Properties

Label 110.4
Level 110
Weight 4
Dimension 324
Nonzero newspaces 6
Newform subspaces 19
Sturm bound 2880
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 110 = 2 \cdot 5 \cdot 11 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 19 \)
Sturm bound: \(2880\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(110))\).

Total New Old
Modular forms 1160 324 836
Cusp forms 1000 324 676
Eisenstein series 160 0 160

Trace form

\( 324 q - 4 q^{2} + 16 q^{3} + 8 q^{4} + 10 q^{5} - 84 q^{6} - 32 q^{7} - 16 q^{8} + 154 q^{9} + 244 q^{11} + 224 q^{12} + 196 q^{13} + 184 q^{14} - 250 q^{15} - 96 q^{16} - 752 q^{17} - 608 q^{18} + 410 q^{19}+ \cdots + 16624 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(110))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
110.4.a \(\chi_{110}(1, \cdot)\) 110.4.a.a 1 1
110.4.a.b 1
110.4.a.c 1
110.4.a.d 1
110.4.a.e 1
110.4.a.f 1
110.4.a.g 1
110.4.a.h 1
110.4.a.i 2
110.4.b \(\chi_{110}(89, \cdot)\) 110.4.b.a 2 1
110.4.b.b 4
110.4.b.c 8
110.4.f \(\chi_{110}(43, \cdot)\) 110.4.f.a 36 2
110.4.g \(\chi_{110}(31, \cdot)\) 110.4.g.a 8 4
110.4.g.b 12
110.4.g.c 12
110.4.g.d 16
110.4.j \(\chi_{110}(9, \cdot)\) 110.4.j.a 72 4
110.4.k \(\chi_{110}(7, \cdot)\) 110.4.k.a 144 8

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(110))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(110)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(55))\)\(^{\oplus 2}\)