Properties

Label 121.6.a.b.1.1
Level $121$
Weight $6$
Character 121.1
Self dual yes
Analytic conductor $19.406$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [121,6,Mod(1,121)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("121.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(121, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 121 = 11^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 121.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(19.4064421974\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 11)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 121.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} -15.0000 q^{3} -16.0000 q^{4} -19.0000 q^{5} -60.0000 q^{6} -10.0000 q^{7} -192.000 q^{8} -18.0000 q^{9} -76.0000 q^{10} +240.000 q^{12} +1148.00 q^{13} -40.0000 q^{14} +285.000 q^{15} -256.000 q^{16} -686.000 q^{17} -72.0000 q^{18} +384.000 q^{19} +304.000 q^{20} +150.000 q^{21} +3709.00 q^{23} +2880.00 q^{24} -2764.00 q^{25} +4592.00 q^{26} +3915.00 q^{27} +160.000 q^{28} +5424.00 q^{29} +1140.00 q^{30} -6443.00 q^{31} +5120.00 q^{32} -2744.00 q^{34} +190.000 q^{35} +288.000 q^{36} +12063.0 q^{37} +1536.00 q^{38} -17220.0 q^{39} +3648.00 q^{40} +1528.00 q^{41} +600.000 q^{42} +4026.00 q^{43} +342.000 q^{45} +14836.0 q^{46} +7168.00 q^{47} +3840.00 q^{48} -16707.0 q^{49} -11056.0 q^{50} +10290.0 q^{51} -18368.0 q^{52} -29862.0 q^{53} +15660.0 q^{54} +1920.00 q^{56} -5760.00 q^{57} +21696.0 q^{58} -6461.00 q^{59} -4560.00 q^{60} +16980.0 q^{61} -25772.0 q^{62} +180.000 q^{63} +28672.0 q^{64} -21812.0 q^{65} +29999.0 q^{67} +10976.0 q^{68} -55635.0 q^{69} +760.000 q^{70} +31023.0 q^{71} +3456.00 q^{72} -1924.00 q^{73} +48252.0 q^{74} +41460.0 q^{75} -6144.00 q^{76} -68880.0 q^{78} -65138.0 q^{79} +4864.00 q^{80} -54351.0 q^{81} +6112.00 q^{82} +102714. q^{83} -2400.00 q^{84} +13034.0 q^{85} +16104.0 q^{86} -81360.0 q^{87} +17415.0 q^{89} +1368.00 q^{90} -11480.0 q^{91} -59344.0 q^{92} +96645.0 q^{93} +28672.0 q^{94} -7296.00 q^{95} -76800.0 q^{96} +66905.0 q^{97} -66828.0 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107 0.353553 0.935414i \(-0.384973\pi\)
0.353553 + 0.935414i \(0.384973\pi\)
\(3\) −15.0000 −0.962250 −0.481125 0.876652i \(-0.659772\pi\)
−0.481125 + 0.876652i \(0.659772\pi\)
\(4\) −16.0000 −0.500000
\(5\) −19.0000 −0.339882 −0.169941 0.985454i \(-0.554358\pi\)
−0.169941 + 0.985454i \(0.554358\pi\)
\(6\) −60.0000 −0.680414
\(7\) −10.0000 −0.0771356 −0.0385678 0.999256i \(-0.512280\pi\)
−0.0385678 + 0.999256i \(0.512280\pi\)
\(8\) −192.000 −1.06066
\(9\) −18.0000 −0.0740741
\(10\) −76.0000 −0.240333
\(11\) 0 0
\(12\) 240.000 0.481125
\(13\) 1148.00 1.88401 0.942006 0.335597i \(-0.108938\pi\)
0.942006 + 0.335597i \(0.108938\pi\)
\(14\) −40.0000 −0.0545431
\(15\) 285.000 0.327052
\(16\) −256.000 −0.250000
\(17\) −686.000 −0.575707 −0.287854 0.957674i \(-0.592942\pi\)
−0.287854 + 0.957674i \(0.592942\pi\)
\(18\) −72.0000 −0.0523783
\(19\) 384.000 0.244032 0.122016 0.992528i \(-0.461064\pi\)
0.122016 + 0.992528i \(0.461064\pi\)
\(20\) 304.000 0.169941
\(21\) 150.000 0.0742238
\(22\) 0 0
\(23\) 3709.00 1.46197 0.730983 0.682396i \(-0.239062\pi\)
0.730983 + 0.682396i \(0.239062\pi\)
\(24\) 2880.00 1.02062
\(25\) −2764.00 −0.884480
\(26\) 4592.00 1.33220
\(27\) 3915.00 1.03353
\(28\) 160.000 0.0385678
\(29\) 5424.00 1.19764 0.598818 0.800885i \(-0.295637\pi\)
0.598818 + 0.800885i \(0.295637\pi\)
\(30\) 1140.00 0.231261
\(31\) −6443.00 −1.20416 −0.602080 0.798436i \(-0.705661\pi\)
−0.602080 + 0.798436i \(0.705661\pi\)
\(32\) 5120.00 0.883883
\(33\) 0 0
\(34\) −2744.00 −0.407087
\(35\) 190.000 0.0262170
\(36\) 288.000 0.0370370
\(37\) 12063.0 1.44861 0.724304 0.689481i \(-0.242161\pi\)
0.724304 + 0.689481i \(0.242161\pi\)
\(38\) 1536.00 0.172557
\(39\) −17220.0 −1.81289
\(40\) 3648.00 0.360500
\(41\) 1528.00 0.141959 0.0709796 0.997478i \(-0.477387\pi\)
0.0709796 + 0.997478i \(0.477387\pi\)
\(42\) 600.000 0.0524841
\(43\) 4026.00 0.332049 0.166025 0.986122i \(-0.446907\pi\)
0.166025 + 0.986122i \(0.446907\pi\)
\(44\) 0 0
\(45\) 342.000 0.0251765
\(46\) 14836.0 1.03377
\(47\) 7168.00 0.473318 0.236659 0.971593i \(-0.423948\pi\)
0.236659 + 0.971593i \(0.423948\pi\)
\(48\) 3840.00 0.240563
\(49\) −16707.0 −0.994050
\(50\) −11056.0 −0.625422
\(51\) 10290.0 0.553975
\(52\) −18368.0 −0.942006
\(53\) −29862.0 −1.46026 −0.730128 0.683310i \(-0.760540\pi\)
−0.730128 + 0.683310i \(0.760540\pi\)
\(54\) 15660.0 0.730815
\(55\) 0 0
\(56\) 1920.00 0.0818147
\(57\) −5760.00 −0.234820
\(58\) 21696.0 0.846856
\(59\) −6461.00 −0.241640 −0.120820 0.992674i \(-0.538552\pi\)
−0.120820 + 0.992674i \(0.538552\pi\)
\(60\) −4560.00 −0.163526
\(61\) 16980.0 0.584269 0.292135 0.956377i \(-0.405634\pi\)
0.292135 + 0.956377i \(0.405634\pi\)
\(62\) −25772.0 −0.851469
\(63\) 180.000 0.00571375
\(64\) 28672.0 0.875000
\(65\) −21812.0 −0.640342
\(66\) 0 0
\(67\) 29999.0 0.816432 0.408216 0.912885i \(-0.366151\pi\)
0.408216 + 0.912885i \(0.366151\pi\)
\(68\) 10976.0 0.287854
\(69\) −55635.0 −1.40678
\(70\) 760.000 0.0185382
\(71\) 31023.0 0.730362 0.365181 0.930937i \(-0.381007\pi\)
