Properties

Label 1200.3.e.f.751.1
Level $1200$
Weight $3$
Character 1200.751
Analytic conductor $32.698$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1200,3,Mod(751,1200)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1200.751"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1200, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1200.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,0,0,-6,0,0,0,22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.6976317232\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 751.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1200.751
Dual form 1200.3.e.f.751.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205i q^{3} +1.73205i q^{7} -3.00000 q^{9} +3.46410i q^{11} +11.0000 q^{13} -6.00000 q^{17} -19.0526i q^{19} +3.00000 q^{21} +17.3205i q^{23} +5.19615i q^{27} +30.0000 q^{29} +5.19615i q^{31} +6.00000 q^{33} -14.0000 q^{37} -19.0526i q^{39} +36.0000 q^{41} -5.19615i q^{43} +45.0333i q^{47} +46.0000 q^{49} +10.3923i q^{51} +72.0000 q^{53} -33.0000 q^{57} -38.1051i q^{59} +35.0000 q^{61} -5.19615i q^{63} +29.4449i q^{67} +30.0000 q^{69} -90.0666i q^{71} +62.0000 q^{73} -6.00000 q^{77} -76.2102i q^{79} +9.00000 q^{81} -72.7461i q^{83} -51.9615i q^{87} +144.000 q^{89} +19.0526i q^{91} +9.00000 q^{93} -181.000 q^{97} -10.3923i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{9} + 22 q^{13} - 12 q^{17} + 6 q^{21} + 60 q^{29} + 12 q^{33} - 28 q^{37} + 72 q^{41} + 92 q^{49} + 144 q^{53} - 66 q^{57} + 70 q^{61} + 60 q^{69} + 124 q^{73} - 12 q^{77} + 18 q^{81} + 288 q^{89}+ \cdots - 362 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1200\mathbb{Z}\right)^\times\).

\(n\) \(401\) \(577\) \(751\) \(901\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.73205i − 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.73205i 0.247436i 0.992317 + 0.123718i \(0.0394818\pi\)
−0.992317 + 0.123718i \(0.960518\pi\)
\(8\) 0 0
\(9\) −3.00000 −0.333333
\(10\) 0 0
\(11\) 3.46410i 0.314918i 0.987525 + 0.157459i \(0.0503303\pi\)
−0.987525 + 0.157459i \(0.949670\pi\)
\(12\) 0 0
\(13\) 11.0000 0.846154 0.423077 0.906094i \(-0.360950\pi\)
0.423077 + 0.906094i \(0.360950\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −6.00000 −0.352941 −0.176471 0.984306i \(-0.556468\pi\)
−0.176471 + 0.984306i \(0.556468\pi\)
\(18\) 0 0
\(19\) − 19.0526i − 1.00277i −0.865225 0.501383i \(-0.832825\pi\)
0.865225 0.501383i \(-0.167175\pi\)
\(20\) 0 0
\(21\) 3.00000 0.142857
\(22\) 0 0
\(23\) 17.3205i 0.753066i 0.926403 + 0.376533i \(0.122884\pi\)
−0.926403 + 0.376533i \(0.877116\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) 30.0000 1.03448 0.517241 0.855840i \(-0.326959\pi\)
0.517241 + 0.855840i \(0.326959\pi\)
\(30\) 0 0
\(31\) 5.19615i 0.167618i 0.996482 + 0.0838089i \(0.0267085\pi\)
−0.996482 + 0.0838089i \(0.973291\pi\)
\(32\) 0 0
\(33\) 6.00000 0.181818
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −14.0000 −0.378378 −0.189189 0.981941i \(-0.560586\pi\)
−0.189189 + 0.981941i \(0.560586\pi\)
\(38\) 0 0
\(39\) − 19.0526i − 0.488527i
\(40\) 0 0
\(41\) 36.0000 0.878049 0.439024 0.898475i \(-0.355324\pi\)
0.439024 + 0.898475i \(0.355324\pi\)
\(42\) 0 0
\(43\) − 5.19615i − 0.120841i −0.998173 0.0604204i \(-0.980756\pi\)
0.998173 0.0604204i \(-0.0192441\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 45.0333i 0.958156i 0.877772 + 0.479078i \(0.159029\pi\)
−0.877772 + 0.479078i \(0.840971\pi\)
\(48\) 0 0
\(49\) 46.0000 0.938776
\(50\) 0 0
\(51\) 10.3923i 0.203771i
\(52\) 0 0
\(53\) 72.0000 1.35849 0.679245 0.733911i \(-0.262307\pi\)
0.679245 + 0.733911i \(0.262307\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −33.0000 −0.578947
\(58\) 0 0
\(59\) − 38.1051i − 0.645849i −0.946425 0.322925i \(-0.895334\pi\)
0.946425 0.322925i \(-0.104666\pi\)
\(60\) 0 0
\(61\) 35.0000 0.573770 0.286885 0.957965i \(-0.407380\pi\)
0.286885 + 0.957965i \(0.407380\pi\)
\(62\) 0 0
\(63\) − 5.19615i − 0.0824786i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 29.4449i 0.439476i 0.975559 + 0.219738i \(0.0705202\pi\)
−0.975559 + 0.219738i \(0.929480\pi\)
\(68\) 0 0
\(69\) 30.0000 0.434783
\(70\) 0 0
\(71\) − 90.0666i − 1.26854i −0.773110 0.634272i \(-0.781300\pi\)
0.773110 0.634272i \(-0.218700\pi\)
\(72\) 0 0
