Defining parameters
Level: | \( N \) | = | \( 110 = 2 \cdot 5 \cdot 11 \) |
Weight: | \( k \) | = | \( 4 \) |
Nonzero newspaces: | \( 6 \) | ||
Newform subspaces: | \( 19 \) | ||
Sturm bound: | \(2880\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(110))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1160 | 324 | 836 |
Cusp forms | 1000 | 324 | 676 |
Eisenstein series | 160 | 0 | 160 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(110))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(110))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_1(110)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(55))\)\(^{\oplus 2}\)