0.365181 + 0.930937i \(0.381007\pi\)
\(72\) 3456.00 0.0785674
\(73\) −1924.00 −0.0422569 −0.0211285 0.999777i \(-0.506726\pi\)
−0.0211285 + 0.999777i \(0.506726\pi\)
\(74\) 48252.0 1.02432
\(75\) 41460.0 0.851091
\(76\) −6144.00 −0.122016
\(77\) 0 0
\(78\) −68880.0 −1.28191
\(79\) −65138.0 −1.17427 −0.587133 0.809490i \(-0.699744\pi\)
−0.587133 + 0.809490i \(0.699744\pi\)
\(80\) 4864.00 0.0849706
\(81\) −54351.0 −0.920439
\(82\) 6112.00 0.100380
\(83\) 102714. 1.63657 0.818285 0.574813i \(-0.194925\pi\)
0.818285 + 0.574813i \(0.194925\pi\)
\(84\) −2400.00 −0.0371119
\(85\) 13034.0 0.195673
\(86\) 16104.0 0.234794
\(87\) −81360.0 −1.15243
\(88\) 0 0
\(89\) 17415.0 0.233050 0.116525 0.993188i \(-0.462825\pi\)
0.116525 + 0.993188i \(0.462825\pi\)
\(90\) 1368.00 0.0178025
\(91\) −11480.0 −0.145324
\(92\) −59344.0 −0.730983
\(93\) 96645.0 1.15870
\(94\) 28672.0 0.334687
\(95\) −7296.00 −0.0829422
\(96\) −76800.0 −0.850517
\(97\) 66905.0 0.721987 0.360993 0.932568i \(-0.382438\pi\)
0.360993 + 0.932568i \(0.382438\pi\)
\(98\) −66828.0 −0.702900
\(99\) 0 0
\(100\) 44224.0 0.442240
\(101\) −96730.0 −0.943534 −0.471767 0.881723i \(-0.656384\pi\)
−0.471767 + 0.881723i \(0.656384\pi\)
\(102\) 41160.0 0.391719
\(103\) −95704.0 −0.888868 −0.444434 0.895812i \(-0.646595\pi\)
−0.444434 + 0.895812i \(0.646595\pi\)
\(104\) −220416. −1.99830
\(105\) −2850.00 −0.0252273
\(106\) −119448. −1.03256
\(107\) 32658.0 0.275759 0.137880 0.990449i \(-0.455971\pi\)
0.137880 + 0.990449i \(0.455971\pi\)
\(108\) −62640.0 −0.516764
\(109\) 185438. 1.49497 0.747485 0.664279i \(-0.231261\pi\)
0.747485 + 0.664279i \(0.231261\pi\)
\(110\) 0 0
\(111\) −180945. −1.39392
\(112\) 2560.00 0.0192839
\(113\) 72849.0 0.536695 0.268347 0.963322i \(-0.413522\pi\)
0.268347 + 0.963322i \(0.413522\pi\)
\(114\) −23040.0 −0.166043
\(115\) −70471.0 −0.496896
\(116\) −86784.0 −0.598818
\(117\) −20664.0 −0.139556
\(118\) −25844.0 −0.170866
\(119\) 6860.00 0.0444075
\(120\) −54720.0 −0.346891
\(121\) 0 0
\(122\) 67920.0 0.413141
\(123\) −22920.0 −0.136600
\(124\) 103088. 0.602080
\(125\) 111891. 0.640501
\(126\) 720.000 0.00404023
\(127\) 78184.0 0.430139 0.215069 0.976599i \(-0.431002\pi\)
0.215069 + 0.976599i \(0.431002\pi\)
\(128\) −49152.0 −0.265165
\(129\) −60390.0 −0.319515
\(130\) −87248.0 −0.452790
\(131\) 462.000 0.00235214 0.00117607 0.999999i \(-0.499626\pi\)
0.00117607 + 0.999999i \(0.499626\pi\)
\(132\) 0 0
\(133\) −3840.00 −0.0188236
\(134\) 119996. 0.577304
\(135\) −74385.0 −0.351278
\(136\) 131712. 0.610630
\(137\) 296233. 1.34844 0.674221 0.738530i \(-0.264480\pi\)
0.674221 + 0.738530i \(0.264480\pi\)
\(138\) −222540. −0.994742
\(139\) 399818. 1.75519 0.877597 0.479398i \(-0.159145\pi\)
0.877597 + 0.479398i \(0.159145\pi\)
\(140\) −3040.00 −0.0131085
\(141\) −107520. −0.455451
\(142\) 124092. 0.516444
\(143\) 0 0
\(144\) 4608.00 0.0185185
\(145\) −103056. −0.407055
\(146\) −7696.00 −0.0298802
\(147\) 250605. 0.956525
\(148\) −193008. −0.724304
\(149\) −72670.0 −0.268157 −0.134079 0.990971i \(-0.542807\pi\)
−0.134079 + 0.990971i \(0.542807\pi\)
\(150\) 165840. 0.601812
\(151\) 303082. 1.08173 0.540864 0.841110i \(-0.318098\pi\)
0.540864 + 0.841110i \(0.318098\pi\)
\(152\) −73728.0 −0.258835
\(153\) 12348.0 0.0426450
\(154\) 0 0
\(155\) 122417. 0.409272
\(156\) 275520. 0.906445
\(157\) −532987. −1.72571 −0.862854 0.505453i \(-0.831326\pi\)
−0.862854 + 0.505453i \(0.831326\pi\)
\(158\) −260552. −0.830332
\(159\) 447930. 1.40513
\(160\) −97280.0 −0.300416
\(161\) −37090.0 −0.112770
\(162\) −217404. −0.650849
\(163\) 282076. 0.831567 0.415783 0.909464i \(-0.363507\pi\)
0.415783 + 0.909464i \(0.363507\pi\)
\(164\) −24448.0 −0.0709796
\(165\) 0 0
\(166\) 410856. 1.15723
\(167\) 573588. 1.59151 0.795754 0.605620i \(-0.207075\pi\)
0.795754 + 0.605620i \(0.207075\pi\)
\(168\) −28800.0 −0.0787262
\(169\) 946611. 2.54950
\(170\) 52136.0 0.138362
\(171\) −6912.00 −0.0180765
\(172\) −64416.0 −0.166025
\(173\) 386286. 0.981282 0.490641 0.871362i \(-0.336763\pi\)
0.490641 + 0.871362i \(0.336763\pi\)
\(174\) −325440. −0.814888
\(175\) 27640.0 0.0682249
\(176\) 0 0
\(177\) 96915.0 0.232519
\(178\) 69660.0 0.164791
\(179\) 545079. 1.27153 0.635765 0.771882i \(-0.280685\pi\)
0.635765 + 0.771882i \(0.280685\pi\)
\(180\) −5472.00 −0.0125882
\(181\) −279485. −0.634106 −0.317053 0.948408i \(-0.602693\pi\)
−0.317053 + 0.948408i \(0.602693\pi\)
\(182\) −45920.0 −0.102760
\(183\) −254700. −0.562213
\(184\) −712128. −1.55065
\(185\) −229197. −0.492356
\(186\) 386580. 0.819327
\(187\) 0 0
\(188\) −114688. −0.236659
\(189\) −39150.0 −0.0797218
\(190\) −29184.0 −0.0586490
\(191\) −444437. −0.881509 −0.440755 0.897628i \(-0.645289\pi\)
−0.440755 + 0.897628i \(0.645289\pi\)
\(192\) −430080. −0.841969
\(193\) 18476.0 0.0357038 0.0178519 0.999841i \(-0.494317\pi\)
0.0178519 + 0.999841i \(0.494317\pi\)
\(194\) 267620. 0.510522
\(195\) 327180. 0.616170
\(196\) 267312. 0.497025
\(197\) −270182. −0.496010 −0.248005 0.968759i \(-0.579775\pi\)
−0.248005 + 0.968759i \(0.579775\pi\)
\(198\) 0 0
\(199\) 43320.0 0.0775453 0.0387727 0.999248i \(-0.487655\pi\)
0.0387727 + 0.999248i \(0.487655\pi\)