\(73\) 62.0000 0.849315 0.424658 0.905354i \(-0.360395\pi\)
0.424658 + 0.905354i \(0.360395\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −6.00000 −0.0779221
\(78\) 0 0
\(79\) − 76.2102i − 0.964687i −0.875982 0.482343i \(-0.839786\pi\)
0.875982 0.482343i \(-0.160214\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) − 72.7461i − 0.876459i −0.898863 0.438230i \(-0.855606\pi\)
0.898863 0.438230i \(-0.144394\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 51.9615i − 0.597259i
\(88\) 0 0
\(89\) 144.000 1.61798 0.808989 0.587824i \(-0.200015\pi\)
0.808989 + 0.587824i \(0.200015\pi\)
\(90\) 0 0
\(91\) 19.0526i 0.209369i
\(92\) 0 0
\(93\) 9.00000 0.0967742
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −181.000 −1.86598 −0.932990 0.359903i \(-0.882810\pi\)
−0.932990 + 0.359903i \(0.882810\pi\)
\(98\) 0 0
\(99\) − 10.3923i − 0.104973i
\(100\) 0 0
\(101\) −48.0000 −0.475248 −0.237624 0.971357i \(-0.576369\pi\)
−0.237624 + 0.971357i \(0.576369\pi\)
\(102\) 0 0
\(103\) − 96.9948i − 0.941698i −0.882214 0.470849i \(-0.843948\pi\)
0.882214 0.470849i \(-0.156052\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 180.133i 1.68349i 0.539876 + 0.841744i \(0.318471\pi\)
−0.539876 + 0.841744i \(0.681529\pi\)
\(108\) 0 0
\(109\) 169.000 1.55046 0.775229 0.631680i \(-0.217634\pi\)
0.775229 + 0.631680i \(0.217634\pi\)
\(110\) 0 0
\(111\) 24.2487i 0.218457i
\(112\) 0 0
\(113\) 12.0000 0.106195 0.0530973 0.998589i \(-0.483091\pi\)
0.0530973 + 0.998589i \(0.483091\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −33.0000 −0.282051
\(118\) 0 0
\(119\) − 10.3923i − 0.0873303i
\(120\) 0 0
\(121\) 109.000 0.900826
\(122\) 0 0
\(123\) − 62.3538i − 0.506942i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 103.923i − 0.818292i −0.912469 0.409146i \(-0.865827\pi\)
0.912469 0.409146i \(-0.134173\pi\)
\(128\) 0 0
\(129\) −9.00000 −0.0697674
\(130\) 0 0
\(131\) − 69.2820i − 0.528870i −0.964403 0.264435i \(-0.914814\pi\)
0.964403 0.264435i \(-0.0851855\pi\)
\(132\) 0 0
\(133\) 33.0000 0.248120
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −54.0000 −0.394161 −0.197080 0.980387i \(-0.563146\pi\)
−0.197080 + 0.980387i \(0.563146\pi\)
\(138\) 0 0
\(139\) − 48.4974i − 0.348902i −0.984666 0.174451i \(-0.944185\pi\)
0.984666 0.174451i \(-0.0558151\pi\)
\(140\) 0 0
\(141\) 78.0000 0.553191
\(142\) 0 0
\(143\) 38.1051i 0.266469i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 79.6743i − 0.542002i
\(148\) 0 0
\(149\) 234.000 1.57047 0.785235 0.619198i \(-0.212542\pi\)
0.785235 + 0.619198i \(0.212542\pi\)
\(150\) 0 0
\(151\) − 164.545i − 1.08970i −0.838533 0.544850i \(-0.816586\pi\)
0.838533 0.544850i \(-0.183414\pi\)
\(152\) 0 0
\(153\) 18.0000 0.117647
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −35.0000 −0.222930 −0.111465 0.993768i \(-0.535554\pi\)
−0.111465 + 0.993768i \(0.535554\pi\)
\(158\) 0 0
\(159\) − 124.708i − 0.784325i
\(160\) 0 0
\(161\) −30.0000 −0.186335
\(162\) 0 0
\(163\) − 174.937i − 1.07323i −0.843826 0.536617i \(-0.819702\pi\)
0.843826 0.536617i \(-0.180298\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 138.564i 0.829725i 0.909884 + 0.414862i \(0.136170\pi\)
−0.909884 + 0.414862i \(0.863830\pi\)
\(168\) 0 0
\(169\) −48.0000 −0.284024
\(170\) 0 0
\(171\) 57.1577i 0.334255i
\(172\) 0 0
\(173\) 198.000 1.14451 0.572254 0.820076i \(-0.306069\pi\)
0.572254 + 0.820076i \(0.306069\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −66.0000 −0.372881
\(178\) 0 0
\(179\) 252.879i 1.41273i 0.707846 + 0.706367i \(0.249667\pi\)
−0.707846 + 0.706367i \(0.750333\pi\)
\(180\) 0 0
\(181\) −23.0000 −0.127072 −0.0635359 0.997980i \(-0.520238\pi\)
−0.0635359 + 0.997980i \(0.520238\pi\)
\(182\) 0 0
\(183\) − 60.6218i − 0.331267i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 20.7846i − 0.111148i
\(188\) 0 0
\(189\) −9.00000 −0.0476190
\(190\) 0 0
\(191\) − 239.023i − 1.25143i −0.780052 0.625715i \(-0.784807\pi\)
0.780052 0.625715i \(-0.215193\pi\)
\(192\) 0 0
\(193\) −59.0000 −0.305699 −0.152850 0.988249i \(-0.548845\pi\)
−0.152850 + 0.988249i \(0.548845\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 162.000 0.822335 0.411168 0.911560i \(-0.365121\pi\)
0.411168 + 0.911560i \(0.365121\pi\)
\(198\) 0 0
