Properties

Label 121.6.a.b
Level $121$
Weight $6$
Character orbit 121.a
Self dual yes
Analytic conductor $19.406$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [121,6,Mod(1,121)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("121.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(121, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 121 = 11^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 121.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(19.4064421974\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 11)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 4 q^{2} - 15 q^{3} - 16 q^{4} - 19 q^{5} - 60 q^{6} - 10 q^{7} - 192 q^{8} - 18 q^{9} - 76 q^{10} + 240 q^{12} + 1148 q^{13} - 40 q^{14} + 285 q^{15} - 256 q^{16} - 686 q^{17} - 72 q^{18} + 384 q^{19}+ \cdots - 66828 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
4.00000 −15.0000 −16.0000 −19.0000 −60.0000 −10.0000 −192.000 −18.0000 −76.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 121.6.a.b 1
3.b odd 2 1 1089.6.a.c 1
11.b odd 2 1 11.6.a.a 1
33.d even 2 1 99.6.a.c 1
44.c even 2 1 176.6.a.c 1
55.d odd 2 1 275.6.a.a 1
55.e even 4 2 275.6.b.a 2
77.b even 2 1 539.6.a.c 1
88.b odd 2 1 704.6.a.h 1
88.g even 2 1 704.6.a.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
11.6.a.a 1 11.b odd 2 1
99.6.a.c 1 33.d even 2 1
121.6.a.b 1 1.a even 1 1 trivial
176.6.a.c 1 44.c even 2 1
275.6.a.a 1 55.d odd 2 1
275.6.b.a 2 55.e even 4 2
539.6.a.c 1 77.b even 2 1
704.6.a.c 1 88.g even 2 1
704.6.a.h 1 88.b odd 2 1
1089.6.a.c 1 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} - 4 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(121))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 4 \) Copy content Toggle raw display
$3$ \( T + 15 \) Copy content Toggle raw display
$5$ \( T + 19 \) Copy content Toggle raw display
$7$ \( T + 10 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T - 1148 \) Copy content Toggle raw display
$17$ \( T + 686 \) Copy content Toggle raw display
$19$ \( T - 384 \) Copy content Toggle raw display
$23$ \( T - 3709 \) Copy content Toggle raw display
$29$ \( T - 5424 \) Copy content Toggle raw display
$31$ \( T + 6443 \) Copy content Toggle raw display
$37$ \( T - 12063 \) Copy content Toggle raw display
$41$ \( T - 1528 \) Copy content Toggle raw display
$43$ \( T - 4026 \) Copy content Toggle raw display
$47$ \( T - 7168 \) Copy content Toggle raw display
$53$ \( T + 29862 \) Copy content Toggle raw display
$59$ \( T + 6461 \) Copy content Toggle raw display
$61$ \( T - 16980 \) Copy content Toggle raw display
$67$ \( T - 29999 \) Copy content Toggle raw display
$71$ \( T - 31023 \) Copy content Toggle raw display
$73$ \( T + 1924 \) Copy content Toggle raw display
$79$ \( T + 65138 \) Copy content Toggle raw display
$83$ \( T - 102714 \) Copy content Toggle raw display
$89$ \( T - 17415 \) Copy content Toggle raw display
$97$ \( T - 66905 \) Copy content Toggle raw display
show more
show less