\(200\) 530688. 0.938133
\(201\) −449985. −0.785612
\(202\) −386920. −0.667180
\(203\) −54240.0 −0.0923803
\(204\) −164640. −0.276987
\(205\) −29032.0 −0.0482494
\(206\) −382816. −0.628524
\(207\) −66762.0 −0.108294
\(208\) −293888. −0.471003
\(209\) 0 0
\(210\) −11400.0 −0.0178384
\(211\) −1.02968e6 −1.59220 −0.796100 0.605165i \(-0.793107\pi\)
−0.796100 + 0.605165i \(0.793107\pi\)
\(212\) 477792. 0.730128
\(213\) −465345. −0.702791
\(214\) 130632. 0.194991
\(215\) −76494.0 −0.112858
\(216\) −751680. −1.09622
\(217\) 64430.0 0.0928835
\(218\) 741752. 1.05710
\(219\) 28860.0 0.0406617
\(220\) 0 0
\(221\) −787528. −1.08464
\(222\) −723780. −0.985653
\(223\) 461281. 0.621160 0.310580 0.950547i \(-0.399477\pi\)
0.310580 + 0.950547i \(0.399477\pi\)
\(224\) −51200.0 −0.0681789
\(225\) 49752.0 0.0655170
\(226\) 291396. 0.379501
\(227\) 855570. 1.10202 0.551012 0.834497i \(-0.314242\pi\)
0.551012 + 0.834497i \(0.314242\pi\)
\(228\) 92160.0 0.117410
\(229\) −665805. −0.838993 −0.419497 0.907757i \(-0.637793\pi\)
−0.419497 + 0.907757i \(0.637793\pi\)
\(230\) −281884. −0.351359
\(231\) 0 0
\(232\) −1.04141e6 −1.27028
\(233\) −1.20934e6 −1.45934 −0.729671 0.683798i \(-0.760327\pi\)
−0.729671 + 0.683798i \(0.760327\pi\)
\(234\) −82656.0 −0.0986813
\(235\) −136192. −0.160873
\(236\) 103376. 0.120820
\(237\) 977070. 1.12994
\(238\) 27440.0 0.0314009
\(239\) 571482. 0.647154 0.323577 0.946202i \(-0.395114\pi\)
0.323577 + 0.946202i \(0.395114\pi\)
\(240\) −72960.0 −0.0817630
\(241\) 267080. 0.296209 0.148105 0.988972i \(-0.452683\pi\)
0.148105 + 0.988972i \(0.452683\pi\)
\(242\) 0 0
\(243\) −136080. −0.147835
\(244\) −271680. −0.292135
\(245\) 317433. 0.337860
\(246\) −91680.0 −0.0965910
\(247\) 440832. 0.459760
\(248\) 1.23706e6 1.27720
\(249\) −1.54071e6 −1.57479
\(250\) 447564. 0.452903
\(251\) 1.38737e6 1.38998 0.694988 0.719022i \(-0.255410\pi\)
0.694988 + 0.719022i \(0.255410\pi\)
\(252\) −2880.00 −0.00285687
\(253\) 0 0
\(254\) 312736. 0.304154
\(255\) −195510. −0.188286
\(256\) −1.11411e6 −1.06250
\(257\) −885922. −0.836686 −0.418343 0.908289i \(-0.637389\pi\)
−0.418343 + 0.908289i \(0.637389\pi\)
\(258\) −241560. −0.225931
\(259\) −120630. −0.111739
\(260\) 348992. 0.320171
\(261\) −97632.0 −0.0887137
\(262\) 1848.00 0.00166322
\(263\) −1.44687e6 −1.28986 −0.644928 0.764243i \(-0.723113\pi\)
−0.644928 + 0.764243i \(0.723113\pi\)
\(264\) 0 0
\(265\) 567378. 0.496315
\(266\) −15360.0 −0.0133103
\(267\) −261225. −0.224252
\(268\) −479984. −0.408216
\(269\) −353878. −0.298176 −0.149088 0.988824i \(-0.547634\pi\)
−0.149088 + 0.988824i \(0.547634\pi\)
\(270\) −297540. −0.248391
\(271\) −525260. −0.434461 −0.217231 0.976120i \(-0.569702\pi\)
−0.217231 + 0.976120i \(0.569702\pi\)
\(272\) 175616. 0.143927
\(273\) 172200. 0.139838
\(274\) 1.18493e6 0.953492
\(275\) 0 0
\(276\) 890160. 0.703389
\(277\) 595610. 0.466404 0.233202 0.972428i \(-0.425080\pi\)
0.233202 + 0.972428i \(0.425080\pi\)
\(278\) 1.59927e6 1.24111
\(279\) 115974. 0.0891970
\(280\) −36480.0 −0.0278074
\(281\) −732318. −0.553266 −0.276633 0.960976i \(-0.589219\pi\)
−0.276633 + 0.960976i \(0.589219\pi\)
\(282\) −430080. −0.322052
\(283\) −2.23380e6 −1.65798 −0.828989 0.559264i \(-0.811084\pi\)
−0.828989 + 0.559264i \(0.811084\pi\)
\(284\) −496368. −0.365181
\(285\) 109440. 0.0798112
\(286\) 0 0
\(287\) −15280.0 −0.0109501
\(288\) −92160.0 −0.0654729
\(289\) −949261. −0.668561
\(290\) −412224. −0.287831
\(291\) −1.00358e6 −0.694732
\(292\) 30784.0 0.0211285
\(293\) 1.53108e6 1.04191 0.520953 0.853585i \(-0.325577\pi\)
0.520953 + 0.853585i \(0.325577\pi\)
\(294\) 1.00242e6 0.676365
\(295\) 122759. 0.0821293
\(296\) −2.31610e6 −1.53648
\(297\) 0 0
\(298\) −290680. −0.189616
\(299\) 4.25793e6 2.75436
\(300\) −663360. −0.425546
\(301\) −40260.0 −0.0256128
\(302\) 1.21233e6 0.764897
\(303\) 1.45095e6 0.907916
\(304\) −98304.0 −0.0610081
\(305\) −322620. −0.198583
\(306\) 49392.0 0.0301546
\(307\) 1.14268e6 0.691956 0.345978 0.938243i \(-0.387547\pi\)
0.345978 + 0.938243i \(0.387547\pi\)
\(308\) 0 0
\(309\) 1.43556e6 0.855313
\(310\) 489668. 0.289399
\(311\) 586956. 0.344116 0.172058 0.985087i \(-0.444958\pi\)
0.172058 + 0.985087i \(0.444958\pi\)
\(312\) 3.30624e6 1.92286
\(313\) −233857. −0.134924 −0.0674621 0.997722i \(-0.521490\pi\)
−0.0674621 + 0.997722i \(0.521490\pi\)
\(314\) −2.13195e6 −1.22026
\(315\) −3420.00 −0.00194200
\(316\) 1.04221e6 0.587133
\(317\) −935503. −0.522874 −0.261437 0.965221i \(-0.584196\pi\)
−0.261437 + 0.965221i \(0.584196\pi\)
\(318\) 1.79172e6 0.993579
\(319\) 0 0
\(320\) −544768. −0.297397
\(321\) −489870. −0.265349
\(322\) −148360. −0.0797402
\(323\) −263424. −0.140491
\(324\) 869616. 0.460219
\(325\) −3.17307e6 −1.66637
\(326\) 1.12830e6 0.588007
\(327\) −2.78157e6 −1.43854
\(328\) −293376. −0.150571
\(329\) −71680.0 −0.0365097
\(330\) 0 0
\(331\) −1.05823e6 −0.530897 −0.265449 0.964125i \(-0.585520\pi\)
−0.265449 + 0.964125i \(0.585520\pi\)
\(332\) −1.64342e6 −0.818285
\(333\) −217134. −0.107304
\(334\) 2.29435e6 1.12537
\(335\) −569981. −0.277491
\(336\) −38400.0 −0.0185559
\(337\) −506186. −0.242793 −0.121396 0.992604i \(-0.538737\pi\)