\(199\) − 219.970i − 1.10538i −0.833387 0.552690i \(-0.813602\pi\)
0.833387 0.552690i \(-0.186398\pi\)
\(200\) 0 0
\(201\) 51.0000 0.253731
\(202\) 0 0
\(203\) 51.9615i 0.255968i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 51.9615i − 0.251022i
\(208\) 0 0
\(209\) 66.0000 0.315789
\(210\) 0 0
\(211\) 403.568i 1.91264i 0.292316 + 0.956322i \(0.405574\pi\)
−0.292316 + 0.956322i \(0.594426\pi\)
\(212\) 0 0
\(213\) −156.000 −0.732394
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −9.00000 −0.0414747
\(218\) 0 0
\(219\) − 107.387i − 0.490352i
\(220\) 0 0
\(221\) −66.0000 −0.298643
\(222\) 0 0
\(223\) 223.435i 1.00195i 0.865462 + 0.500974i \(0.167025\pi\)
−0.865462 + 0.500974i \(0.832975\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 422.620i 1.86176i 0.365320 + 0.930882i \(0.380960\pi\)
−0.365320 + 0.930882i \(0.619040\pi\)
\(228\) 0 0
\(229\) −59.0000 −0.257642 −0.128821 0.991668i \(-0.541119\pi\)
−0.128821 + 0.991668i \(0.541119\pi\)
\(230\) 0 0
\(231\) 10.3923i 0.0449883i
\(232\) 0 0
\(233\) 84.0000 0.360515 0.180258 0.983619i \(-0.442307\pi\)
0.180258 + 0.983619i \(0.442307\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −132.000 −0.556962
\(238\) 0 0
\(239\) 193.990i 0.811672i 0.913946 + 0.405836i \(0.133020\pi\)
−0.913946 + 0.405836i \(0.866980\pi\)
\(240\) 0 0
\(241\) 73.0000 0.302905 0.151452 0.988465i \(-0.451605\pi\)
0.151452 + 0.988465i \(0.451605\pi\)
\(242\) 0 0
\(243\) − 15.5885i − 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 209.578i − 0.848495i
\(248\) 0 0
\(249\) −126.000 −0.506024
\(250\) 0 0
\(251\) 34.6410i 0.138012i 0.997616 + 0.0690060i \(0.0219828\pi\)
−0.997616 + 0.0690060i \(0.978017\pi\)
\(252\) 0 0
\(253\) −60.0000 −0.237154
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 228.000 0.887160 0.443580 0.896235i \(-0.353708\pi\)
0.443580 + 0.896235i \(0.353708\pi\)
\(258\) 0 0
\(259\) − 24.2487i − 0.0936244i
\(260\) 0 0
\(261\) −90.0000 −0.344828
\(262\) 0 0
\(263\) 422.620i 1.60692i 0.595358 + 0.803461i \(0.297010\pi\)
−0.595358 + 0.803461i \(0.702990\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 249.415i − 0.934140i
\(268\) 0 0
\(269\) −270.000 −1.00372 −0.501859 0.864950i \(-0.667350\pi\)
−0.501859 + 0.864950i \(0.667350\pi\)
\(270\) 0 0
\(271\) − 34.6410i − 0.127827i −0.997955 0.0639133i \(-0.979642\pi\)
0.997955 0.0639133i \(-0.0203581\pi\)
\(272\) 0 0
\(273\) 33.0000 0.120879
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −49.0000 −0.176895 −0.0884477 0.996081i \(-0.528191\pi\)
−0.0884477 + 0.996081i \(0.528191\pi\)
\(278\) 0 0
\(279\) − 15.5885i − 0.0558726i
\(280\) 0 0
\(281\) −246.000 −0.875445 −0.437722 0.899110i \(-0.644215\pi\)
−0.437722 + 0.899110i \(0.644215\pi\)
\(282\) 0 0
\(283\) − 140.296i − 0.495746i −0.968793 0.247873i \(-0.920268\pi\)
0.968793 0.247873i \(-0.0797316\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 62.3538i 0.217261i
\(288\) 0 0
\(289\) −253.000 −0.875433
\(290\) 0 0
\(291\) 313.501i 1.07732i
\(292\) 0 0
\(293\) −78.0000 −0.266212 −0.133106 0.991102i \(-0.542495\pi\)
−0.133106 + 0.991102i \(0.542495\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −18.0000 −0.0606061
\(298\) 0 0
\(299\) 190.526i 0.637209i
\(300\) 0 0
\(301\) 9.00000 0.0299003
\(302\) 0 0
\(303\) 83.1384i 0.274384i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 202.650i − 0.660098i −0.943964 0.330049i \(-0.892935\pi\)
0.943964 0.330049i \(-0.107065\pi\)
\(308\) 0 0
\(309\) −168.000 −0.543689
\(310\) 0 0
\(311\) − 370.659i − 1.19183i −0.803048 0.595915i \(-0.796790\pi\)
0.803048 0.595915i \(-0.203210\pi\)
\(312\) 0 0
\(313\) 25.0000 0.0798722 0.0399361 0.999202i \(-0.487285\pi\)
0.0399361 + 0.999202i \(0.487285\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 600.000 1.89274 0.946372 0.323078i \(-0.104718\pi\)
0.946372 + 0.323078i \(0.104718\pi\)
\(318\) 0 0
\(319\) 103.923i 0.325778i
\(320\) 0 0
\(321\) 312.000 0.971963
\(322\) 0 0
\(323\) 114.315i 0.353918i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 292.717i − 0.895158i
\(328\) 0 0
\(329\) −78.0000 −0.237082
\(330\) 0 0
\(331\) 408.764i 1.23494i 0.786596 + 0.617468i \(0.211842\pi\)
−0.786596 + 0.617468i \(0.788158\pi\)
\(332\) 0 0
\(333\) 42.0000 0.126126
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 203.000 0.602374 0.301187 0.953565i \(-0.402617\pi\)
