Properties

Label 1210.2
Level 1210
Weight 2
Dimension 13089
Nonzero newspaces 12
Sturm bound 174240
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1210 = 2 \cdot 5 \cdot 11^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 12 \)
Sturm bound: \(174240\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1210))\).

Total New Old
Modular forms 44840 13089 31751
Cusp forms 42281 13089 29192
Eisenstein series 2559 0 2559

Trace form

\( 13089 q - q^{2} - 4 q^{3} - q^{4} - q^{5} + 16 q^{6} + 32 q^{7} - q^{8} + 67 q^{9} + 19 q^{10} + 20 q^{11} + 36 q^{12} + 26 q^{13} + 32 q^{14} + 56 q^{15} - q^{16} + 62 q^{17} + 7 q^{18} + 40 q^{19}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1210))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1210.2.a \(\chi_{1210}(1, \cdot)\) 1210.2.a.a 1 1
1210.2.a.b 1
1210.2.a.c 1
1210.2.a.d 1
1210.2.a.e 1
1210.2.a.f 1
1210.2.a.g 1
1210.2.a.h 1
1210.2.a.i 1
1210.2.a.j 1
1210.2.a.k 1
1210.2.a.l 1
1210.2.a.m 1
1210.2.a.n 2
1210.2.a.o 2
1210.2.a.p 2
1210.2.a.q 2
1210.2.a.r 2
1210.2.a.s 2
1210.2.a.t 2
1210.2.a.u 4
1210.2.a.v 4
1210.2.b \(\chi_{1210}(969, \cdot)\) 1210.2.b.a 2 1
1210.2.b.b 2
1210.2.b.c 2
1210.2.b.d 2
1210.2.b.e 2
1210.2.b.f 4
1210.2.b.g 4
1210.2.b.h 4
1210.2.b.i 4
1210.2.b.j 4
1210.2.b.k 8
1210.2.b.l 8
1210.2.b.m 8
1210.2.f \(\chi_{1210}(483, \cdot)\) n/a 108 2
1210.2.g \(\chi_{1210}(81, \cdot)\) n/a 144 4
1210.2.j \(\chi_{1210}(9, \cdot)\) n/a 216 4
1210.2.k \(\chi_{1210}(111, \cdot)\) n/a 440 10
1210.2.l \(\chi_{1210}(233, \cdot)\) n/a 432 8
1210.2.o \(\chi_{1210}(89, \cdot)\) n/a 660 10
1210.2.q \(\chi_{1210}(43, \cdot)\) n/a 1320 20
1210.2.s \(\chi_{1210}(31, \cdot)\) n/a 1760 40
1210.2.u \(\chi_{1210}(49, \cdot)\) n/a 2640 40
1210.2.x \(\chi_{1210}(7, \cdot)\) n/a 5280 80

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1210))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(1210)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(55))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(110))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(121))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(242))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(605))\)\(^{\oplus 2}\)