−0.121396 + 0.992604i \(0.538737\pi\)
\(338\) 3.78644e6 1.80277
\(339\) −1.09274e6 −0.516435
\(340\) −208544. −0.0978364
\(341\) 0 0
\(342\) −27648.0 −0.0127820
\(343\) 335140. 0.153812
\(344\) −772992. −0.352192
\(345\) 1.05706e6 0.478139
\(346\) 1.54514e6 0.693871
\(347\) −467636. −0.208490 −0.104245 0.994552i \(-0.533243\pi\)
−0.104245 + 0.994552i \(0.533243\pi\)
\(348\) 1.30176e6 0.576213
\(349\) −304470. −0.133808 −0.0669038 0.997759i \(-0.521312\pi\)
−0.0669038 + 0.997759i \(0.521312\pi\)
\(350\) 110560. 0.0482423
\(351\) 4.49442e6 1.94718
\(352\) 0 0
\(353\) 2.51868e6 1.07581 0.537906 0.843005i \(-0.319215\pi\)
0.537906 + 0.843005i \(0.319215\pi\)
\(354\) 387660. 0.164416
\(355\) −589437. −0.248237
\(356\) −278640. −0.116525
\(357\) −102900. −0.0427312
\(358\) 2.18032e6 0.899108
\(359\) 3.01841e6 1.23607 0.618034 0.786151i \(-0.287929\pi\)
0.618034 + 0.786151i \(0.287929\pi\)
\(360\) −65664.0 −0.0267037
\(361\) −2.32864e6 −0.940448
\(362\) −1.11794e6 −0.448381
\(363\) 0 0
\(364\) 183680. 0.0726622
\(365\) 36556.0 0.0143624
\(366\) −1.01880e6 −0.397545
\(367\) 994429. 0.385397 0.192699 0.981258i \(-0.438276\pi\)
0.192699 + 0.981258i \(0.438276\pi\)
\(368\) −949504. −0.365491
\(369\) −27504.0 −0.0105155
\(370\) −916788. −0.348149
\(371\) 298620. 0.112638
\(372\) −1.54632e6 −0.579351
\(373\) −1.72896e6 −0.643446 −0.321723 0.946834i \(-0.604262\pi\)
−0.321723 + 0.946834i \(0.604262\pi\)
\(374\) 0 0
\(375\) −1.67836e6 −0.616323
\(376\) −1.37626e6 −0.502030
\(377\) 6.22675e6 2.25636
\(378\) −156600. −0.0563718
\(379\) 454765. 0.162626 0.0813128 0.996689i \(-0.474089\pi\)
0.0813128 + 0.996689i \(0.474089\pi\)
\(380\) 116736. 0.0414711
\(381\) −1.17276e6 −0.413901
\(382\) −1.77775e6 −0.623321
\(383\) 2.27557e6 0.792673 0.396336 0.918105i \(-0.370281\pi\)
0.396336 + 0.918105i \(0.370281\pi\)
\(384\) 737280. 0.255155
\(385\) 0 0
\(386\) 73904.0 0.0252464
\(387\) −72468.0 −0.0245962
\(388\) −1.07048e6 −0.360993
\(389\) 389781. 0.130601 0.0653005 0.997866i \(-0.479199\pi\)
0.0653005 + 0.997866i \(0.479199\pi\)
\(390\) 1.30872e6 0.435698
\(391\) −2.54437e6 −0.841665
\(392\) 3.20774e6 1.05435
\(393\) −6930.00 −0.00226335
\(394\) −1.08073e6 −0.350732
\(395\) 1.23762e6 0.399112
\(396\) 0 0
\(397\) −1.61933e6 −0.515655 −0.257827 0.966191i \(-0.583007\pi\)
−0.257827 + 0.966191i \(0.583007\pi\)
\(398\) 173280. 0.0548328
\(399\) 57600.0 0.0181130
\(400\) 707584. 0.221120
\(401\) −5.54368e6 −1.72162 −0.860810 0.508927i \(-0.830042\pi\)
−0.860810 + 0.508927i \(0.830042\pi\)
\(402\) −1.79994e6 −0.555511
\(403\) −7.39656e6 −2.26865
\(404\) 1.54768e6 0.471767
\(405\) 1.03267e6 0.312841
\(406\) −216960. −0.0653228
\(407\) 0 0
\(408\) −1.97568e6 −0.587579
\(409\) 2.70493e6 0.799553 0.399776 0.916613i \(-0.369088\pi\)
0.399776 + 0.916613i \(0.369088\pi\)
\(410\) −116128. −0.0341175
\(411\) −4.44350e6 −1.29754
\(412\) 1.53126e6 0.444434
\(413\) 64610.0 0.0186391
\(414\) −267048. −0.0765753
\(415\) −1.95157e6 −0.556241
\(416\) 5.87776e6 1.66525
\(417\) −5.99727e6 −1.68894
\(418\) 0 0
\(419\) 3.37337e6 0.938705 0.469353 0.883011i \(-0.344487\pi\)
0.469353 + 0.883011i \(0.344487\pi\)
\(420\) 45600.0 0.0126137
\(421\) −4.52551e6 −1.24441 −0.622204 0.782855i \(-0.713762\pi\)
−0.622204 + 0.782855i \(0.713762\pi\)
\(422\) −4.11874e6 −1.12586
\(423\) −129024. −0.0350606
\(424\) 5.73350e6 1.54884
\(425\) 1.89610e6 0.509202
\(426\) −1.86138e6 −0.496948
\(427\) −169800. −0.0450680
\(428\) −522528. −0.137880
\(429\) 0 0
\(430\) −305976. −0.0798024
\(431\) 684534. 0.177501 0.0887507 0.996054i \(-0.471713\pi\)
0.0887507 + 0.996054i \(0.471713\pi\)
\(432\) −1.00224e6 −0.258382
\(433\) −4.22591e6 −1.08318 −0.541589 0.840643i \(-0.682177\pi\)
−0.541589 + 0.840643i \(0.682177\pi\)
\(434\) 257720. 0.0656786
\(435\) 1.54584e6 0.391689
\(436\) −2.96701e6 −0.747485
\(437\) 1.42426e6 0.356767
\(438\) 115440. 0.0287522
\(439\) 2.09185e6 0.518047 0.259023 0.965871i \(-0.416599\pi\)
0.259023 + 0.965871i \(0.416599\pi\)
\(440\) 0 0
\(441\) 300726. 0.0736333
\(442\) −3.15011e6 −0.766956
\(443\) 1.56284e6 0.378361 0.189180 0.981942i \(-0.439417\pi\)
0.189180 + 0.981942i \(0.439417\pi\)
\(444\) 2.89512e6 0.696962
\(445\) −330885. −0.0792095
\(446\) 1.84512e6 0.439226
\(447\) 1.09005e6 0.258034
\(448\) −286720. −0.0674937
\(449\) −3.00449e6 −0.703324 −0.351662 0.936127i \(-0.614383\pi\)
−0.351662 + 0.936127i \(0.614383\pi\)
\(450\) 199008. 0.0463275
\(451\) 0 0
\(452\) −1.16558e6 −0.268347
\(453\) −4.54623e6 −1.04089
\(454\) 3.42228e6 0.779248
\(455\) 218120. 0.0493932
\(456\) 1.10592e6 0.249064
\(457\) 2.44552e6 0.547747 0.273874 0.961766i \(-0.411695\pi\)
0.273874 + 0.961766i \(0.411695\pi\)
\(458\) −2.66322e6 −0.593258
\(459\) −2.68569e6 −0.595010
\(460\) 1.12754e6 0.248448
\(461\) −7.79104e6 −1.70743 −0.853715 0.520741i \(-0.825656\pi\)
−0.853715 + 0.520741i \(0.825656\pi\)
\(462\) 0 0
\(463\) −1.05196e6 −0.228059 −0.114029 0.993477i \(-0.536376\pi\)
−0.114029 + 0.993477i \(0.536376\pi\)
\(464\) −1.38854e6 −0.299409
\(465\) −1.83626e6 −0.393823
\(466\) −4.83734e6 −1.03191
\(467\) 3.97003e6 0.842369 0.421184 0.906975i \(-0.361615\pi\)
0.421184 + 0.906975i \(0.361615\pi\)