0.301187 + 0.953565i \(0.402617\pi\)
\(338\) 0 0
\(339\) − 20.7846i − 0.0613115i
\(340\) 0 0
\(341\) −18.0000 −0.0527859
\(342\) 0 0
\(343\) 164.545i 0.479723i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 613.146i 1.76699i 0.468439 + 0.883496i \(0.344816\pi\)
−0.468439 + 0.883496i \(0.655184\pi\)
\(348\) 0 0
\(349\) −538.000 −1.54155 −0.770774 0.637109i \(-0.780130\pi\)
−0.770774 + 0.637109i \(0.780130\pi\)
\(350\) 0 0
\(351\) 57.1577i 0.162842i
\(352\) 0 0
\(353\) −498.000 −1.41076 −0.705382 0.708827i \(-0.749225\pi\)
−0.705382 + 0.708827i \(0.749225\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −18.0000 −0.0504202
\(358\) 0 0
\(359\) 90.0666i 0.250882i 0.992101 + 0.125441i \(0.0400346\pi\)
−0.992101 + 0.125441i \(0.959965\pi\)
\(360\) 0 0
\(361\) −2.00000 −0.00554017
\(362\) 0 0
\(363\) − 188.794i − 0.520092i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 569.845i − 1.55271i −0.630296 0.776355i \(-0.717066\pi\)
0.630296 0.776355i \(-0.282934\pi\)
\(368\) 0 0
\(369\) −108.000 −0.292683
\(370\) 0 0
\(371\) 124.708i 0.336139i
\(372\) 0 0
\(373\) −491.000 −1.31635 −0.658177 0.752863i \(-0.728672\pi\)
−0.658177 + 0.752863i \(0.728672\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 330.000 0.875332
\(378\) 0 0
\(379\) 323.894i 0.854600i 0.904110 + 0.427300i \(0.140535\pi\)
−0.904110 + 0.427300i \(0.859465\pi\)
\(380\) 0 0
\(381\) −180.000 −0.472441
\(382\) 0 0
\(383\) 367.195i 0.958733i 0.877615 + 0.479367i \(0.159134\pi\)
−0.877615 + 0.479367i \(0.840866\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 15.5885i 0.0402803i
\(388\) 0 0
\(389\) −132.000 −0.339332 −0.169666 0.985502i \(-0.554269\pi\)
−0.169666 + 0.985502i \(0.554269\pi\)
\(390\) 0 0
\(391\) − 103.923i − 0.265788i
\(392\) 0 0
\(393\) −120.000 −0.305344
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −251.000 −0.632242 −0.316121 0.948719i \(-0.602381\pi\)
−0.316121 + 0.948719i \(0.602381\pi\)
\(398\) 0 0
\(399\) − 57.1577i − 0.143252i
\(400\) 0 0
\(401\) −720.000 −1.79551 −0.897756 0.440494i \(-0.854803\pi\)
−0.897756 + 0.440494i \(0.854803\pi\)
\(402\) 0 0
\(403\) 57.1577i 0.141830i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 48.4974i − 0.119158i
\(408\) 0 0
\(409\) −515.000 −1.25917 −0.629584 0.776932i \(-0.716775\pi\)
−0.629584 + 0.776932i \(0.716775\pi\)
\(410\) 0 0
\(411\) 93.5307i 0.227569i
\(412\) 0 0
\(413\) 66.0000 0.159806
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −84.0000 −0.201439
\(418\) 0 0
\(419\) 789.815i 1.88500i 0.334206 + 0.942500i \(0.391532\pi\)
−0.334206 + 0.942500i \(0.608468\pi\)
\(420\) 0 0
\(421\) −278.000 −0.660333 −0.330166 0.943923i \(-0.607105\pi\)
−0.330166 + 0.943923i \(0.607105\pi\)
\(422\) 0 0
\(423\) − 135.100i − 0.319385i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 60.6218i 0.141971i
\(428\) 0 0
\(429\) 66.0000 0.153846
\(430\) 0 0
\(431\) − 627.002i − 1.45476i −0.686234 0.727381i \(-0.740737\pi\)
0.686234 0.727381i \(-0.259263\pi\)
\(432\) 0 0
\(433\) −287.000 −0.662818 −0.331409 0.943487i \(-0.607524\pi\)
−0.331409 + 0.943487i \(0.607524\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 330.000 0.755149
\(438\) 0 0
\(439\) − 244.219i − 0.556308i −0.960537 0.278154i \(-0.910277\pi\)
0.960537 0.278154i \(-0.0897225\pi\)
\(440\) 0 0
\(441\) −138.000 −0.312925
\(442\) 0 0
\(443\) − 221.703i − 0.500457i −0.968187 0.250229i \(-0.919494\pi\)
0.968187 0.250229i \(-0.0805058\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 405.300i − 0.906711i
\(448\) 0 0
\(449\) 132.000 0.293987 0.146993 0.989137i \(-0.453040\pi\)
0.146993 + 0.989137i \(0.453040\pi\)
\(450\) 0 0
\(451\) 124.708i 0.276514i
\(452\) 0 0
\(453\) −285.000 −0.629139
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 434.000 0.949672 0.474836 0.880074i \(-0.342507\pi\)
0.474836 + 0.880074i \(0.342507\pi\)
\(458\) 0 0
\(459\) − 31.1769i − 0.0679236i
\(460\) 0 0
\(461\) 312.000 0.676790 0.338395 0.941004i \(-0.390116\pi\)
0.338395 + 0.941004i \(0.390116\pi\)
\(462\) 0 0
\(463\) 90.0666i 0.194528i 0.995259 + 0.0972642i \(0.0310092\pi\)
−0.995259 + 0.0972642i \(0.968991\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 3.46410i − 0.00741778i −0.999993 0.00370889i \(-0.998819\pi\)
