Properties

Label 121.6.a
Level $121$
Weight $6$
Character orbit 121.a
Rep. character $\chi_{121}(1,\cdot)$
Character field $\Q$
Dimension $41$
Newform subspaces $9$
Sturm bound $66$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 121 = 11^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 121.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 9 \)
Sturm bound: \(66\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(121))\).

Total New Old
Modular forms 61 50 11
Cusp forms 49 41 8
Eisenstein series 12 9 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(11\)TotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(29\)\(23\)\(6\)\(23\)\(19\)\(4\)\(6\)\(4\)\(2\)
\(-\)\(32\)\(27\)\(5\)\(26\)\(22\)\(4\)\(6\)\(5\)\(1\)

Trace form

\( 41 q + 4 q^{2} - 18 q^{3} + 572 q^{4} - 34 q^{5} + 146 q^{6} - 94 q^{7} + 372 q^{8} + 2891 q^{9} + 338 q^{10} - 1178 q^{12} + 662 q^{13} + 1680 q^{14} - 2474 q^{15} + 5564 q^{16} - 1772 q^{17} + 3634 q^{18}+ \cdots - 70308 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(121))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 11
121.6.a.a 121.a 1.a $1$ $19.406$ \(\Q\) \(\Q(\sqrt{-11}) \) 121.6.a.a \(0\) \(-31\) \(57\) \(0\) $+$ $N(\mathrm{U}(1))$ \(q-31q^{3}-2^{5}q^{4}+57q^{5}+718q^{9}+\cdots\)
121.6.a.b 121.a 1.a $1$ $19.406$ \(\Q\) None 11.6.a.a \(4\) \(-15\) \(-19\) \(-10\) $-$ $\mathrm{SU}(2)$ \(q+4q^{2}-15q^{3}-2^{4}q^{4}-19q^{5}-60q^{6}+\cdots\)
121.6.a.c 121.a 1.a $2$ $19.406$ \(\Q(\sqrt{38}) \) None 121.6.a.c \(0\) \(14\) \(-38\) \(0\) $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+7q^{3}+6q^{4}-19q^{5}+7\beta q^{6}+\cdots\)
121.6.a.d 121.a 1.a $3$ $19.406$ 3.3.54492.1 None 11.6.a.b \(0\) \(34\) \(24\) \(-84\) $-$ $\mathrm{SU}(2)$ \(q-\beta _{2}q^{2}+(11+\beta _{1}-\beta _{2})q^{3}+(30-6\beta _{1}+\cdots)q^{4}+\cdots\)
121.6.a.e 121.a 1.a $5$ $19.406$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 121.6.a.e \(-4\) \(10\) \(29\) \(102\) $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+(2+\beta _{1}+\beta _{2})q^{3}+\cdots\)
121.6.a.f 121.a 1.a $5$ $19.406$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 121.6.a.e \(4\) \(10\) \(29\) \(-102\) $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(2+\beta _{1}+\beta _{2})q^{3}+(21+\cdots)q^{4}+\cdots\)
121.6.a.g 121.a 1.a $8$ $19.406$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 11.6.c.a \(-8\) \(-12\) \(70\) \(-292\) $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+(-2-\beta _{6})q^{3}+(11+\cdots)q^{4}+\cdots\)
121.6.a.h 121.a 1.a $8$ $19.406$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 121.6.a.h \(0\) \(-16\) \(-256\) \(0\) $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(-2+\beta _{6})q^{3}+(19-\beta _{2}+\cdots)q^{4}+\cdots\)
121.6.a.i 121.a 1.a $8$ $19.406$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 11.6.c.a \(8\) \(-12\) \(70\) \(292\) $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(-2-\beta _{6})q^{3}+(11-\beta _{1}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(121))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(121)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 2}\)