\(468\) 330624. 0.0697782
\(469\) −299990. −0.0629759
\(470\) −544768. −0.113754
\(471\) 7.99480e6 1.66056
\(472\) 1.24051e6 0.256298
\(473\) 0 0
\(474\) 3.90828e6 0.798987
\(475\) −1.06138e6 −0.215842
\(476\) −109760. −0.0222038
\(477\) 537516. 0.108167
\(478\) 2.28593e6 0.457607
\(479\) 8.53908e6 1.70048 0.850241 0.526393i \(-0.176456\pi\)
0.850241 + 0.526393i \(0.176456\pi\)
\(480\) 1.45920e6 0.289076
\(481\) 1.38483e7 2.72919
\(482\) 1.06832e6 0.209452
\(483\) 556350. 0.108513
\(484\) 0 0
\(485\) −1.27120e6 −0.245391
\(486\) −544320. −0.104535
\(487\) −1.86487e6 −0.356308 −0.178154 0.984003i \(-0.557013\pi\)
−0.178154 + 0.984003i \(0.557013\pi\)
\(488\) −3.26016e6 −0.619711
\(489\) −4.23114e6 −0.800175
\(490\) 1.26973e6 0.238903
\(491\) −5.15727e6 −0.965420 −0.482710 0.875780i \(-0.660347\pi\)
−0.482710 + 0.875780i \(0.660347\pi\)
\(492\) 366720. 0.0683002
\(493\) −3.72086e6 −0.689488
\(494\) 1.76333e6 0.325099
\(495\) 0 0
\(496\) 1.64941e6 0.301040
\(497\) −310230. −0.0563369
\(498\) −6.16284e6 −1.11354
\(499\) 4.53340e6 0.815029 0.407514 0.913199i \(-0.366396\pi\)
0.407514 + 0.913199i \(0.366396\pi\)
\(500\) −1.79026e6 −0.320251
\(501\) −8.60382e6 −1.53143
\(502\) 5.54947e6 0.982861
\(503\) −1.71163e6 −0.301641 −0.150821 0.988561i \(-0.548192\pi\)
−0.150821 + 0.988561i \(0.548192\pi\)
\(504\) −34560.0 −0.00606035
\(505\) 1.83787e6 0.320691
\(506\) 0 0
\(507\) −1.41992e7 −2.45326
\(508\) −1.25094e6 −0.215069
\(509\) 9.73822e6 1.66604 0.833019 0.553244i \(-0.186610\pi\)
0.833019 + 0.553244i \(0.186610\pi\)
\(510\) −782040. −0.133138
\(511\) 19240.0 0.00325951
\(512\) −2.88358e6 −0.486136
\(513\) 1.50336e6 0.252214
\(514\) −3.54369e6 −0.591627
\(515\) 1.81838e6 0.302110
\(516\) 966240. 0.159757
\(517\) 0 0
\(518\) −482520. −0.0790116
\(519\) −5.79429e6 −0.944239
\(520\) 4.18790e6 0.679185
\(521\) 4.30279e6 0.694474 0.347237 0.937777i \(-0.387120\pi\)
0.347237 + 0.937777i \(0.387120\pi\)
\(522\) −390528. −0.0627301
\(523\) −2.62280e6 −0.419287 −0.209643 0.977778i \(-0.567230\pi\)
−0.209643 + 0.977778i \(0.567230\pi\)
\(524\) −7392.00 −0.00117607
\(525\) −414600. −0.0656494
\(526\) −5.78750e6 −0.912066
\(527\) 4.41990e6 0.693243
\(528\) 0 0
\(529\) 7.32034e6 1.13734
\(530\) 2.26951e6 0.350948
\(531\) 116298. 0.0178993
\(532\) 61440.0 0.00941179
\(533\) 1.75414e6 0.267453
\(534\) −1.04490e6 −0.158570
\(535\) −620502. −0.0937257
\(536\) −5.75981e6 −0.865956
\(537\) −8.17618e6 −1.22353
\(538\) −1.41551e6 −0.210842
\(539\) 0 0
\(540\) 1.19016e6 0.175639
\(541\) 2.49634e6 0.366700 0.183350 0.983048i \(-0.441306\pi\)
0.183350 + 0.983048i \(0.441306\pi\)
\(542\) −2.10104e6 −0.307211
\(543\) 4.19228e6 0.610169
\(544\) −3.51232e6 −0.508858
\(545\) −3.52332e6 −0.508114
\(546\) 688800. 0.0988807
\(547\) −1.14323e7 −1.63368 −0.816838 0.576868i \(-0.804275\pi\)
−0.816838 + 0.576868i \(0.804275\pi\)
\(548\) −4.73973e6 −0.674221
\(549\) −305640. −0.0432792
\(550\) 0 0
\(551\) 2.08282e6 0.292262
\(552\) 1.06819e7 1.49211
\(553\) 651380. 0.0905778
\(554\) 2.38244e6 0.329798
\(555\) 3.43796e6 0.473770
\(556\) −6.39709e6 −0.877597
\(557\) 9.81529e6 1.34049 0.670247 0.742138i \(-0.266188\pi\)
0.670247 + 0.742138i \(0.266188\pi\)
\(558\) 463896. 0.0630718
\(559\) 4.62185e6 0.625585
\(560\) −48640.0 −0.00655426
\(561\) 0 0
\(562\) −2.92927e6 −0.391218
\(563\) 8.19192e6 1.08922 0.544609 0.838690i \(-0.316678\pi\)
0.544609 + 0.838690i \(0.316678\pi\)
\(564\) 1.72032e6 0.227725
\(565\) −1.38413e6 −0.182413
\(566\) −8.93522e6 −1.17237
\(567\) 543510. 0.0709986
\(568\) −5.95642e6 −0.774665
\(569\) 7.54286e6 0.976687 0.488344 0.872651i \(-0.337601\pi\)
0.488344 + 0.872651i \(0.337601\pi\)
\(570\) 437760. 0.0564351
\(571\) 8.69400e6 1.11591 0.557956 0.829871i \(-0.311586\pi\)
0.557956 + 0.829871i \(0.311586\pi\)
\(572\) 0 0
\(573\) 6.66656e6 0.848233
\(574\) −61120.0 −0.00774290
\(575\) −1.02517e7 −1.29308
\(576\) −516096. −0.0648148
\(577\) 2.03379e6 0.254312 0.127156 0.991883i \(-0.459415\pi\)
0.127156 + 0.991883i \(0.459415\pi\)
\(578\) −3.79704e6 −0.472744
\(579\) −277140. −0.0343560
\(580\) 1.64890e6 0.203528
\(581\) −1.02714e6 −0.126238
\(582\) −4.01430e6 −0.491250
\(583\) 0 0
\(584\) 369408. 0.0448202
\(585\) 392616. 0.0474328
\(586\) 6.12432e6 0.736739
\(587\) 3.51780e6 0.421381 0.210691 0.977553i \(-0.432429\pi\)
0.210691 + 0.977553i \(0.432429\pi\)
\(588\) −4.00968e6 −0.478263
\(589\) −2.47411e6 −0.293854
\(590\) 491036. 0.0580742
\(591\) 4.05273e6 0.477286
\(592\) −3.08813e6 −0.362152
\(593\) 8.34535e6 0.974558 0.487279 0.873246i \(-0.337989\pi\)
0.487279 + 0.873246i \(0.337989\pi\)
\(594\) 0 0
\(595\) −130340. −0.0150933
\(596\) 1.16272e6 0.134079
\(597\) −649800. −0.0746180
\(598\) 1.70317e7 1.94763
\(599\) 6.15022e6 0.700364 0.350182 0.936682i \(-0.386120\pi\)
0.350182 + 0.936682i \(0.386120\pi\)
\(600\) −7.96032e6 −0.902719
\(601\) 6.86232e6 0.774970 0.387485 0.921876i \(-0.373344\pi\)
0.387485 + 0.921876i \(0.373344\pi\)
\(602\) −161040. −0.0181110
\(603\) −539982. −0.0604764
\(604\) −4.84931e6 −0.540864
\(605\) 0 0
\(606\) 5.80380e6 0.641994
\(607\) 9.45536e6 1.04161 0.520807 0.853675i \(-0.325631\pi\)