0.999993 0.00370889i \(-0.00118058\pi\)
\(468\) 0 0
\(469\) −51.0000 −0.108742
\(470\) 0 0
\(471\) 60.6218i 0.128709i
\(472\) 0 0
\(473\) 18.0000 0.0380550
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −216.000 −0.452830
\(478\) 0 0
\(479\) 737.854i 1.54040i 0.637800 + 0.770202i \(0.279845\pi\)
−0.637800 + 0.770202i \(0.720155\pi\)
\(480\) 0 0
\(481\) −154.000 −0.320166
\(482\) 0 0
\(483\) 51.9615i 0.107581i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 258.076i − 0.529929i −0.964258 0.264965i \(-0.914640\pi\)
0.964258 0.264965i \(-0.0853603\pi\)
\(488\) 0 0
\(489\) −303.000 −0.619632
\(490\) 0 0
\(491\) 332.554i 0.677299i 0.940913 + 0.338649i \(0.109970\pi\)
−0.940913 + 0.338649i \(0.890030\pi\)
\(492\) 0 0
\(493\) −180.000 −0.365112
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 156.000 0.313883
\(498\) 0 0
\(499\) 306.573i 0.614375i 0.951649 + 0.307187i \(0.0993878\pi\)
−0.951649 + 0.307187i \(0.900612\pi\)
\(500\) 0 0
\(501\) 240.000 0.479042
\(502\) 0 0
\(503\) 187.061i 0.371892i 0.982560 + 0.185946i \(0.0595349\pi\)
−0.982560 + 0.185946i \(0.940465\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 83.1384i 0.163981i
\(508\) 0 0
\(509\) −546.000 −1.07269 −0.536346 0.843998i \(-0.680196\pi\)
−0.536346 + 0.843998i \(0.680196\pi\)
\(510\) 0 0
\(511\) 107.387i 0.210151i
\(512\) 0 0
\(513\) 99.0000 0.192982
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −156.000 −0.301741
\(518\) 0 0
\(519\) − 342.946i − 0.660782i
\(520\) 0 0
\(521\) −318.000 −0.610365 −0.305182 0.952294i \(-0.598717\pi\)
−0.305182 + 0.952294i \(0.598717\pi\)
\(522\) 0 0
\(523\) − 895.470i − 1.71218i −0.516827 0.856090i \(-0.672887\pi\)
0.516827 0.856090i \(-0.327113\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 31.1769i − 0.0591592i
\(528\) 0 0
\(529\) 229.000 0.432892
\(530\) 0 0
\(531\) 114.315i 0.215283i
\(532\) 0 0
\(533\) 396.000 0.742964
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 438.000 0.815642
\(538\) 0 0
\(539\) 159.349i 0.295638i
\(540\) 0 0
\(541\) 157.000 0.290203 0.145102 0.989417i \(-0.453649\pi\)
0.145102 + 0.989417i \(0.453649\pi\)
\(542\) 0 0
\(543\) 39.8372i 0.0733650i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 69.2820i 0.126658i 0.997993 + 0.0633291i \(0.0201718\pi\)
−0.997993 + 0.0633291i \(0.979828\pi\)
\(548\) 0 0
\(549\) −105.000 −0.191257
\(550\) 0 0
\(551\) − 571.577i − 1.03734i
\(552\) 0 0
\(553\) 132.000 0.238698
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −114.000 −0.204668 −0.102334 0.994750i \(-0.532631\pi\)
−0.102334 + 0.994750i \(0.532631\pi\)
\(558\) 0 0
\(559\) − 57.1577i − 0.102250i
\(560\) 0 0
\(561\) −36.0000 −0.0641711
\(562\) 0 0
\(563\) 128.172i 0.227659i 0.993500 + 0.113829i \(0.0363117\pi\)
−0.993500 + 0.113829i \(0.963688\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 15.5885i 0.0274929i
\(568\) 0 0
\(569\) 450.000 0.790861 0.395431 0.918496i \(-0.370595\pi\)
0.395431 + 0.918496i \(0.370595\pi\)
\(570\) 0 0
\(571\) 22.5167i 0.0394337i 0.999806 + 0.0197169i \(0.00627648\pi\)
−0.999806 + 0.0197169i \(0.993724\pi\)
\(572\) 0 0
\(573\) −414.000 −0.722513
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −311.000 −0.538995 −0.269497 0.963001i \(-0.586858\pi\)
−0.269497 + 0.963001i \(0.586858\pi\)
\(578\) 0 0
\(579\) 102.191i 0.176496i
\(580\) 0 0
\(581\) 126.000 0.216867
\(582\) 0 0
\(583\) 249.415i 0.427814i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 166.277i 0.283266i 0.989919 + 0.141633i \(0.0452352\pi\)
−0.989919 + 0.141633i \(0.954765\pi\)
\(588\) 0 0
\(589\) 99.0000 0.168081
\(590\) 0 0
\(591\) − 280.592i − 0.474775i
\(592\) 0 0
\(593\) −636.000 −1.07251 −0.536256 0.844055i \(-0.680162\pi\)
−0.536256 + 0.844055i \(0.680162\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −381.000 −0.638191
\(598\) 0 0
\(599\) − 769.031i − 1.28386i −0.766764 0.641929i \(-0.778135\pi\)
0.766764 0.641929i \(-0.221865\pi\)
\(600\) 0 0
\(601\) 371.000 0.617304 0.308652 0.951175i \(-0.400122\pi\)
0.308652 + 0.951175i \(0.400122\pi\)
\(602\) 0 0
\(603\) − 88.3346i − 0.146492i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 533.472i − 0.878866i −0.898275 0.439433i \(-0.855179\pi\)
0.898275 0.439433i \(-0.144821\pi\)
\(608\) 0 0
\(609\) 90.0000 0.147783
\(610\) 0 0
