Properties

Label 2-1210-1.1-c1-0-14
Degree $2$
Conductor $1210$
Sign $1$
Analytic cond. $9.66189$
Root an. cond. $3.10835$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 2.48·3-s + 4-s + 5-s − 2.48·6-s − 0.431·7-s − 8-s + 3.18·9-s − 10-s + 2.48·12-s + 3.94·13-s + 0.431·14-s + 2.48·15-s + 16-s + 3.42·17-s − 3.18·18-s − 6.12·19-s + 20-s − 1.07·21-s + 4.17·23-s − 2.48·24-s + 25-s − 3.94·26-s + 0.462·27-s − 0.431·28-s − 0.633·29-s − 2.48·30-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.43·3-s + 0.5·4-s + 0.447·5-s − 1.01·6-s − 0.163·7-s − 0.353·8-s + 1.06·9-s − 0.316·10-s + 0.717·12-s + 1.09·13-s + 0.115·14-s + 0.642·15-s + 0.250·16-s + 0.829·17-s − 0.750·18-s − 1.40·19-s + 0.223·20-s − 0.234·21-s + 0.869·23-s − 0.507·24-s + 0.200·25-s − 0.773·26-s + 0.0890·27-s − 0.0816·28-s − 0.117·29-s − 0.454·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1210 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1210 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1210\)    =    \(2 \cdot 5 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(9.66189\)
Root analytic conductor: \(3.10835\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1210,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.200914645\)
\(L(\frac12)\) \(\approx\) \(2.200914645\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
5 \( 1 - T \)
11 \( 1 \)
good3 \( 1 - 2.48T + 3T^{2} \)
7 \( 1 + 0.431T + 7T^{2} \)
13 \( 1 - 3.94T + 13T^{2} \)
17 \( 1 - 3.42T + 17T^{2} \)
19 \( 1 + 6.12T + 19T^{2} \)
23 \( 1 - 4.17T + 23T^{2} \)
29 \( 1 + 0.633T + 29T^{2} \)
31 \( 1 - 10.3T + 31T^{2} \)
37 \( 1 + 7.34T + 37T^{2} \)
41 \( 1 - 2.65T + 41T^{2} \)
43 \( 1 - 11.5T + 43T^{2} \)
47 \( 1 - 2.96T + 47T^{2} \)
53 \( 1 + 5.24T + 53T^{2} \)
59 \( 1 - 10.8T + 59T^{2} \)
61 \( 1 - 10.5T + 61T^{2} \)
67 \( 1 + 10.9T + 67T^{2} \)
71 \( 1 + 10.2T + 71T^{2} \)
73 \( 1 + 11.1T + 73T^{2} \)
79 \( 1 + 7.44T + 79T^{2} \)
83 \( 1 - 7.88T + 83T^{2} \)
89 \( 1 - 1.34T + 89T^{2} \)
97 \( 1 + 1.75T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.562061959366196850241268342924, −8.727430650957411342079178459689, −8.458035978539003794269081425429, −7.54338628332855038966989334739, −6.61677055421742821444760022268, −5.76302549809444576068258591231, −4.27151026041002070681544902976, −3.23726686724881863091563156210, −2.43618743311062742377272800178, −1.28927567059979957327776163327, 1.28927567059979957327776163327, 2.43618743311062742377272800178, 3.23726686724881863091563156210, 4.27151026041002070681544902976, 5.76302549809444576068258591231, 6.61677055421742821444760022268, 7.54338628332855038966989334739, 8.458035978539003794269081425429, 8.727430650957411342079178459689, 9.562061959366196850241268342924

Graph of the $Z$-function along the critical line