Properties

Label 1210.2.a.u
Level $1210$
Weight $2$
Character orbit 1210.a
Self dual yes
Analytic conductor $9.662$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1210,2,Mod(1,1210)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1210, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1210.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1210 = 2 \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1210.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4,3,4,4,-3,-3,-4,7,-4,0,3,-7,3,3,4,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.66189864457\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.5225.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 8x^{2} + x + 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 110)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + ( - \beta_1 + 1) q^{3} + q^{4} + q^{5} + (\beta_1 - 1) q^{6} + (\beta_{3} - \beta_1 - 1) q^{7} - q^{8} + (\beta_{3} + \beta_{2} - \beta_1 + 2) q^{9} - q^{10} + ( - \beta_1 + 1) q^{12}+ \cdots + (7 \beta_{2} - \beta_1 + 1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 3 q^{3} + 4 q^{4} + 4 q^{5} - 3 q^{6} - 3 q^{7} - 4 q^{8} + 7 q^{9} - 4 q^{10} + 3 q^{12} - 7 q^{13} + 3 q^{14} + 3 q^{15} + 4 q^{16} - q^{17} - 7 q^{18} + 4 q^{19} + 4 q^{20} + 16 q^{21}+ \cdots - 11 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 8x^{2} + x + 11 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 2\nu^{2} - 4\nu + 3 ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 4\nu^{2} + 2\nu - 11 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + \beta_{2} + \beta _1 + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} + 4\beta_{2} + 6\beta _1 + 5 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.10522
1.26498
−1.48718
−1.88301
−1.00000 −2.10522 1.00000 1.00000 2.10522 −2.18609 −1.00000 1.43195 −1.00000
1.2 −1.00000 −0.264977 1.00000 1.00000 0.264977 −4.31175 −1.00000 −2.92979 −1.00000
1.3 −1.00000 2.48718 1.00000 1.00000 −2.48718 −0.431946 −1.00000 3.18609 −1.00000
1.4 −1.00000 2.88301 1.00000 1.00000 −2.88301 3.92979 −1.00000 5.31175 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1210.2.a.u 4
4.b odd 2 1 9680.2.a.cj 4
5.b even 2 1 6050.2.a.dh 4
11.b odd 2 1 1210.2.a.v 4
11.c even 5 2 110.2.g.c 8
33.h odd 10 2 990.2.n.j 8
44.c even 2 1 9680.2.a.ci 4
44.h odd 10 2 880.2.bo.g 8
55.d odd 2 1 6050.2.a.cy 4
55.j even 10 2 550.2.h.l 8
55.k odd 20 4 550.2.ba.f 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
110.2.g.c 8 11.c even 5 2
550.2.h.l 8 55.j even 10 2
550.2.ba.f 16 55.k odd 20 4
880.2.bo.g 8 44.h odd 10 2
990.2.n.j 8 33.h odd 10 2
1210.2.a.u 4 1.a even 1 1 trivial
1210.2.a.v 4 11.b odd 2 1
6050.2.a.cy 4 55.d odd 2 1
6050.2.a.dh 4 5.b even 2 1
9680.2.a.ci 4 44.c even 2 1
9680.2.a.cj 4 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1210))\):

\( T_{3}^{4} - 3T_{3}^{3} - 5T_{3}^{2} + 14T_{3} + 4 \) Copy content Toggle raw display
\( T_{7}^{4} + 3T_{7}^{3} - 15T_{7}^{2} - 44T_{7} - 16 \) Copy content Toggle raw display
\( T_{13}^{4} + 7T_{13}^{3} - 21T_{13}^{2} - 132T_{13} + 176 \) Copy content Toggle raw display
\( T_{17}^{4} + T_{17}^{3} - 33T_{17}^{2} + 74T_{17} - 44 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 3 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$5$ \( (T - 1)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 3 T^{3} + \cdots - 16 \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} + 7 T^{3} + \cdots + 176 \) Copy content Toggle raw display
$17$ \( T^{4} + T^{3} + \cdots - 44 \) Copy content Toggle raw display
$19$ \( T^{4} - 4 T^{3} + \cdots - 149 \) Copy content Toggle raw display
$23$ \( T^{4} - 13 T^{3} + \cdots - 484 \) Copy content Toggle raw display
$29$ \( T^{4} - 4 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$31$ \( T^{4} - 12 T^{3} + \cdots - 1136 \) Copy content Toggle raw display
$37$ \( T^{4} + 9 T^{3} + \cdots - 44 \) Copy content Toggle raw display
$41$ \( T^{4} - 59 T^{2} + \cdots - 271 \) Copy content Toggle raw display
$43$ \( T^{4} - 19 T^{3} + \cdots - 44 \) Copy content Toggle raw display
$47$ \( T^{4} - 3 T^{3} + \cdots - 244 \) Copy content Toggle raw display
$53$ \( T^{4} - 3 T^{3} + \cdots + 1516 \) Copy content Toggle raw display
$59$ \( T^{4} - 2 T^{3} + \cdots + 5651 \) Copy content Toggle raw display
$61$ \( T^{4} + 10 T^{3} + \cdots - 2816 \) Copy content Toggle raw display
$67$ \( T^{4} + 13 T^{3} + \cdots - 604 \) Copy content Toggle raw display
$71$ \( T^{4} - 16 T^{3} + \cdots - 5296 \) Copy content Toggle raw display
$73$ \( T^{4} + T^{3} + \cdots + 4076 \) Copy content Toggle raw display
$79$ \( T^{4} - 2 T^{3} + \cdots - 64 \) Copy content Toggle raw display
$83$ \( T^{4} - 27 T^{3} + \cdots - 1324 \) Copy content Toggle raw display
$89$ \( T^{4} - 16 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$97$ \( T^{4} + 13 T^{3} + \cdots - 2384 \) Copy content Toggle raw display
show more
show less