\(611\) 495.367i 0.810747i
\(612\) 0 0
\(613\) −374.000 −0.610114 −0.305057 0.952334i \(-0.598676\pi\)
−0.305057 + 0.952334i \(0.598676\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −240.000 −0.388979 −0.194489 0.980905i \(-0.562305\pi\)
−0.194489 + 0.980905i \(0.562305\pi\)
\(618\) 0 0
\(619\) − 621.806i − 1.00453i −0.864713 0.502267i \(-0.832500\pi\)
0.864713 0.502267i \(-0.167500\pi\)
\(620\) 0 0
\(621\) −90.0000 −0.144928
\(622\) 0 0
\(623\) 249.415i 0.400346i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 114.315i − 0.182321i
\(628\) 0 0
\(629\) 84.0000 0.133545
\(630\) 0 0
\(631\) − 549.060i − 0.870143i −0.900396 0.435071i \(-0.856723\pi\)
0.900396 0.435071i \(-0.143277\pi\)
\(632\) 0 0
\(633\) 699.000 1.10427
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 506.000 0.794349
\(638\) 0 0
\(639\) 270.200i 0.422848i
\(640\) 0 0
\(641\) −300.000 −0.468019 −0.234009 0.972234i \(-0.575185\pi\)
−0.234009 + 0.972234i \(0.575185\pi\)
\(642\) 0 0
\(643\) 394.908i 0.614164i 0.951683 + 0.307082i \(0.0993526\pi\)
−0.951683 + 0.307082i \(0.900647\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 699.749i 1.08153i 0.841174 + 0.540764i \(0.181865\pi\)
−0.841174 + 0.540764i \(0.818135\pi\)
\(648\) 0 0
\(649\) 132.000 0.203390
\(650\) 0 0
\(651\) 15.5885i 0.0239454i
\(652\) 0 0
\(653\) 534.000 0.817764 0.408882 0.912587i \(-0.365919\pi\)
0.408882 + 0.912587i \(0.365919\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −186.000 −0.283105
\(658\) 0 0
\(659\) − 436.477i − 0.662332i −0.943573 0.331166i \(-0.892558\pi\)
0.943573 0.331166i \(-0.107442\pi\)
\(660\) 0 0
\(661\) −34.0000 −0.0514372 −0.0257186 0.999669i \(-0.508187\pi\)
−0.0257186 + 0.999669i \(0.508187\pi\)
\(662\) 0 0
\(663\) 114.315i 0.172421i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 519.615i 0.779033i
\(668\) 0 0
\(669\) 387.000 0.578475
\(670\) 0 0
\(671\) 121.244i 0.180691i
\(672\) 0 0
\(673\) 1234.00 1.83358 0.916790 0.399368i \(-0.130771\pi\)
0.916790 + 0.399368i \(0.130771\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −534.000 −0.788774 −0.394387 0.918944i \(-0.629043\pi\)
−0.394387 + 0.918944i \(0.629043\pi\)
\(678\) 0 0
\(679\) − 313.501i − 0.461710i
\(680\) 0 0
\(681\) 732.000 1.07489
\(682\) 0 0
\(683\) − 526.543i − 0.770927i −0.922723 0.385464i \(-0.874041\pi\)
0.922723 0.385464i \(-0.125959\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 102.191i 0.148750i
\(688\) 0 0
\(689\) 792.000 1.14949
\(690\) 0 0
\(691\) 1122.37i 1.62427i 0.583471 + 0.812134i \(0.301694\pi\)
−0.583471 + 0.812134i \(0.698306\pi\)
\(692\) 0 0
\(693\) 18.0000 0.0259740
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −216.000 −0.309900
\(698\) 0 0
\(699\) − 145.492i − 0.208143i
\(700\) 0 0
\(701\) 306.000 0.436519 0.218260 0.975891i \(-0.429962\pi\)
0.218260 + 0.975891i \(0.429962\pi\)
\(702\) 0 0
\(703\) 266.736i 0.379425i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 83.1384i − 0.117593i
\(708\) 0 0
\(709\) 433.000 0.610719 0.305360 0.952237i \(-0.401223\pi\)
0.305360 + 0.952237i \(0.401223\pi\)
\(710\) 0 0
\(711\) 228.631i 0.321562i
\(712\) 0 0
\(713\) −90.0000 −0.126227
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 336.000 0.468619
\(718\) 0 0
\(719\) − 585.433i − 0.814233i −0.913376 0.407116i \(-0.866534\pi\)
0.913376 0.407116i \(-0.133466\pi\)
\(720\) 0 0
\(721\) 168.000 0.233010
\(722\) 0 0
\(723\) − 126.440i − 0.174882i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 930.111i 1.27938i 0.768632 + 0.639691i \(0.220938\pi\)
−0.768632 + 0.639691i \(0.779062\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) 31.1769i 0.0426497i
\(732\) 0 0
\(733\) 590.000 0.804911 0.402456 0.915439i \(-0.368157\pi\)
0.402456 + 0.915439i \(0.368157\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −102.000 −0.138399
\(738\) 0 0
\(739\) 644.323i 0.871885i 0.899975 + 0.435942i \(0.143585\pi\)
−0.899975 + 0.435942i \(0.856415\pi\)
\(740\) 0 0
\(741\) −363.000 −0.489879
\(742\) 0 0
\(743\) − 741.318i − 0.997736i −0.866678 0.498868i \(-0.833749\pi\)
0.866678 0.498868i \(-0.166251\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 218.238i 0.292153i
\(748\) 0 0
\(749\) −312.000 −0.416555
\(750\) 0 0
\(751\) − 907.595i − 1.20851i −0.796789 0.604257i \(-0.793470\pi\)