0.520807 + 0.853675i \(0.325631\pi\)
\(608\) 1.96608e6 0.215696
\(609\) 813600. 0.0888930
\(610\) −1.29048e6 −0.140419
\(611\) 8.22886e6 0.891737
\(612\) −197568. −0.0213225
\(613\) 4.63658e6 0.498363 0.249182 0.968457i \(-0.419838\pi\)
0.249182 + 0.968457i \(0.419838\pi\)
\(614\) 4.57072e6 0.489287
\(615\) 435480. 0.0464280
\(616\) 0 0
\(617\) 6.05704e6 0.640542 0.320271 0.947326i \(-0.396226\pi\)
0.320271 + 0.947326i \(0.396226\pi\)
\(618\) 5.74224e6 0.604798
\(619\) −5.63994e6 −0.591626 −0.295813 0.955246i \(-0.595591\pi\)
−0.295813 + 0.955246i \(0.595591\pi\)
\(620\) −1.95867e6 −0.204636
\(621\) 1.45207e7 1.51098
\(622\) 2.34782e6 0.243327
\(623\) −174150. −0.0179764
\(624\) 4.40832e6 0.453223
\(625\) 6.51157e6 0.666785
\(626\) −935428. −0.0954057
\(627\) 0 0
\(628\) 8.52779e6 0.862854
\(629\) −8.27522e6 −0.833975
\(630\) −13680.0 −0.00137320
\(631\) 1.12616e6 0.112597 0.0562987 0.998414i \(-0.482070\pi\)
0.0562987 + 0.998414i \(0.482070\pi\)
\(632\) 1.25065e7 1.24550
\(633\) 1.54453e7 1.53210
\(634\) −3.74201e6 −0.369728
\(635\) −1.48550e6 −0.146197
\(636\) −7.16688e6 −0.702566
\(637\) −1.91796e7 −1.87280
\(638\) 0 0
\(639\) −558414. −0.0541009
\(640\) 933888. 0.0901249
\(641\) −1.42020e7 −1.36522 −0.682611 0.730782i \(-0.739156\pi\)
−0.682611 + 0.730782i \(0.739156\pi\)
\(642\) −1.95948e6 −0.187630
\(643\) 1.60794e6 0.153371 0.0766853 0.997055i \(-0.475566\pi\)
0.0766853 + 0.997055i \(0.475566\pi\)
\(644\) 593440. 0.0563848
\(645\) 1.14741e6 0.108597
\(646\) −1.05370e6 −0.0993423
\(647\) 3.10236e6 0.291361 0.145680 0.989332i \(-0.453463\pi\)
0.145680 + 0.989332i \(0.453463\pi\)
\(648\) 1.04354e7 0.976273
\(649\) 0 0
\(650\) −1.26923e7 −1.17830
\(651\) −966450. −0.0893772
\(652\) −4.51322e6 −0.415783
\(653\) 6.88852e6 0.632183 0.316091 0.948729i \(-0.397629\pi\)
0.316091 + 0.948729i \(0.397629\pi\)
\(654\) −1.11263e7 −1.01720
\(655\) −8778.00 −0.000799452 0
\(656\) −391168. −0.0354898
\(657\) 34632.0 0.00313014
\(658\) −286720. −0.0258163
\(659\) 1.24134e7 1.11347 0.556735 0.830690i \(-0.312054\pi\)
0.556735 + 0.830690i \(0.312054\pi\)
\(660\) 0 0
\(661\) −8.10994e6 −0.721961 −0.360980 0.932573i \(-0.617558\pi\)
−0.360980 + 0.932573i \(0.617558\pi\)
\(662\) −4.23292e6 −0.375401
\(663\) 1.18129e7 1.04369
\(664\) −1.97211e7 −1.73584
\(665\) 72960.0 0.00639780
\(666\) −868536. −0.0758756
\(667\) 2.01176e7 1.75090
\(668\) −9.17741e6 −0.795754
\(669\) −6.91922e6 −0.597711
\(670\) −2.27992e6 −0.196216
\(671\) 0 0
\(672\) 768000. 0.0656052
\(673\) −1.78063e7 −1.51543 −0.757717 0.652584i \(-0.773685\pi\)
−0.757717 + 0.652584i \(0.773685\pi\)
\(674\) −2.02474e6 −0.171680
\(675\) −1.08211e7 −0.914135
\(676\) −1.51458e7 −1.27475
\(677\) −1.55179e7 −1.30125 −0.650626 0.759398i \(-0.725493\pi\)
−0.650626 + 0.759398i \(0.725493\pi\)
\(678\) −4.37094e6 −0.365175
\(679\) −669050. −0.0556909
\(680\) −2.50253e6 −0.207542
\(681\) −1.28336e7 −1.06042
\(682\) 0 0
\(683\) −2.18106e6 −0.178902 −0.0894510 0.995991i \(-0.528511\pi\)
−0.0894510 + 0.995991i \(0.528511\pi\)
\(684\) 110592. 0.00903823
\(685\) −5.62843e6 −0.458311
\(686\) 1.34056e6 0.108762
\(687\) 9.98708e6 0.807321
\(688\) −1.03066e6 −0.0830123
\(689\) −3.42816e7 −2.75114
\(690\) 4.22826e6 0.338095
\(691\) 2.29892e7 1.83159 0.915795 0.401647i \(-0.131562\pi\)
0.915795 + 0.401647i \(0.131562\pi\)
\(692\) −6.18058e6 −0.490641
\(693\) 0 0
\(694\) −1.87054e6 −0.147424
\(695\) −7.59654e6 −0.596560
\(696\) 1.56211e7 1.22233
\(697\) −1.04821e6 −0.0817270
\(698\) −1.21788e6 −0.0946163
\(699\) 1.81400e7 1.40425
\(700\) −442240. −0.0341125
\(701\) −2.34092e6 −0.179925 −0.0899626 0.995945i \(-0.528675\pi\)
−0.0899626 + 0.995945i \(0.528675\pi\)
\(702\) 1.79777e7 1.37686
\(703\) 4.63219e6 0.353507
\(704\) 0 0
\(705\) 2.04288e6 0.154800
\(706\) 1.00747e7 0.760715
\(707\) 967300. 0.0727801
\(708\) −1.55064e6 −0.116259
\(709\) −1.92694e7 −1.43964 −0.719820 0.694161i \(-0.755775\pi\)
−0.719820 + 0.694161i \(0.755775\pi\)
\(710\) −2.35775e6 −0.175530
\(711\) 1.17248e6 0.0869827
\(712\) −3.34368e6 −0.247186
\(713\) −2.38971e7 −1.76044
\(714\) −411600. −0.0302155
\(715\) 0 0
\(716\) −8.72126e6 −0.635765
\(717\) −8.57223e6 −0.622724
\(718\) 1.20736e7 0.874032
\(719\) −2.14665e7 −1.54860 −0.774300 0.632819i \(-0.781898\pi\)
−0.774300 + 0.632819i \(0.781898\pi\)
\(720\) −87552.0 −0.00629412
\(721\) 957040. 0.0685633
\(722\) −9.31457e6 −0.664997
\(723\) −4.00620e6 −0.285028
\(724\) 4.47176e6 0.317053
\(725\) −1.49919e7 −1.05928
\(726\) 0 0
\(727\) −1.67705e7 −1.17682 −0.588411 0.808562i \(-0.700246\pi\)
−0.588411 + 0.808562i \(0.700246\pi\)
\(728\) 2.20416e6 0.154140
\(729\) 1.52485e7 1.06269
\(730\) 146224. 0.0101557
\(731\) −2.76184e6 −0.191163
\(732\) 4.07520e6 0.281107
\(733\) 1.75373e7 1.20560 0.602798 0.797894i \(-0.294052\pi\)
0.602798 + 0.797894i \(0.294052\pi\)
\(734\) 3.97772e6 0.272517
\(735\) −4.76150e6 −0.325106
\(736\) 1.89901e7 1.29221
\(737\) 0 0
\(738\) −110016. −0.00743558
\(739\) −1.47387e7 −0.992766 −0.496383 0.868104i \(-0.665339\pi\)
−0.496383 + 0.868104i \(0.665339\pi\)
\(740\) 3.66715e6 0.246178
\(741\) −6.61248e6 −0.442404
\(742\) 1.19448e6 0.0796469
