Defining parameters
| Level: | \( N \) | \(=\) | \( 121 = 11^{2} \) |
| Weight: | \( k \) | \(=\) | \( 6 \) |
| Character orbit: | \([\chi]\) | \(=\) | 121.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 9 \) | ||
| Sturm bound: | \(66\) | ||
| Trace bound: | \(2\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(121))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 61 | 50 | 11 |
| Cusp forms | 49 | 41 | 8 |
| Eisenstein series | 12 | 9 | 3 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(11\) | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||
| \(+\) | \(29\) | \(23\) | \(6\) | \(23\) | \(19\) | \(4\) | \(6\) | \(4\) | \(2\) | |||
| \(-\) | \(32\) | \(27\) | \(5\) | \(26\) | \(22\) | \(4\) | \(6\) | \(5\) | \(1\) | |||
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(121))\) into newform subspaces
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(121))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(121)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 2}\)