0.796789 0.604257i \(-0.206530\pi\)
\(752\) 0 0
\(753\) 60.0000 0.0796813
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −841.000 −1.11096 −0.555482 0.831528i \(-0.687466\pi\)
−0.555482 + 0.831528i \(0.687466\pi\)
\(758\) 0 0
\(759\) 103.923i 0.136921i
\(760\) 0 0
\(761\) 924.000 1.21419 0.607096 0.794629i \(-0.292334\pi\)
0.607096 + 0.794629i \(0.292334\pi\)
\(762\) 0 0
\(763\) 292.717i 0.383639i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 419.156i − 0.546488i
\(768\) 0 0
\(769\) 347.000 0.451235 0.225618 0.974216i \(-0.427560\pi\)
0.225618 + 0.974216i \(0.427560\pi\)
\(770\) 0 0
\(771\) − 394.908i − 0.512202i
\(772\) 0 0
\(773\) 1404.00 1.81630 0.908150 0.418645i \(-0.137495\pi\)
0.908150 + 0.418645i \(0.137495\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −42.0000 −0.0540541
\(778\) 0 0
\(779\) − 685.892i − 0.880478i
\(780\) 0 0
\(781\) 312.000 0.399488
\(782\) 0 0
\(783\) 155.885i 0.199086i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 43.3013i − 0.0550207i −0.999622 0.0275103i \(-0.991242\pi\)
0.999622 0.0275103i \(-0.00875792\pi\)
\(788\) 0 0
\(789\) 732.000 0.927757
\(790\) 0 0
\(791\) 20.7846i 0.0262764i
\(792\) 0 0
\(793\) 385.000 0.485498
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −348.000 −0.436637 −0.218319 0.975878i \(-0.570057\pi\)
−0.218319 + 0.975878i \(0.570057\pi\)
\(798\) 0 0
\(799\) − 270.200i − 0.338173i
\(800\) 0 0
\(801\) −432.000 −0.539326
\(802\) 0 0
\(803\) 214.774i 0.267465i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 467.654i 0.579497i
\(808\) 0 0
\(809\) 384.000 0.474660 0.237330 0.971429i \(-0.423728\pi\)
0.237330 + 0.971429i \(0.423728\pi\)
\(810\) 0 0
\(811\) − 691.088i − 0.852143i −0.904689 0.426072i \(-0.859897\pi\)
0.904689 0.426072i \(-0.140103\pi\)
\(812\) 0 0
\(813\) −60.0000 −0.0738007
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −99.0000 −0.121175
\(818\) 0 0
\(819\) − 57.1577i − 0.0697896i
\(820\) 0 0
\(821\) 462.000 0.562728 0.281364 0.959601i \(-0.409213\pi\)
0.281364 + 0.959601i \(0.409213\pi\)
\(822\) 0 0
\(823\) − 614.878i − 0.747118i −0.927606 0.373559i \(-0.878137\pi\)
0.927606 0.373559i \(-0.121863\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 193.990i 0.234570i 0.993098 + 0.117285i \(0.0374192\pi\)
−0.993098 + 0.117285i \(0.962581\pi\)
\(828\) 0 0
\(829\) 1606.00 1.93727 0.968637 0.248480i \(-0.0799312\pi\)
0.968637 + 0.248480i \(0.0799312\pi\)
\(830\) 0 0
\(831\) 84.8705i 0.102131i
\(832\) 0 0
\(833\) −276.000 −0.331333
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −27.0000 −0.0322581
\(838\) 0 0
\(839\) − 897.202i − 1.06937i −0.845051 0.534686i \(-0.820430\pi\)
0.845051 0.534686i \(-0.179570\pi\)
\(840\) 0 0
\(841\) 59.0000 0.0701546
\(842\) 0 0
\(843\) 426.084i 0.505438i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 188.794i 0.222897i
\(848\) 0 0
\(849\) −243.000 −0.286219
\(850\) 0 0
\(851\) − 242.487i − 0.284944i
\(852\) 0 0
\(853\) −575.000 −0.674091 −0.337046 0.941488i \(-0.609428\pi\)
−0.337046 + 0.941488i \(0.609428\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1068.00 −1.24621 −0.623104 0.782139i \(-0.714129\pi\)
−0.623104 + 0.782139i \(0.714129\pi\)
\(858\) 0 0
\(859\) − 1233.22i − 1.43565i −0.696225 0.717823i \(-0.745139\pi\)
0.696225 0.717823i \(-0.254861\pi\)
\(860\) 0 0
\(861\) 108.000 0.125436
\(862\) 0 0
\(863\) 166.277i 0.192673i 0.995349 + 0.0963365i \(0.0307125\pi\)
−0.995349 + 0.0963365i \(0.969287\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 438.209i 0.505431i
\(868\) 0 0
\(869\) 264.000 0.303797
\(870\) 0 0
\(871\) 323.894i 0.371864i
\(872\) 0 0
\(873\) 543.000 0.621993
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −731.000 −0.833523 −0.416762 0.909016i \(-0.636835\pi\)
−0.416762 + 0.909016i \(0.636835\pi\)
\(878\) 0 0
\(879\) 135.100i 0.153697i
\(880\) 0 0
\(881\) 48.0000 0.0544835 0.0272418 0.999629i \(-0.491328\pi\)
0.0272418 + 0.999629i \(0.491328\pi\)
\(882\) 0 0
\(883\) − 1037.50i − 1.17497i −0.809235 0.587485i \(-0.800118\pi\)
0.809235 0.587485i \(-0.199882\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 1375.25i − 1.55045i −0.631686 0.775225i \(-0.717637\pi\)
0.631686 0.775225i \(-0.282363\pi\)
\(888\) 0 0
\(889\) 180.000 0.202475
\(890\) 0 0