\(743\) 4.80946e6 0.319613 0.159806 0.987148i \(-0.448913\pi\)
0.159806 + 0.987148i \(0.448913\pi\)
\(744\) −1.85558e7 −1.22899
\(745\) 1.38073e6 0.0911419
\(746\) −6.91583e6 −0.454985
\(747\) −1.84885e6 −0.121227
\(748\) 0 0
\(749\) −326580. −0.0212709
\(750\) −6.71346e6 −0.435806
\(751\) 8.29317e6 0.536563 0.268282 0.963341i \(-0.413544\pi\)
0.268282 + 0.963341i \(0.413544\pi\)
\(752\) −1.83501e6 −0.118330
\(753\) −2.08105e7 −1.33750
\(754\) 2.49070e7 1.59549
\(755\) −5.75856e6 −0.367660
\(756\) 626400. 0.0398609
\(757\) −352294. −0.0223442 −0.0111721 0.999938i \(-0.503556\pi\)
−0.0111721 + 0.999938i \(0.503556\pi\)
\(758\) 1.81906e6 0.114994
\(759\) 0 0
\(760\) 1.40083e6 0.0879735
\(761\) −1.68985e7 −1.05776 −0.528878 0.848698i \(-0.677387\pi\)
−0.528878 + 0.848698i \(0.677387\pi\)
\(762\) −4.69104e6 −0.292672
\(763\) −1.85438e6 −0.115315
\(764\) 7.11099e6 0.440755
\(765\) −234612. −0.0144943
\(766\) 9.10229e6 0.560504
\(767\) −7.41723e6 −0.455253
\(768\) 1.67117e7 1.02239
\(769\) 36652.0 0.00223502 0.00111751 0.999999i \(-0.499644\pi\)
0.00111751 + 0.999999i \(0.499644\pi\)
\(770\) 0 0
\(771\) 1.32888e7 0.805102
\(772\) −295616. −0.0178519
\(773\) −3.17462e7 −1.91093 −0.955463 0.295113i \(-0.904643\pi\)
−0.955463 + 0.295113i \(0.904643\pi\)
\(774\) −289872. −0.0173922
\(775\) 1.78085e7 1.06505
\(776\) −1.28458e7 −0.765783
\(777\) 1.80945e6 0.107521
\(778\) 1.55912e6 0.0923489
\(779\) 586752. 0.0346426
\(780\) −5.23488e6 −0.308085
\(781\) 0 0
\(782\) −1.01775e7 −0.595147
\(783\) 2.12350e7 1.23779
\(784\) 4.27699e6 0.248513
\(785\) 1.01268e7 0.586538
\(786\) −27720.0 −0.00160043
\(787\) −2.01985e7 −1.16247 −0.581236 0.813735i \(-0.697431\pi\)
−0.581236 + 0.813735i \(0.697431\pi\)
\(788\) 4.32291e6 0.248005
\(789\) 2.17031e7 1.24116
\(790\) 4.95049e6 0.282215
\(791\) −728490. −0.0413983
\(792\) 0 0
\(793\) 1.94930e7 1.10077
\(794\) −6.47732e6 −0.364623
\(795\) −8.51067e6 −0.477580
\(796\) −693120. −0.0387727
\(797\) 1.55660e7 0.868023 0.434011 0.900907i \(-0.357098\pi\)
0.434011 + 0.900907i \(0.357098\pi\)
\(798\) 230400. 0.0128078
\(799\) −4.91725e6 −0.272493
\(800\) −1.41517e7 −0.781777
\(801\) −313470. −0.0172629
\(802\) −2.21747e7 −1.21737
\(803\) 0 0
\(804\) 7.19976e6 0.392806
\(805\) 704710. 0.0383284
\(806\) −2.95863e7 −1.60418
\(807\) 5.30817e6 0.286920
\(808\) 1.85722e7 1.00077
\(809\) 2.91667e7 1.56681 0.783404 0.621513i \(-0.213482\pi\)
0.783404 + 0.621513i \(0.213482\pi\)
\(810\) 4.13068e6 0.221212
\(811\) 1.65215e7 0.882057 0.441029 0.897493i \(-0.354614\pi\)
0.441029 + 0.897493i \(0.354614\pi\)
\(812\) 867840. 0.0461902
\(813\) 7.87890e6 0.418061
\(814\) 0 0
\(815\) −5.35944e6 −0.282635
\(816\) −2.63424e6 −0.138494
\(817\) 1.54598e6 0.0810307
\(818\) 1.08197e7 0.565369
\(819\) 206640. 0.0107648
\(820\) 464512. 0.0241247
\(821\) −5.56614e6 −0.288202 −0.144101 0.989563i \(-0.546029\pi\)
−0.144101 + 0.989563i \(0.546029\pi\)
\(822\) −1.77740e7 −0.917498
\(823\) 1.18801e7 0.611391 0.305696 0.952129i \(-0.401111\pi\)
0.305696 + 0.952129i \(0.401111\pi\)
\(824\) 1.83752e7 0.942786
\(825\) 0 0
\(826\) 258440. 0.0131798
\(827\) 1.32856e7 0.675489 0.337745 0.941238i \(-0.390336\pi\)
0.337745 + 0.941238i \(0.390336\pi\)
\(828\) 1.06819e6 0.0541469
\(829\) −653987. −0.0330509 −0.0165254 0.999863i \(-0.505260\pi\)
−0.0165254 + 0.999863i \(0.505260\pi\)
\(830\) −7.80626e6 −0.393322
\(831\) −8.93415e6 −0.448798
\(832\) 3.29155e7 1.64851
\(833\) 1.14610e7 0.572282
\(834\) −2.39891e7 −1.19426
\(835\) −1.08982e7 −0.540926
\(836\) 0 0
\(837\) −2.52243e7 −1.24453
\(838\) 1.34935e7 0.663765
\(839\) 2.47747e7 1.21508 0.607538 0.794290i \(-0.292157\pi\)
0.607538 + 0.794290i \(0.292157\pi\)
\(840\) 547200. 0.0267576
\(841\) 8.90863e6 0.434331
\(842\) −1.81021e7 −0.879929
\(843\) 1.09848e7 0.532380
\(844\) 1.64749e7 0.796100
\(845\) −1.79856e7 −0.866530
\(846\) −516096. −0.0247916
\(847\) 0 0
\(848\) 7.64467e6 0.365064
\(849\) 3.35071e7 1.59539
\(850\) 7.58442e6 0.360060
\(851\) 4.47417e7 2.11782
\(852\) 7.44552e6 0.351395
\(853\) −2.71291e7 −1.27662 −0.638311 0.769779i \(-0.720367\pi\)
−0.638311 + 0.769779i \(0.720367\pi\)
\(854\) −679200. −0.0318679
\(855\) 131328. 0.00614387
\(856\) −6.27034e6 −0.292487
\(857\) 2.84232e7 1.32197 0.660984 0.750400i \(-0.270139\pi\)
0.660984 + 0.750400i \(0.270139\pi\)
\(858\) 0 0
\(859\) 2.65922e7 1.22962 0.614810 0.788675i \(-0.289233\pi\)
0.614810 + 0.788675i \(0.289233\pi\)
\(860\) 1.22390e6 0.0564289
\(861\) 229200. 0.0105368
\(862\) 2.73814e6 0.125512
\(863\) −2.22500e7 −1.01696 −0.508479 0.861074i \(-0.669792\pi\)
−0.508479 + 0.861074i \(0.669792\pi\)
\(864\) 2.00448e7 0.913519
\(865\) −7.33943e6 −0.333520
\(866\) −1.69036e7 −0.765923
\(867\) 1.42389e7 0.643323
\(868\) −1.03088e6 −0.0464418
\(869\) 0 0
\(870\) 6.18336e6 0.276966
\(871\) 3.44389e7 1.53817
\(872\) −3.56041e7 −1.58566
\(873\) −1.20429e6 −0.0534805
\(874\) 5.69702e6 0.252272
\(875\) −1.11891e6 −0.0494055
\(876\) −461760. −0.0203309
\(877\) −2.83428e7 −1.24435 −0.622176 0.782877i \(-0.713751\pi\)
−0.622176 + 0.782877i \(0.713751\pi\)
\(878\) 8.36739e6 0.366314
\(879\) −2.29662e7 −1.00258
\(880\) 0 0
\(881\) 3.66445e7 1.59063 0.795315 0.606196i \(-0.207305\pi\)
