^3 + 136518*T^2 - 159424532*T - 24048117271)^2
97 97 9 7
T 8 + ⋯ + 17 ⋯ 41 T^{8} + \cdots + 17\!\cdots\!41 T 8 + ⋯ + 1 7 ⋯ 4 1
T^8 - 3604*T^7 + 8228043*T^6 - 10486753490*T^5 + 9649345651471*T^4 - 1872440508285210*T^3 + 1178738529749726247*T^2 + 2439987814814149520352*T + 1753594424816842860237441
show more
show less