\(891\) 31.1769i 0.0349909i
\(892\) 0 0
\(893\) 858.000 0.960806
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 330.000 0.367893
\(898\) 0 0
\(899\) 155.885i 0.173398i
\(900\) 0 0
\(901\) −432.000 −0.479467
\(902\) 0 0
\(903\) − 15.5885i − 0.0172630i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 1531.13i 1.68813i 0.536242 + 0.844064i \(0.319844\pi\)
−0.536242 + 0.844064i \(0.680156\pi\)
\(908\) 0 0
\(909\) 144.000 0.158416
\(910\) 0 0
\(911\) 1389.10i 1.52481i 0.647098 + 0.762407i \(0.275982\pi\)
−0.647098 + 0.762407i \(0.724018\pi\)
\(912\) 0 0
\(913\) 252.000 0.276013
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 120.000 0.130862
\(918\) 0 0
\(919\) 140.296i 0.152662i 0.997083 + 0.0763309i \(0.0243205\pi\)
−0.997083 + 0.0763309i \(0.975679\pi\)
\(920\) 0 0
\(921\) −351.000 −0.381107
\(922\) 0 0
\(923\) − 990.733i − 1.07338i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 290.985i 0.313899i
\(928\) 0 0
\(929\) 1002.00 1.07858 0.539290 0.842120i \(-0.318693\pi\)
0.539290 + 0.842120i \(0.318693\pi\)
\(930\) 0 0
\(931\) − 876.418i − 0.941372i
\(932\) 0 0
\(933\) −642.000 −0.688103
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 661.000 0.705443 0.352721 0.935728i \(-0.385256\pi\)
0.352721 + 0.935728i \(0.385256\pi\)
\(938\) 0 0
\(939\) − 43.3013i − 0.0461142i
\(940\) 0 0
\(941\) 1110.00 1.17960 0.589798 0.807551i \(-0.299207\pi\)
0.589798 + 0.807551i \(0.299207\pi\)
\(942\) 0 0
\(943\) 623.538i 0.661228i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 1008.05i − 1.06447i −0.846597 0.532235i \(-0.821352\pi\)
0.846597 0.532235i \(-0.178648\pi\)
\(948\) 0 0
\(949\) 682.000 0.718651
\(950\) 0 0
\(951\) − 1039.23i − 1.09278i
\(952\) 0 0
\(953\) −1680.00 −1.76285 −0.881427 0.472320i \(-0.843417\pi\)
−0.881427 + 0.472320i \(0.843417\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 180.000 0.188088
\(958\) 0 0
\(959\) − 93.5307i − 0.0975295i
\(960\) 0 0
\(961\) 934.000 0.971904
\(962\) 0 0
\(963\) − 540.400i − 0.561163i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 616.610i 0.637653i 0.947813 + 0.318826i \(0.103289\pi\)
−0.947813 + 0.318826i \(0.896711\pi\)
\(968\) 0 0
\(969\) 198.000 0.204334
\(970\) 0 0
\(971\) − 308.305i − 0.317513i −0.987318 0.158756i \(-0.949252\pi\)
0.987318 0.158756i \(-0.0507485\pi\)
\(972\) 0 0
\(973\) 84.0000 0.0863309
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −1578.00 −1.61515 −0.807574 0.589766i \(-0.799220\pi\)
−0.807574 + 0.589766i \(0.799220\pi\)
\(978\) 0 0
\(979\) 498.831i 0.509531i
\(980\) 0 0
\(981\) −507.000 −0.516820
\(982\) 0 0
\(983\) − 1378.71i − 1.40256i −0.712888 0.701278i \(-0.752613\pi\)
0.712888 0.701278i \(-0.247387\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 135.100i 0.136879i
\(988\) 0 0
\(989\) 90.0000 0.0910010
\(990\) 0 0
\(991\) 81.4064i 0.0821457i 0.999156 + 0.0410728i \(0.0130776\pi\)
−0.999156 + 0.0410728i \(0.986922\pi\)
\(992\) 0 0
\(993\) 708.000 0.712991
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 34.0000 0.0341023 0.0170512 0.999855i \(-0.494572\pi\)
0.0170512 + 0.999855i \(0.494572\pi\)
\(998\) 0 0
\(999\) − 72.7461i − 0.0728190i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1200.3.e.f.751.1 yes 2
3.2 odd 2 3600.3.e.r.3151.2 2
4.3 odd 2 inner 1200.3.e.f.751.2 yes 2
5.2 odd 4 1200.3.j.c.799.2 4
5.3 odd 4 1200.3.j.c.799.4 4
5.4 even 2 1200.3.e.c.751.2 yes 2
12.11 even 2 3600.3.e.r.3151.1 2
15.2 even 4 3600.3.j.h.1999.1 4
15.8 even 4 3600.3.j.h.1999.3 4
15.14 odd 2 3600.3.e.l.3151.1 2
20.3 even 4 1200.3.j.c.799.1 4
20.7 even 4 1200.3.j.c.799.3 4
20.19 odd 2 1200.3.e.c.751.1 2
60.23 odd 4 3600.3.j.h.1999.2 4
60.47 odd 4 3600.3.j.h.1999.4 4
60.59 even 2 3600.3.e.l.3151.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1200.3.e.c.751.1 2 20.19 odd 2
1200.3.e.c.751.2 yes 2 5.4 even 2
1200.3.e.f.751.1 yes 2 1.1 even 1 trivial
1200.3.e.f.751.2 yes 2 4.3 odd 2 inner
1200.3.j.c.799.1 4 20.3 even 4
1200.3.j.c.799.2 4 5.2 odd 4
1200.3.j.c.799.3 4 20.7 even 4
1200.3.j.c.799.4 4 5.3 odd 4
3600.3.e.l.3151.1 2 15.14 odd 2
3600.3.e.l.3151.2 2 60.59 even 2
3600.3.e.r.3151.1 2 12.11 even 2
3600.3.e.r.3151.2 2 3.2 odd 2
3600.3.j.h.1999.1 4 15.2 even 4
3600.3.j.h.1999.2 4 60.23 odd 4
3600.3.j.h.1999.3 4 15.8 even 4
3600.3.j.h.1999.4 4 60.47 odd 4