0.795315 + 0.606196i \(0.207305\pi\)
\(882\) 1.20290e6 0.0520666
\(883\) 1.68772e7 0.728447 0.364223 0.931312i \(-0.381334\pi\)
0.364223 + 0.931312i \(0.381334\pi\)
\(884\) 1.26004e7 0.542320
\(885\) −1.84138e6 −0.0790290
\(886\) 6.25137e6 0.267541
\(887\) −2.73941e6 −0.116909 −0.0584544 0.998290i \(-0.518617\pi\)
−0.0584544 + 0.998290i \(0.518617\pi\)
\(888\) 3.47414e7 1.47848
\(889\) −781840. −0.0331790
\(890\) −1.32354e6 −0.0560095
\(891\) 0 0
\(892\) −7.38050e6 −0.310580
\(893\) 2.75251e6 0.115505
\(894\) 4.36020e6 0.182458
\(895\) −1.03565e7 −0.432171
\(896\) 491520. 0.0204537
\(897\) −6.38690e7 −2.65038
\(898\) −1.20180e7 −0.497325
\(899\) −3.49468e7 −1.44214
\(900\) −796032. −0.0327585
\(901\) 2.04853e7 0.840681
\(902\) 0 0
\(903\) 603900. 0.0246460
\(904\) −1.39870e7 −0.569251
\(905\) 5.31022e6 0.215522
\(906\) −1.81849e7 −0.736022
\(907\) −3.13286e7 −1.26451 −0.632255 0.774760i \(-0.717871\pi\)
−0.632255 + 0.774760i \(0.717871\pi\)
\(908\) −1.36891e7 −0.551012
\(909\) 1.74114e6 0.0698914
\(910\) 872480. 0.0349263
\(911\) −2.49762e7 −0.997081 −0.498541 0.866866i \(-0.666131\pi\)
−0.498541 + 0.866866i \(0.666131\pi\)
\(912\) 1.47456e6 0.0587050
\(913\) 0 0
\(914\) 9.78206e6 0.387316
\(915\) 4.83930e6 0.191086
\(916\) 1.06529e7 0.419497
\(917\) −4620.00 −0.000181434 0
\(918\) −1.07428e7 −0.420736
\(919\) 1.10613e7 0.432032 0.216016 0.976390i \(-0.430694\pi\)
0.216016 + 0.976390i \(0.430694\pi\)
\(920\) 1.35304e7 0.527038
\(921\) −1.71402e7 −0.665835
\(922\) −3.11641e7 −1.20734
\(923\) 3.56144e7 1.37601
\(924\) 0 0
\(925\) −3.33421e7 −1.28127
\(926\) −4.20784e6 −0.161262
\(927\) 1.72267e6 0.0658420
\(928\) 2.77709e7 1.05857
\(929\) −2.01739e7 −0.766919 −0.383460 0.923558i \(-0.625267\pi\)
−0.383460 + 0.923558i \(0.625267\pi\)
\(930\) −7.34502e6 −0.278475
\(931\) −6.41549e6 −0.242580
\(932\) 1.93494e7 0.729671
\(933\) −8.80434e6 −0.331126
\(934\) 1.58801e7 0.595645
\(935\) 0 0
\(936\) 3.96749e6 0.148022
\(937\) −9.10734e6 −0.338877 −0.169439 0.985541i \(-0.554195\pi\)
−0.169439 + 0.985541i \(0.554195\pi\)
\(938\) −1.19996e6 −0.0445307
\(939\) 3.50785e6 0.129831
\(940\) 2.17907e6 0.0804363
\(941\) 3.67709e7 1.35372 0.676861 0.736110i \(-0.263340\pi\)
0.676861 + 0.736110i \(0.263340\pi\)
\(942\) 3.19792e7 1.17420
\(943\) 5.66735e6 0.207540
\(944\) 1.65402e6 0.0604101
\(945\) 743850. 0.0270960
\(946\) 0 0
\(947\) −4.95743e7 −1.79631 −0.898156 0.439677i \(-0.855093\pi\)
−0.898156 + 0.439677i \(0.855093\pi\)
\(948\) −1.56331e7 −0.564969
\(949\) −2.20875e6 −0.0796125
\(950\) −4.24550e6 −0.152623
\(951\) 1.40325e7 0.503136
\(952\) −1.31712e6 −0.0471013
\(953\) −3.53787e7 −1.26186 −0.630928 0.775841i \(-0.717326\pi\)
−0.630928 + 0.775841i \(0.717326\pi\)
\(954\) 2.15006e6 0.0764857
\(955\) 8.44430e6 0.299609
\(956\) −9.14371e6 −0.323577
\(957\) 0 0
\(958\) 3.41563e7 1.20242
\(959\) −2.96233e6 −0.104013
\(960\) 8.17152e6 0.286170
\(961\) 1.28831e7 0.449999
\(962\) 5.53933e7 1.92983
\(963\) −587844. −0.0204266
\(964\) −4.27328e6 −0.148105
\(965\) −351044. −0.0121351
\(966\) 2.22540e6 0.0767300
\(967\) −2.78059e7 −0.956248 −0.478124 0.878292i \(-0.658683\pi\)
−0.478124 + 0.878292i \(0.658683\pi\)
\(968\) 0 0
\(969\) 3.95136e6 0.135188
\(970\) −5.08478e6 −0.173517
\(971\) 1.56835e7 0.533821 0.266910 0.963721i \(-0.413997\pi\)
0.266910 + 0.963721i \(0.413997\pi\)
\(972\) 2.17728e6 0.0739177
\(973\) −3.99818e6 −0.135388
\(974\) −7.45947e6 −0.251948
\(975\) 4.75961e7 1.60347
\(976\) −4.34688e6 −0.146067
\(977\) 2.01140e7 0.674157 0.337079 0.941476i \(-0.390561\pi\)
0.337079 + 0.941476i \(0.390561\pi\)
\(978\) −1.69246e7 −0.565810
\(979\) 0 0
\(980\) −5.07893e6 −0.168930
\(981\) −3.33788e6 −0.110739
\(982\) −2.06291e7 −0.682655
\(983\) −2.09269e7 −0.690750 −0.345375 0.938465i \(-0.612248\pi\)
−0.345375 + 0.938465i \(0.612248\pi\)
\(984\) 4.40064e6 0.144887
\(985\) 5.13346e6 0.168585
\(986\) −1.48835e7 −0.487541
\(987\) 1.07520e6 0.0351315
\(988\) −7.05331e6 −0.229880
\(989\) 1.49324e7 0.485445
\(990\) 0 0
\(991\) −3.18663e7 −1.03074 −0.515368 0.856969i \(-0.672345\pi\)
−0.515368 + 0.856969i \(0.672345\pi\)
\(992\) −3.29882e7 −1.06434
\(993\) 1.58735e7 0.510856
\(994\) −1.24092e6 −0.0398362
\(995\) −823080. −0.0263563
\(996\) 2.46514e7 0.787395
\(997\) −1.38913e6 −0.0442595 −0.0221297 0.999755i \(-0.507045\pi\)
−0.0221297 + 0.999755i \(0.507045\pi\)
\(998\) 1.81336e7 0.576313
\(999\) 4.72266e7 1.49718
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 121.6.a.b.1.1 1
3.2 odd 2 1089.6.a.c.1.1 1
11.10 odd 2 11.6.a.a.1.1 1
33.32 even 2 99.6.a.c.1.1 1
44.43 even 2 176.6.a.c.1.1 1
55.32 even 4 275.6.b.a.199.1 2
55.43 even 4 275.6.b.a.199.2 2
55.54 odd 2 275.6.a.a.1.1 1
77.76 even 2 539.6.a.c.1.1 1
88.21 odd 2 704.6.a.h.1.1 1
88.43 even 2 704.6.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
11.6.a.a.1.1 1 11.10 odd 2
99.6.a.c.1.1 1 33.32 even 2
121.6.a.b.1.1 1 1.1 even 1 trivial
176.6.a.c.1.1 1 44.43 even 2
275.6.a.a.1.1 1 55.54 odd 2
275.6.b.a.199.1 2 55.32 even 4
275.6.b.a.199.2 2 55.43 even 4
539.6.a.c.1.1 1 77.76 even 2
704.6.a.c.1.1 1 88.43 even 2
704.6.a.h.1.1 1 88.21 odd 2
1089.6.a.c.1.1 1 3.2 odd 2